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Analytically tractable models of thermal-field emission, field enhancement, and heating mechanisms
(Nottingham and resistive) are developed and combined to make estimates of the fields and temperatures
that accompany the development and growth of asperities. The relation of asperity dimensions to dark
current is discussed in two experimentally motivated examples. The hypothetical relation of microscopic
sources of dark current and heating to breakdown is discussed in the context of Nottingham and resistive
heating. The latter are estimated using a general thermal-field methodology. A point-charge model is used
to find field enhancement factors. Last, a thermal model is used to estimate the temperature dependence of
the resistivity and thermal conductivity. Together, these models suggest that conditions can arise in which
the temperature at the apex of an asperity can experience growth and contribute to melting or fracture (or
both), and that Nottingham heating generally dominates the resistive heating term.
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I. INTRODUCTION

Dark current, or the unwanted emission of electrons
from the surface of both photocathodes and metal surfaces
within an rf photoinjector as a consequence of thermal-
field emission, has long been observed (generally, with
dismay) in the development of free-electron lasers [1,2]
and accelerators. It is undesirable, not only because it
limits operational performance [3–10], but because it
also plays a role in breakdown [11–18]. Though much is
known about the relationship between dark current
(thermal-field emission), local heating of asperities, field
enhancement, and their failure mechanisms, good theoreti-
cal models are hampered by a lack of emission models that
are correct in the parameter regime of both high fields and
temperatures, flexible field enhancement models, and the
relationship of temperature and field enhancement to re-
sistive (i.e., heating due to electron-phonon scattering) and
Nottingham (i.e., excess energy given up by an electron at
the Fermi level scattering to occupy a state below the Fermi
level vacated by a field emitted electron) heating for con-
ditions that occur.

The examination of the origin of dark current is often in
the context of the Fowler-Nordheim (FN) equation [19]
(see the Appendices) coupled with models of field en-
hancement that are numerically inferred. Such approaches
are appropriate to the phases of dark current modeling
[9,15,16,20,21]) prior to large temperature excursions,

but their applicability afterwards is undermined by
(i) when temperatures at the emission site approach the
melting point of the metals (emission is thermal field rather
than FN); (ii) when migration of material results in nano-
protrusions that dynamically grow but whose size pre-
cludes their adequate consideration by numerical means;
and (iii) when the only acknowledgment of geometry is
through the positing of a field enhancement ‘‘beta factor’’
without considering its companion effect on the ‘‘no-
tional’’ emission area [22]. That such considerations matter
is supported by treatments in which the thermal-field emis-
sion for multidimensional structures is numerically found
[23,24] and which capture effects absent in the analytical
approaches.

The intent of the present work is to develop a method-
ology that can provide estimates of the current levels
involved at the asperities and the associated heating that
occurs as a consequence, but that is respectful both of the
emission current physics and the evolving geometry. A
reliance on flat (that is, one-dimensional) and conventional
field and thermal emission models and their neglect of area
and field enhancement and area factors associated with
electron emission in treatments of dark current are incom-
plete and occasionally incorrect. The methodologies that
are brought to bear to rectify this have been vetted in the
modeling and characterization of modern electron sources.
A correct description entails several requirements: (i) when
heating is significant, models transcending the Fowler-
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Nordheim equation are needed; (ii) a model of field en-
hancement that evolves as conditions evolve is required;
and (iii) models describing ‘‘run-away’’ mechanisms lead-
ing to failure calculate resistive and Nottingham heating
contributions correctly. To meet these demands, a frame-
work that couples the disparate phenomena and which
favors analytical rather than numerical methods to address
thermal-field emission from evolving protrusions subject
to heating mechanisms related to electron emission, in
particular, is developed.

II. LOCALIZED HEATING DUE TO EMISSION
AND ITS RELATION TO BREAKDOWN: AN

HYPOTHESIS

Heat localization is associated with the appearance of
nanoprotrusions and sharp ridges on field emitter tips [18],
and the development of such structures are considered by
the field emission community to be a precursor to break-
down in field emitter arrays in that asperity creation is in
part due to ion bombardment of the emitter surface [25].
Surface migration of atoms or clusters of atoms (‘‘protru-
sions’’ in the parlance of Charbonnier) becomes possible
when temperature and field conditions favor it: consider-
able literature has been devoted to the theoretical study and
experimental characterization of it and its relation to elec-
tron emission [26]. Ancona [27] in particular argues, in his
study of metal field emitter failure, that his findings suggest
melting accompanies tip failure rather than triggers it.
Temperature increases can be the consequence of the im-
pact of energetic ions, and Nottingham and resistive heat-
ing mechanisms, the exact nature of which shall be
explored in detail in subsequent sections. Analogously in
the accelerator community, Wilson has hypothesized that
surface melting accompanies breakdown [28–30], and
Norem et al. [15,16] observe that fracture can occur at
the same sharp regions that lead to field emission and local
heating. Insepov et al. [31] have performed molecular
dynamic simulations that produce behavior supportive of
the surface migration hypothesis. While the accelerator
community has not converged upon an accepted under-
lying microscopic mechanism for local heating and melt-
ing, or its relation to origins of mechanical fatigue, and the
sequence of events leading to breakdown [6], the models
advocated by Wilson, Norem, Bonin, and others contain
explicitly and implicitly speculations regarding the impact
of field emission and temperature-induced surface migra-
tion (though other mechanisms, such as back-streaming
ions [16], contribute).

In considering the current flow heating hypotheses, an
account of heating mechanisms merits revisiting. The
present analysis seeks to quantify otherwise qualitative
speculations that deal with electron emission at localized,
likely nanoscale, emission sites thought to accompany
breakdown. Consequently, conditions existing in the mi-
crowave cavities (e.g., background pressure, microwave

power, device dimensions, and so on [32,33]) are of sec-
ondary importance to the methods developed herein in
spite of their generally paramount importance in the litera-
ture. Field emission electrons tunnel through surface bar-
riers on femtosecond time scales, and the time duration
between individual electron emission events (each of
which contributes to Nottingham heating and cooling)
from a 10 nm2 area for current densities on the order of
108 A=cm2 is 16 fs on average. Compare these ‘‘nano-
physics’’ time scales to others that matter in the evolution
of dark current. First, heat diffusion in metals (e.g., copper)
is characterized by a heat diffusion time constant �t �
�x2=4Do on the order of O(2 ns) for a O�1 �m� migration
scale distance. Second, the time scale of the variation in the
magnitude of the electric field at the surface of a conductor
is related to the inverse frequency and therefore on the
order of 0.5 ns in an S-band photoinjector or on the order of
1.4 ns in photoinjectors for high power free-electron lasers
under development [34].

