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The physical effects of optical mode dispersion in the electron beam of a free-electron laser are
investigated for modes that carry orbital angular momentum. The analysis is performed using a derived
equivalence between two different formulations that describe the radiation fields in the linear regime.
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I. INTRODUCTION

The coherent electromagnetic (EM) signal field gener-
ated in a free-electron laser (FEL) is optically guided
within the source electron beam (e-beam) during exponen-
tial gain [1-3]. In cases where there is significant guiding
of the radiation field, it can be useful to describe the FEL
light as a sum over eigenmodes of a virtual waveguide
structure [4,5]. This allows one to efficiently investigate
the coupling and propagation characteristics of specific
EM mode structures over many diffracting lengths. It
also permits, through the type of virtual waveguide geome-
try chosen, flexibility in