Thus, Nottingham heating and field emission phe-
nomena (see Sec. VI) involve time scales so rapid that
little is compromised by assuming ‘‘static’’ conditions in
the emission and heating equations to be developed (a
point made by Bonin [35]). Such would not be the case if
the focus were on surface melting and cone formation
(precursors to breakdown), as in other studies [36–38],
but it is so if the focus is on the applicability of the
emission equations and their relationship to Nottingham
heating at the emission sites plus methods to estimate field
enhancement effects from structures whose relevant di-
mensions can be orders of magnitude removed from the
dimensions of melted regions that follow in the wake of a
breakdown event. Insofar as repeated heating and cooling
may be a component of mechanical fatigue that leads to rf
breakdown, then other correlations, such as with rf fre-
quency, may exist with breakdown, but in the context of
electron emission from nanoscale features, such correla-
tions are not addressed in the present analysis.

III. CHARACTERIZATION OF DARK CURRENT
DATA: TWO EXAMPLES

The context of methods developed within the present
work to characterize and assess dark current are illustrated
by two examples, presented before the methodology so as
to indicate and justify its applicability. The first considers
dark current measured under high gradient testing of high
frequency structures for accelerators, The second considers
dark current observed on a CsK2Sb photocathode used in a
free-electron laser. The comparison is based on represent-
ing the emitter surface using a point-charge model in which
a linear chain of point charges is assembled so that their
equipotential surface mimics that of an actual emitter, as
described in Sec. V. By themselves the radius of the
equipotential line of the nth point charge, dubbed an, shall
be related to the magnitude of the charge itself.
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Assembling these charges in a line approximates the emit-
ter, as in Fig. 1 in the case of 3 point charges (n � 3), such
that the nth point charge sits on the apex of the (n� 1)th
sphere. The field and apex radius can be ascertained ana-
lytically if an�1=an � r for all n, and such an example is

shown in Fig. 2 for r � 0:75 for various n. The growth as
well as the destruction of metallic whiskers or bumps can
therefore be characterized by evolution of n and r. If the
apex of an emitter sharpens due to surface migration, such
as occurs under high fields and accelerated when the
emitter is hotter, then the r factor should decrease.
Conversely, if the apex is damaged and blunted, then the
n factor should decrease. Insofar as the field enhancement
factor evolves—as was explicitly shown for blunting in a
back ion bombardment environment that degrades field
emitters [39,40]—such a characterization has use in the
examination of the evolution of dark current (the related
evolution of the statistics of field enhancement variation,
discussed in the cited references, is too far afield in the
present work, so the assumption that all contributing nano-
structures have identical geometric features is implicitly
made here).

In the first example, Wang et al. [41], in tests at SLAC on
an X-band accelerating section built at CERN, monitored
dark current during high gradient conditioning experi-
ments. In Fig. 2 of that reference, two data sets
(120 MV=m ‘‘upstream’’ and ‘‘downstream’’) are repro-
duced in Fig. 3 and compared to the model developed in
Sec. V using, in particular, Eq. (9). Wang et al. considered
the average accelerating gradient in the representation of
their data; the peak (or actual macroscopic) gradient at the
surface was larger, such that an average field of
120 MV=m corresponded to a peak field of 285 MV=m
(recall that for field emission, the peak value matters). A
qualitative difference in the trends associated with the
‘‘up’’ (open circle) and ‘‘down’’ (closed circle) data sets
in terms of shape and magnitude. At the high field limit,
both curves drop away from the exponential trend of the
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FIG. 2. (Color) The shape of the emitter in the point-charge
model for different values of n for r � 0:75. Also shown is the
n � 7, r � 0:25 surface.
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FIG. 3. (Color) Characterization of the dark current measured by
Wang and Loew in Ref. [41] with the point-charge model. The
red, blue, and green theory lines are identified by the nomen-
clature NIn�r�, where N acts as the number of emitters, I
indicates current, and r is the ratio factor.

FIG. 1. The creation of an emitter in the point charge model
for n � 3 and various values of r. The circles are the equipo-
tential lines of their center charge only: the total equipotential
surface is created by all the point charges and is therefore
slightly larger.
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data. It was found that the ‘‘120 MV=m upstream’’ data
was well modeled by assuming N � 2400 whiskers char-
acterized by a base radius of 10 microns (i.e., a0 �
10 �m), n � 6, and r � 0:275, and otherwise using cop-
per material parameters (e.g., work function of 4.5 eV), as
shown by the red line. The trend of the downstream
whiskers is matched by N � 1000 emitters whiskers char-
acterized by n � 6, and r � 0:250, as shown by the blue
line. As with field emitter arrays and nanotubes, distribu-
tions of emitters exist with the sharpest emitters providing
the majority of the current. Methods known to eliminate
nanoprotrusions and result in more uniform but less sharp
tips in arrays, due to surface migration or sputtering (see
Sec. II.F.4 of Ref. [44]), include the conditioning of Spindt-
type emitters or operating them in a glow discharge
[42,43]. It may be naively expected that the trends of N
and r indicate likewise here, but that would be in error: it is
open speculation as to the processes responsible for differ-
ences in r and N, though tellingly the r values are not
significantly different, and N is expected to vary because
some current is invariably lost as the beam passes through
accelerator structures. Further, other processes affect the
magnitude of the dark current, such as operational fre-
quency (though for recent studies in the tens of GHz, the
maximum obtainable surface field was found to be inde-
pendent of temperature or frequency [45]).

In the second example, in 1991, the Los Alamos free-
electron laser (FEL) was rebuilt with a photoelectric in-
jector to enable a lower emittance and brighter beam.
Measurements of the high-brightness accelerator FEL
(HIBAF) system were conducted to assess temporal and
spatial beam characteristics for 10 nC per micropulse for
both single micropulses and macropulses. In the course of
these studies, dark current from the photocathode was
found to occur, and argued to be caused by field emission
[1,2] from the CsK2Sb photocathode itself. In contrast to
field emission from metallic whiskers, photoemission and
field emission from semiconductors is more difficult to
model, due to a combination of factors, such as electron
affinity, band gap, the existence of band bending, and
greatly reduced carrier concentrations in the conduction
band of the semiconductor or emission from the valence
band and surface states [46,47]. The methodology of a
recently developed model of photoemission from p-type
semiconductors [48] was adapted for use here, possible
because the calculation of quantum efficiency (QE) for a
photocathode makes use of emission physics that bears
directly on the field emission problem itself. The emission
barrier for p-type semiconductors is the sum of the band
gap and the electron affinity. The Schottky barrier lowering
(the ‘‘image charge’’) is not included because of the be-
havior of the transmission probability for low triangular
barriers and the reduction in the Schottky factor due to the
dielectric constant: these and other factors particular to
semiconductors (e.g., oxides and surface states) cause
ambiguity in the barrier magnitude, and it is widely appre-

ciated that an overestimated barrier results in an under-
estimated apex radius. The focus on geometry and field
enhancement commends the simpler model.

The multi-alkali materials catalogued by Sommer and
Spicer [49] suggests a value of 1.1 eV for the band gap and
constrain the electron affinity to larger than 0.6 eV. The
photoemission data of Michelato et al. [50] and the mea-
sured QE of 4% of the LANL photocathode (which was as
high as 8% [1]) at 537 nm drive laser wavelength is also
shown. A recently developed theoretical model of quantum
efficiency developed for the analysis of Cs3Sb [48] was
used with modifications reflecting band gap, and potassium
mass, but otherwise adopting the same parameters, to
conclude that the electron affinity is 0.65 eV based on the
experimental data, as shown in Fig. 4. We note that differ-
ences in overall scale factor are to be expected, given the
reliance on the dielectric parameters used from the Cs3Sb
simulations, which are analogous to but not identical with
CsK2Sb: it is seen that, apart from the factor of 2 difference
in scale, the theory and experimental data are in good
agreement for the electron affinity chosen. With the semi-
conductor values in hand, and using the triangular barrier
semiconductor field emission model (heating is not ex-
pected to be significant due to repetition rate and pulse
duration, so a general thermal-field equation would be
excessive) in the dark current simulation codes, the experi-
mental field emission observed in the HIBAF accelerator
was analyzed, and is shown in Figs. 5 and 6. The unconven-
tional dependence of the y-axis coordinate to the third
power of the macroscopic field Fo is a consequence of
the dependence on the notional emission area’s field de-
pendence, as discussed in the Sec. V. The parameters so
obtained indicate that the agreement is good and supports
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electron affinity is deduced to be 0.65 eV.
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the attribution of the dark current to field emission. Further
empirical evidence that the photocathode dark current was
due to field emission was observed when the photocathode
surface was polished to an optically flat condition, wherein
the total dark current dropped to under a microamp.

The ability to model dark current from both accelerator
structures and photocathodes has now been illustrated. We
turn to explaining the details of the model and then ex-
tending it to examine the question of Nottingham and
resistive heating of protrusions due to emitted current.

IV. A GENERAL THERMAL-FIELD EQUATION

The Fowler-Nordheim (FN) equation (see Appendix A)
is inapplicable when temperatures are near the melting
point of metals, and evidence of melting and cone forma-
tion (dubbed ‘‘Taylor cones’’ by Wilson) on metal surfaces
is evidence that such temperatures are experienced. The
inadequacy of the FN equation in the thermal-field regime
has been discussed by Murphy and Good [51]: for ex-
ample, using a copperlike � of 4.5 eV, and limiting the
thermal correction term (in their notation, c is not the speed
of light) to satisfy �ckBT � �2�kBT=@F�

�����������
2m�
p

� 1
(terms are defined in Table I) indicates that for a field of
6 GV=m, then T < 1020 K, or 338 K below the melting
point of Cu. For a heated metallic whisker or cusp for
which the field drops precipitously away from apex,
thermal-field contributions to the emission current are
underestimated, thereby underestimating the heating
mechanism at the emission sites. A recently developed
general thermal-field (GTF) equation can be used over
the range of temperatures and fields a metallic asperity
should experience. It is [line 2 in Eq. (1) corrects an error in

Refs. [44,52], of a factor of n2 attached to ��1=n�]
 

JGTF�F; T� � ARLDT
2N
�
�T
�F

; �F�Eo ���
�

N�n; s� � n2�
�

1

n

�
e�s � ��n�e�ns;

(1)

where n � �T=�F and the methods to evaluate �F and Eo
are described in detail in the references. For pure field
emission conditions,�F is equivalent to the c and�F�Eo �
�� to the b of Murphy and Good, but are here evaluated via
Eqs. (43) and (47) of Ref. [52]. JGTF is field dominated
when n > 1 and thermal dominated when n < 1. A leading
order approximation to ��x� [Eq. (51) of Ref. [52]], though
reasonable, lacks the accuracy sought for here and will be
reappraised. It can be expressed, however, as

 ��x� �
2

1� x2 � pk�x
2�; (2)

where pk is a polynomial of order k. Therefore, the general
largeness of the companion exponential terms in Eq. (1)
when the argument of � is larger than unity serves to
squelch pk�x2� for x > 1: Eq. (1) therefore functions well
in the transition region where both thermal and field com-
ponents are comparable in size. Note that the singularity in
��n� cancels a similar singularity in ��1=n� so that
N�1; s� � �s� 1�e�s and is finite.

The field over a protrusion drops rapidly away from the
symmetry axis for conical and ellipsoidal surfaces [53,54].
Consequently, in addition to both thermal and field emis-
sion components contributing, the notional emission area
[22] changes not only with changing field but also if the
apex radius is evolving, as will occur during field forming
[55] in which the apex of an emitter blunts or sharpens
depending on field as has been observed when emitters are
subject to very high emission [56]. It has been a subject of
some speculation dating back to Schottky [57], as to how
field enhancement factors multiply together when protru-
sions on top of protrusions can occur: it has been suggested
that such ‘‘beta factors’’ are multiplicative [5,21], but as
shown by Miller, Lau, and Booske [58] using exact con-
formal mapping techniques, such is the case only when the
second protrusion is small compared to the one upon which
it rests. The protrusions that develop spontaneously upon
sharpened surfaces can have dimensions not altogether
different from the underlying tip [59], whereas the field
emission from breakdown sites are speculated to have a
nanoprotrusions on microprotrusions feature, alternately
called ‘‘hypothetical asperities’’ [21]. If so, an adaptable
field enhancement model (preferably analytic) is highly
desirable, especially if it allows for describing the growth
of a cone as in dynamic breakdown models, analytical
estimates of the field enhancement associated with the
hypothetical asperities, and an estimate of the area of the
nanoscale emission sites.
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photocathode surface in the Los Alamos high-brightness accel-
erator FEL (HIBAF). The ‘‘fit’’ is based on the product of a
Fowler-Nordheim current density vs field relation with a no-
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V. FIELD ENHANCEMENT AND NOTIONAL
EMISSION AREA

A candidate to describe field enhancement for multiple
protrusions is based on a point-charge model (PCM), the
most familiar elementary example being a charge outside a
flat metal surface, which generates a potential profile that

can be modeled by the same charge and its image. For the
PCM model of a cusp or bump, the model is to strategically
place a point charge in the plane and consider the zero
value equipotential line as the surface. A sequence of other
point charges are then added to build up the cusp, such that
along the symmetry axis, the first charge is placed at a0, the
second at a1, and the nth at an�1. The impact on field

TABLE I. Entries are given in the approximate order of their first use. MKSA units are used unless otherwise specified.

Symbol Meaning Definition or value [unit]

c Speed of light 299 792 458 m=s
q Elementary (electron) charge 1:602 176 5� 10�19 C
m Electron mass 510 998:9 eV=c2

kB Boltzmann’s constant 1=�11 604:506 K=eV�
F Product of elementary charge and electric field eV=nm
T Temperature K
� Work function eV
ARLD Richardson (thermionic emission) constant 120:173 49 A=K2 cm2

�T Thermal emission energy slope factor 1=kBT
�F Field emission energy slope factor Eqs. (43) and (47) of Ref. [52]
n In GTF equation, ratio of energy slope factors �T=�F
N�n; s� GTF function Eq. (1)
��x� GTF function Eqs, (2) and (15)
� Chemical potential (Fermi level) eV
Eo Energy parameter in thermal-field emission equation See Ref. [52]
r Ratio of radius associated with point charge with next larger radius

(in point-charge model)
an�1=an

an Radius associated with nth point charge �m to nm
zn Sum of an Eq. (3)
Sn�r� Ratio of zn to a0 Eq. (3)
�j Point-charge magnitude Eq. (4)
Pn�r� Point-charge magnitude and radius parameter Eq. (5)
Qn�r� Point-charge magnitude and radius parameter Eq. (6)
�n�r� Field enhancement factor Eq. (7)
atip Apex radius �m to nm
Itip Emitted current from microprotrusion Amp
JGTF Thermal-field current density Amp=cm2

Sj Geometric slope factor in Itip Eq. (10)
N��� Geometric exponential reduction factor Eq. (10)
�j Factor relating current density on adjacent ribbons �j � ln�Jj=Jj�1�

�E�F; T� Average E released by replacement electron occupying state
of one emitted in Nottingham heating

Eq. (11)

fFD�E� Fermi-Dirac distribution function 	 	 	

T�E� Quantum transmission (tunneling) probability 	 	 	

�0�x� Associated derivative function of ��x� Eq. (17)
N0�n; s� Associated derivative function of N�n; s� Eq. (20)
�� Solid cone angle Eq. (21)
��T� Thermal conductivity W=m-K
r Spherical coordinate (in cone heating model) nm
re Apex radius nm
ro Base radius �m
� Resistivity Ohm-m
To Temperature of base K
W��5; x� Bloch-Grünesen function Eq. (28) (approximation)
v�y�, t�y� Fowler-Nordheim elliptical integral functions 	 	 	

��n� Riemann zeta function 	 	 	
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enhancement, current density on axis, and total emission
current from the bump so generated is then analytically
tractable if it is assumed that an=an�1 � r for all n, where
r is a dimensionless factor relating a bump to the next
larger bump. The heights of the bumps are defined by

 zn �
Xn�1

j�0

aj �
Xn
j�1

rj�1a0 �

�
1� rn

1� r

�
a0 
 Sn�r�a0; (3)

which defines the function Sn�r�. Significantly, if r is small,
then even though the bumps on the apex cannot be dis-
cerned visually on a length scale appropriate to the base,
their impact on the field enhancement factor will never-
theless be pronounced (as shall be shown): it is worth
emphasizing that this approach can easily treat protrusions
whose dimensions would completely thwart a purely nu-
merical (e.g., finite difference or finite element) approach.
The potential is then defined by

 Vn��; z� � Foa0

�
�
z
a0
� a0

Xn
j�0

�j������������������������������
�2 � �z� zj�

2
q �

; (4)

where Fo [eV=nm] is the background field, and the charge
�n of the nth point charge is fixed by demanding that the
potential V��; z� satisfy V�0; zn�1� 
 0 at the apex. An
example for a larger r of 0.75 is shown in Fig. 2 for the
first few n; also shown is the n � 7 and r � 0:25 case
(dashed line), showing the conelike tendency when r is
small. Note that the cylindrical coordinates ��; z� scale
with a0. By specifying the value of r, structures between
pyramids (r is small) and whiskers (r is near unity) can be
generated. Though not used here, the formulation contin-
ues to hold for r > 1.

The value of the �n is ascertained from the boundary
conditions (BC). Introducing the term Pn�r� 
 �nr

�n

where �0 � 1, the BC give rise to the recursion relation

 Pn�r� � Sn�1�r� �
Xn�1

j�0

Pj�r�

Sn�1�j�r�
: (5)

It can be shown that Qn�r� � Pn�r�=r
n satisfies

 Qn�r� � 1�
Xn�1

j�0

Qj�r�

Sn�1�j�r�Sn�j�r�
; (6)

from which it follows by Sn�r � 1� � 1 and mathematical
induction that in the limit of small r, Pn�r � 1� � 2nrn.
The behavior of Pn�r� is shown in Fig. 7. The field en-
hancement factor �n and apex radius (i.e., radius of curva-
ture for the equipotential line) atip for the nth bump then
can be shown to satisfy
 

�n�r� � 1� a2
0

Xn�1

j�0

�j
�zn�1 � zj�2

� 1�
Xn
j�0

Pj�r�r
�j

�Sn�1�j�r��2

atip�r� �
@�V

@2
�V

����������0;z�zn�1

� a0

Pn
j�0 Pj�r�r

2n�j�Sn�1�j�r���2Pn
j�0 Pj�r�r

2�n�j��Sn�1�j�r��
�3
;

(7)

where by field enhancement, it is meant the field at the
apex by comparison to Fo. The behavior of the field
enhancement factor for various bump numbers is shown
in Fig. 8, along with approximations suggested by a multi-
plicative dependence (r 1; red), a logarithmic depen-
dence anticipated by a line charge model [54] (r � 1;
purple), and an interpolation between these two limits
(blue and green), or
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FIG. 7. (Color) The function Pn�r� as a function of n for various
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 �n�r� �

8><>:
2n �r! 0�
2�n�1� ln�4�
ln�4�n�1�� �r! 1�

1� 1
2�n�0��

�n�1�
�n�0�
�r �0< r< 1�

(8)

from which it is seen that, as with the findings of Miller
et al., the field enhancement factor is multiplicative only
when r is small.

The dependence of current on the rapidity with which
�n�r� becomes large is, however, offset by the shrinkage of
the apex radius, which, for small r, scales as an�r � 1� �
a0rn�2� 2�n�, entailing that the notional emission area
drops precipitously (in the case of Fig. 2 for the r � 0:25
and n � 7 apex, if ao � 100 �m, then a7 � 12 nm). Care
is therefore demanded in the evaluation of total current
from the structure. Examples are shown in Figs. 9 and 10
for values of r � 0:25 and 1.0, giving a sense of what
‘‘precipitous’’ entails: clearly, for small r, all but the
merest fraction of the apex participates. Therefore, under
small r conditions, though field emission gives orders of
magnitude larger current density in comparison to thermal
emission, that is insufficient to categorically neglect the
later: thermal emission will occur over a much larger
region and can therefore give a nontrivial contribution to
the bump current (an indication of this is shown in the
Figs. 9 and 10 lines labeled FN and Richardson-Laue-
Dushman (RLD), which are the field and thermal contri-
butions as predicted using the conventional FN and RLD
equations of the Appendices). A crude estimate using a
hemispherical model [54] of the field variation shows
that—using only the aforementioned conventional FN
and RLD equations—for an apex field of 5 GV=m, the
FN and RLD total currents are roughly equal at a tempera-
ture of 2300 K for a work function of 4.6 eV.

Knowing the V � 0 equipotential surface allows for the
determination of the total current emitted from the struc-

ture. Analytical models of the notional emission area can
be obtained in the same manner as for ellipsoidal and
hyperbolic structures [53,54,60]; but in the present case,
thermal contributions to the emitted current undercut that
approach and we therefore resort to a numerical summa-
tion of the analytic terms. Therefore, the current from the
structure is [61]

 Itip � 2�
Z L

0
�d�

����������������������
1� �@�z�2

q
JGTF�F���; T�

�
XN�1

j�0

�2��2
j �SjJGTF�Fj; T�N��j�; (9)

0

1

2

3

10-4

10-3

10-2

10-1

100

101

0.0001 0.001 0.01 0.1 1

Surface
Field

FN(Cu)
RLD(1350)

z 
/ a

o
 &

 F
 [G

V
/m

] C
urrent [A

/cm
2]

 / aρ o

r = 0.25
n = 5

A

FIG. 9. (Color) The equipotential surface z (black) and field
(dashed) contrasted with the current density (blue for field, red
for thermal) as a function of the cylindrical distance from the
axis for small r: note first that the field emission current
dominates only very close to the apex, and second that both
field and thermal current contributes.

10-4

10-3

10-2

10-1

100

101

0

1

2

3

4

5

6

7

0.01 0.1 1 10

Surface

Field

FN(Cu)

RLD(1350)

z 
/ a

o 
&

 F
 [G

V
/m

] C
urrent [A

/cm
2]

 / aρ o

r = 1.0
n = 5

B

FIG. 10. (Color) Same as Fig. 9, but for r � 1 for the same apex
field. Field emission dominates over a much greater portion of
the apex.

100

101

102

103

104

0 4 8 12 16

β(
n,

r)

 n

• Numerical
Fit (theory)

r = 0
r = 1/4

r = 1/2

r = 3/4

r = 1

FIG. 8. (Color) The field enhancement factor �n�r� as a function
of n for various r. For small r, ln��n� is approximately linear,
indicating that field enhancements are multiplicative.

JENSEN, LAU, FELDMAN, AND O’SHEA Phys. Rev. ST Accel. Beams 11, 081001 (2008)

081001-8



where �2
j 
 ��

2
j�1 � �

2
j �=2, �j � ln�Jj=Jj�1�, the slope

factor Sj is the tilt of the jth differential ribbon from which
current is emitted—that is, 2��2

jSj is the area of the
differential ribbon—and the decay factor N��� is due to
the presumed variation of current as J��j � � < �j�1� �

Jj exp���j��� �j�=��j�1 � �j�� or
 

Sj 


�������������������������������������
1�

� zj�1 � zj
�j�1 � �j

�
2

s
;

N��� 

1

�2 �1� ��� 1�e���:

(10)

The total thermal-field emitted current Itip compared to the
apex current density J is shown for a variety of fields,
temperatures, and r factors in Figs. 11 and 12. As a
comparison, the data showing the current and current
density associated with ‘‘starburst’’ and ‘‘no-starburst’’
formations shown by Wilson [37] based on data by
Knobloch is also shown—though it must be emphasized
that multiple protrusions with a distribution of tip radii can
be present in areas showing signs of explosive melting.

VI. NOTTINGHAM AND RESISTIVE HEATING

As in the two data examples discussed previously,
asperities on the surface that field emit demonstrate
emission areas that are nanometer-scale in dimension, the
bases of which are micron scale in turn. By comparison,
the skin depth of most metals varies as 	�m� �
503:3

��������������������������������
���-m�=f�sec�

p
, where � is the resistivity and f is

the modulation frequency. At rf frequencies, then, 	 is of
the same magnitude as the base of a presumed asperity: for
example, at 750 MHz, the skin depths of Al, Cu, Nb, Mo,
and Mg are 2.9, 2.3, 7.3, 4.0, and 3.7 microns, respectively.
Therefore, to a first approximation, the current density over
a cross section of an asperity—be it conical or whisker-
like—is uniform. An estimate of heating due to scattering
(resistive heating) and electron emission (the Nottingham
effect) may then be deduced from a one-dimensional
model based on an approach suggested by Fursey [18].
The usage of 1D models gives estimates that are contin-
gent, but the findings are reinforced by 3D numerical
studies from the literature.

A. The Nottingham effect

Nottingham heating [62–64] and its impact on arcing
and temperature rise in sharpened—and, in particular,
microfabricated—structures has generated interest
[27,65,66] because of the suspected link between tip heat-
ing and failure. In particular, Miskovsky et al., argue that
significant temperature rises occur near the apex when the
cone angle is small (e.g., 15�) but further down the shank
the temperature drops significantly, a finding supported by
the work of Ancona as well as Fursey using 3D numerical
approaches and treating heat diffusion. The source of
‘‘heating’’ arises when an electron is emitted below the
Fermi level of the bulk metal: the electron within the metal
that replaces the one lost is initially at the Fermi level, so
that it gives up some energy to its surroundings.
Conversely, electrons emitted above the Fermi level will
tend to get replaced by electrons that must absorb energy,
thereby leading to cooling. The average gain or loss of
energy thereby gives rise to heating or cooling. The evalu-
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ation of the Nottingham effect proceeds from the definition
of the average energy above or below the Fermi level of the
emitted electrons as per

 �E�F; T� � hE��i �

R
�E���dJ�E�R

dJ�E�
: (11)

Clearly, the denominator of Eq. (11) gives JGTF, but where
E refers to the total energy of the electron, not [as in the
formulation leading to Eq. (1) and as derived in the refer-
ences] the energy component normal to the surface, or
Ecos2
. That is, when E is the total (not normal) energy,
then

 JGTF�F; T� �
2ARLD

k2
B

Z 1
0

�Z 1

0
xT�Ex2�dx

�
fFD�E�EdE;

(12)

where T�Ex2� is the transmission probability, x � cos
 is
the angle with respect to normal at the surface, and fFD�E�
is the Fermi-Dirac distribution. The transmission probabil-
ity is represented as T�Ex2� � f1� exp��F�Eo �
Ex2��g�1, the angular integration is straightforward, and
it can be shown that [after using exp��Eo�F�  1]
 

JGTF�F; T� �
ARLD

k2
B

Z 1
0

lnf1� exp��F�E� Eo��g
1� exp��T�E����

dE

�
ARLD

k2
B

�
n
�T

�
2 Z 1
�1

ln�1� e�z�

1� en�s�z�
dz

�
ARLD

k2
B�

2
T

N�n; s�; (13)

where in the first integral, E refers to the total energy, the
second line is the dimensionless integral form, and the
third line can be shown by subjecting the integral in the
second line to an integration by parts to obtain the form of
N�n; s� given as the large u limit of Eq. [25] in Ref. [52]
and given in Eq. (1). Greater accuracy is needed for ��x�.

B. Approximations to ��x�

Beginning with the definition of ��x� in terms of the
Riemann zeta function ��x� (a factor of 2 in the coefficient
of the summation corrects the same formula in
Refs. [44,52]),

 ��x� � 1� 2
X1
j�1

�1� 21�2j���2j�x2j; (14)

the form of ��x� can be written as the sum of singular term
and a polynomial. The form of Eq. (14) appears to restrict
the argument to less than unity, whereas in Eq. (1) the
argument of one or the other of ��n� or ��1=n� is larger
than unity. The resolution is that s tends to be large for
emission conditions, and so either the first (‘‘field-
dominant’’) or second (‘‘thermal-dominated’’) term in
N�n; s� survives for n � 1, though both are required for
n � 1. As indicated before, a workable approach is to find
an approximation to ��x� valid for x � 1 that can be
extended to x > 1, as the exponentials of e�s and e�ns in
Eq. (1) will quickly suppress the contribution of � the
argument greater than unity. Towards that objective, it can
be shown that

 

��x� � 1�
2x2�2� x2�

�1� x2��4� x2�

� 2
X1
j�1

�1� 21�2j����2j� � 1�x2j: (15)

The summation term is rapidly convergent. Though it
appears enough to truncate the summation at the j � 2
term, such an approximation would not satisfy (albeit by a
small amount) the condition that ��x� � ��1� x2�=�1�
x2�� ! �1=2 as x goes to 1, and so a term of order x6 is
added to enforce that condition. The final approximation
becomes

 �a�x� �
�
1� x2

1� x2

�
�

1

2
x2�7x4 � 4x2 � 4� �

1

4
x2�1� x2�

� f4��2� � �7��4� � 4��2��x2g

�

�
1� x2

1� x2

�
� 0:039x2�9:1043� 2:7163x2 � x4�;

(16)

where the ‘‘a’’ subscript indicates that the expression is an
approximation. Unless otherwise indicated, then, wherever
��x� is required, Eq. (16) will be used. A related ‘‘deriva-
tive’’ function will also be required below: it is defined and
approximated by

 

�0�x� 
 x2 d
dx

�
��x�
x

�

�0a�x� �
�
�1� 4x2 � x4

1� x2

�
�

1

4
x2��8� 24x2 � 70x4 � 35x6� � ��2�x2�1� x4 � 3x6� �

7

4
��4�x4�3� 5x2 � 2x4�

�

�
�1� 4x2 � x4

1� x2

�
� 0:027 066x2�13:118� 11:742x2 � x6�; (17)
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where the correction term of order x8 has been added to
enforce the condition that �0�x� � ��x4 � 4x2 � 1�=�1�
x2�2� ! ��2� � 1 as x goes to 1. The performance of the
approximations are shown in Fig. 13, compared to the
exact results [Eqs. (15) and (17)] as well as the approx-
imations in which the summation in Eq. (15) is truncated at
j � 2, in which the y axis is the difference between � and
its (singular at x � 1) fraction term, and similarly for �0.

C. A Modified Nottingham �E term

Using the same methodology that lead to the determi-
nation of JGTF from its integral definition—namely, series
expanding the components of the integrand fraction in
Eq. (13) and integrating term by term using methods
enumerated in Ref. [52]—a careful expansion of

 

Z 1
0
�E���

lnf1� e�F�E�Eo�g

1� e�T �E���
dE

�
1

�F

Z 1
0
�s� z�

lnf1� e�zg

1� en�z�s�
dz (18)

and the collection of leading order terms shows that �E in
Eq. (11) is given by

 �E �
1

n�F

�
N0�n; s�
N�n; s�

�
; (19)

where

 N0�n; s� 
 n3�0
�

1

n

�
e�n � ��ns� 1���n� ��0�n��e�ns;

(20)

and where n � �T=�F and s � �F�Eo ���. It is tempt-
ing to neglect terms proportional to exp��ns�, i.e., the

thermal-dominated terms, and obtain the field-dominated
limit �E! �0�1=n�=�F��1=n�, but that would be in er-
ror. As emitter protrusions heat, they approach the transi-
tion regime where n � 1, indicated by when T approaches
kBTFN � 1=�F��� (referred to as Tmin in Ref. [52]), and in
that regime, the ratio of �0�1=n� with ��1=n� is singular,
whereas the ratio of N0�n; s� with N�n; s� is not, with
consequences as shown in Fig. 14. The pure numerical
evaluation of Eq. (11) and the approximations using
Eqs. (16), (17), and (19) compare very well, whereas the
neglect of e�ns in ��x� and its related term in �0�x�—
amounting to using only the pure field, or FN, limit—are
increasingly inaccurate near the temperature where n � 1
(shown by the vertical dashed lines and defined as TFN,
below which field components dominate thermal compo-
nents) and so reveal the limitations of using a pure FN
approach to modeling Nottingham heating. Observe that
for high fields (e.g., 8 GV=m), Nottingham heating tran-
sitions to Nottingham cooling for temperatures higher than
2100 K.

D. Nottingham heating, resistive heating, and the heat
diffusion equation

The amount of heat deposited near the emission site per
unit time is related to �E and the number of electrons
emitted per second, or Itip=q, where q is the unit charge. If
the radius of the emitter tip is re, then for a conical shape,
the heating rate at the apex is approximately

 �E
�Itip

q

�
� �EJGTF��r2

e; (21)

0.0

0.8

1.6

2.4

1000 2000 3000 4000

Num - 4
Aprx - 4
FN Limit 4
Num - 6
Aprx - 6
FN Limit 6
Num - 8
Aprx - 8
FN Limit 8
Tfn

∆
E

 [e
V

]

Temperature [Kelvin]

Φ = 4.5 eV
T

FN
 [K] ≈ 114 + 480 F

method - Field

FIG. 14. (Color) The Nottingham term as a function of tempera-
ture for copperlike parameters calculated numerically (dots),
using Eq. (19) (solid line), or using only the field-dominant
terms of N and N0 containing e�s (the basis for the FN equation).
The number in the legend corresponds to the apex field in
GV=m. TFN lines (vertical dashes) are where �F � �T .

10-2

10-1

100

101

0 0.5 1 1.5

Numerical ∑

Approx ∑

Corrected ∑ 

Numerical ∑' 

Approx ∑' 

Corrected ∑'  

-y
(x

)

x

FIG. 13. (Color) Comparison of a numerical evaluation of ��x�
compared to truncating the series expansion of Eq. (15) at the
second term (approximately �) and Eq. (16) (corrected �, or
�a): it is seen that �a performs very well through the n � 1
region.

ELECTRON EMISSION CONTRIBUTIONS TO DARK . . . Phys. Rev. ST Accel. Beams 11, 081001 (2008)

081001-11



where �� is the solid angle of the cone. The amount of
energy deposited in the cone apex volume ��r3

e=3 per unit
time is then

 �E
�Itip

q

��
��

1

3
r3
e

�
�1
� 3�E

JGTF

qre
(22)

which has units of power deposited per unit volume.
An approximation suggested by Fursey is to consider the

apex of the emitter to be of a size comparable to the mean-
free path of phonon scattering, so that the sphere of radius
re can be considered to be of a uniform temperature main-
tained by the Nottingham process: the approximation is
more convenient than accurate here—for example, an
emitter apex deforming under field and heating has a
changing tip rather than a static one—but it is useful for
determining the boundary condition for the heat diffusion
equation. To that end, at the apex, the heat diffusion term
~r 	 �� ~rT� integrated over the volume of the sphere is, in
equilibrium, equal to the rate of energy deposited by
Eq. (22). By Gauss’ theorem, this amounts to

 

Z
~r 	 ���T� ~rT�dV � ��Te���r2

e�@rTjr�re�

�
3�EJGTF

qre

Z re

0
r2dr; (23)

where � is the thermal conductivity, which identifies the
boundary condition as

 @rTjr�re �
�EJ GTF

q��Te�
: (24)

Away from the apex, at a distance r, the current density is
related to that at the apex by the constancy of total current,
or J�r� � JGTF�re=r�2. Resistive heating, which behaves as
�J2, therefore serves as a source term in the heat diffusion
equation, which in radial coordinates and for equilibrium is
now

 ��T�
1

r2 @r�r
2@rT� � ���T�J2

GTF

�
re
r

�
4
: (25)

Integrating once, using the boundary conditions specified
by Eq. (24), and integrating again gives, under the assump-
tion that the variation in resistivity and thermal conductiv-
ity is weak,

 Te � To � ��E
�
To
T

��
JGTF

��To�q

��
re
ro

��
��T�
��To�

�
�ro � re�

�
��To�
2��To�

�
To
T

��
JGTF

�
re
ro

��
��T�
��To�

�
�ro � re�

�
2
;

(26)

where the first term on the right-hand side is the
Nottingham heating term, and the second is the resistive
heating term. The subscript ‘‘o’’ designates the base of the
emitter, and ‘‘e’’ conditions near the apex. Equation (26) is
adequate to get a qualitative indication of the effects of

current-induced temperature rise at the apex, but it is
undercut by the presumed weakness of the temperature
dependence of � and �. By virtue of its underlying ap-
proximations, particularly with regard to the temperature
dependence of the resistivity and thermal conductivity,
Eq. (26) bears differences to related expressions found by
Fursey [Eq. (3.21) of Ref. [18]] and Charbonnier et al.
[Eq. (9) of Ref. [55]].

The temperature dependence of the thermal conductivity
and resistivity can be obtained by scaling arguments: both
depend on the temperature-dependent relaxation time ob-
tained from electron and phonon scattering [44]. Acoustic
phonon scattering dominates, and so the resistivity can be
expressed as

 ��T� � ��To�
�
T
To

�
5
�
W��5; TD=T�
W��5; TD=To�

�
; (27)

where ��To� is the resistivity at a specific temperature such
as room temperature (e.g., 152 �-nm and 15:4 �-nm for
niobium and copper, respectively, for To � 300 K), and TD
is the Debye temperature (for a contrasting method of
estimating the temperature dependence of resistivity as it
relates to tip heating, see Ref. [23]).W��n; x� is an integral
related to Bose-Einstein statistics, and the special case for
n � 5 is known as the Bloch-Grüneisen function [67] for
which a reasonable approximation is

 W��5; x� �
120��5�x5

1� 80
3 ��5�x

2�1� 18x2�
: (28)

From the relationship between resistivity and the relaxa-
tion time, it also follows that

 ��T� � ��To�
�
T
To

��
��To�
��T�

�
; (29)

where ��To� is the room-temperature value (e.g.,
53:7 W=m-K and 401 W=m-K for niobium and copper,
respectively). The Debye temperature to use is not without
some ambiguity. The value of 275 K shall be used for
niobium from Table I in Kittel [68]. Kittel also gives a
value of 343 K for copper, but it is found using a least-
squares analysis that a value of 274.6 K causes the resis-
tivity given by Eq. (27) for copper to lie directly upon the
Bloch-Grüneisen line, and so the latter value shall be used
here. In either case, the resistivity rapidly rises near the
Debye temperature, but when the temperature is compa-
rable to 5 times the Debye temperature, it levels off.

VII. ANALYSIS AND DISCUSSION

The elements are now in place to find the temperature
for which the right-hand side (RHS) of Eq. (26) is equal to
the left (LHS) for a given field and base temperature under
the assumption of the validity of the general thermal-field
equation (the caveat is a reminder that the usage of the free-
electron formalism for metals such as tungsten is not
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without issues, as discussed by Charbonnier et al. [55]).
Two separate circumstances are relevant. First, the base
may be taken as a fixed value characteristic of the cathode
surface in order to ascertain if Nottingham and resistive
heating are significant for a given field. This case will be
topical for considering whether emission heating sustains a
large temperature that can contribute to surface migration
and apex formation. Second, both the base and the apex
may be thought of as having been brought to such a high
temperature, regardless of how that is accomplished (e.g.,
back ion bombardment, emission heating, or both), that
Nottingham cooling offsets resistive heating and the asper-
ity is at a uniform temperature [both the LHS and RHS of
Eq. (26) are zero]. This case will be topical for considering
the limits on how hot the asperity may get if the heating
mechanisms induce a run-away temperature growth; the
expectation is that, at low fields, the level of heating will be
controlled exclusively by the Nottingham effect, but at
high fields, the resistive term can contribute.

Previous numerical simulations of the heating of micro-
structures has tended to use Fowler-Nordheim methodol-
ogy [69,70] or a numerical evaluation of the current density
integrals [23,27], but extrapolations from them are never-
theless reasonable indications of trends. Very high tem-
peratures at the apex of the emitter structure are entailed by
high current and are predicted to reach, depending on
circumstances, several thousand degrees (temperatures es-
timated by Charbonnier [25] or Fursey et al. [70] are
suggested to be near 2000 K)—that is, near levels required
to melt some metals (e.g., copper has a melting point of
1358 K) or provoke surface diffusion for otherwise rugged
materials. Moreover, the temperature rise is, not surpris-
ingly, found to be more pronounced the smaller the cone
angle of the protrusions. The advantage of the point-charge
method in relation to these numerical approaches is that far
smaller features in relationship to the size of the presumed
base of the asperity can be accounted for, emission from
areas localized to but a few nanometers can thereby be
effortlessly found, the relative magnitude of the competing
effects can be discerned, and the temperature dependence
of the important parameters are included.

For low temperatures, where the apex current density is
not large, the majority of the heating is due to the
Nottingham effect: a measure of how much is shown by
the ratio of the resistive heating term with the Nottingham
term, i.e., the ratio of the second term with the first term on
the right-hand side of Eq. (26), which, under the approxi-
mation re � ro, is given by

 y�F� � �
qre��T�JGTF�F; T�

2�E�F; T�
(30)

and is shown in Fig. 15 for negative values of �E. Such a
comparison usefully reveals the dominance of Nottingham
heating over resistive for generic conditions, but it is mis-
leading in that the apex temperature cannot be taken as a

fixed value independent of field. Consider, then, the tem-
perature of the apex when the base of an asperity is held at
a fixed temperature. To anticipate temperature conditions
that potentially had a hand in the creation of the asperity, it
is assumed that the base is held at a fixed temperature of
To � 600 K and is 10 microns in radius. The apex radius
of the emitter is taken to be the same as the mean-free path
of an electron, that is, the product of velocity at the Fermi
level and the relaxation time, where the latter is inferred
from the resistivity at room temperature [67] to be 43 nm
for copperlike parameters. Holding the base at an artifi-
cially low temperature will force the apex temperature to
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tion of temperature: the left-hand side is the solid black line. The
right-hand side, or sum of the heating terms, are the solid colors.
The base of the asperity is held at a fixed temperature of 600 K.
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be held low, but even so, significant temperature rises are
anticipated. Solving Eq. (26) requires that the intersection
of the LHS and the RHS be found as a function of apex
temperature Te for a given base temperature To. An ex-
ample is shown for the case To � 600 K in Fig. 16 for
copperlike parameters: the intersection points of the diago-
nal with the horizontal lines are the equilibrium solutions
for the apex temperature, and they are seen to progressively
increase as the field increases. When the base temperature
is high, it is expected that the curves will shift upwards, but
that presents a difficulty in interpretation: the slope of the
tangent line for the RHS at the intersection point ap-
proaches unity, indicating that the apex temperature can
rise precipitously and thereby undercut the approximations
leading to Eq. (26), or, in other words, the temperature rise
can exhibit abrupt, or run-away, growth.

Instead of holding the base temperature at an arbitrarily
fixed parameter, therefore, the field can be held constant
and the question asked, for a given base temperature, what
is the temperature rise at the apex for a given field? An
example of such cumbersome and iterative calculations is
shown in Fig. 17 for an assumed field of 8 eV=nm for
copperlike parameters: the transition from black to red
indicates those temperatures for which the apex tempera-
ture has exceeded the melting point of copper. It is seen
that a rapid rise in the difference temperature is correlated
with a rise in the base temperature, again suggesting that if
a temperature rise occurred in the base, it could trigger a
rapid temperature rise at the apex.

VIII. SUMMARY

A contributing factor to breakdown begins to emerge. As
a consequence of local heating due to back ion bombard-
ment, emission, or other mechanisms, material migration

and tip formation serve to increase the field enhancement
factor of an emerging protrusion produced by a continual
increase in n in Eq. (8) for a given r in analogy with field
forming of the apex during heating, as discussed by
Schwoebel et al. [56]. Enhanced emission leads to greater
heating of the apex; longer emission from the asperity
leads to greater temperatures of the base of the asperity,
and both lead to conditions in which the temperature can
increase abruptly, either stressing the asperity to breakage
or pushing its characteristic temperatures to the melting
point. As has been shown, for r � 1=2 or 1=4, approxi-
mately seven bumps-on-bumps give rise to field enhance-
ment factors of 26.2 or 75.5, pushing macroscopic fields of
order 100 MV=m into the field emission regime at the
emission site rather easily.

Such a run-away scenario is not incompatible with fail-
ure mechanisms discussed by, for example, the melting or
fracture models, heating and destruction models, and the
creation and growth of nanoprotrusion models. What we
have sought to show is that using (i) a correct expression
for the thermal-field current, (ii) temperature-dependent
resistivity and thermal conductivity values, (iii) models
of field enhancement, and (iv) a one-dimensional radial
heating diffusion model, a scenario by which a generated
and heated protrusion experiences growth occurs that
leads, in turn, to further heating and accelerated growth.
These processes can then function in tandem with other
macroscale mechanisms to lead to breakdown for para-
metric conditions that appear realizable.
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APPENDIX A: THE FOWLER-NORDHEIM (FN)
EQUATION

The FN equation is an often used approximation in the
modeling of field emission from microstructures
[18,44,55,71–73] (see Ref. [74] for a review updating the
equation itself and using contemporary values of the under-
lying physical constants). At the level of the Murphy and
Good [51] formulation, it is represented as

 JFN�F� � a
F2

�t�y�2
exp

�
�
b�3=2

F
v�y�

�
; (A1)

where F is the product of electron charge and electric field
and therefore measured in eV=nm (corresponding to an
electric field of GV=m), and (compare [22], where the
difference in units reflects the absorption of the charge q
into the field term F)

0

200

400

600

800

500 1000 1500 2000 2500

T
 [K

]
∆

T
base

 [K]

Copper @ 8 GV/m

FIG. 17. (Color) Solutions to Eq. (26) for copperlike parameters,
where �T is the left-hand side and Tbase � To. As the base
temperature increases, �T can increase markedly, even below
the melting point.
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16�2
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�������
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eV
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�fs@cF

p
�

� 3:7947� 10�5
��������������������
eV-meter
p �

F1=2

�

�
;

(A2)

where �fs � 1=137:036 is the fine structure constant.
Approximations are often invoked for the elliptical integral
functions t�y� and v�y�, the most common being to let the
former be a constant and the later a quadratic function in y:
for example, Spindt et al. [71] choose t�y� �

�������
1:1
p

and
v�y� � 0:95� y2; Wang and Loew [38] choose t�y� � 1
and v�y� � 0:956� 1:062y2; and finally, a requirement
that the coefficient of y2 be unity and using the Forbes
approximation to the elliptical integrals [52,75] gives
t�y� � 1:0613 and v�y� � 0:938 69� y2. It is the third
representation that shall be used for comparison purposes
here. A comparison of Eq. (A1) using Eq. (A2) to the
general thermal-field equation given in Eq. (1) is shown
in Fig. 18. In the cold or field emission limit, �F in Eq. (1)
is evaluated at the Fermi level and is given by �F��� �
�3b=2�

�����
�
p

t�y�=F using the notation of Eq. (A2). The tri-
angular barrier originally considered by Fowler and
Nordheim corresponds to the limit v�y� � t�y� � 1.

APPENDIX B: THE RICHARDSON-LAUE-
DUSHMAN (RLD) EQUATION

At the level of the Murphy and Good [51] formulation,
the RLD equation is represented as

 JRLD�T; F� � a
�

3

2
b
�

2 1

�2
T

exp���T��1� y�� (B1)

in the notation of Eq. (A2), where �T � 1=kBT. The
quantity ARLD � a�3kBb=2�2 � 120:17 Amp=K2 cm2 is
the Richardson constant. The factor (1� y) in the expo-
nential accounts for Schottky barrier lowering. In thermal
emission limit, �F in Eq. (1) is evaluated at ���, where
� � �1� y�� for which �F����� � �3�b=8������������

2y�
p

�1� y�=F using the notation of Eq. (A2). A com-
parison of Eq. (B1) to the general thermal-field equation
given in Eq. (1) is shown in Fig. 19.
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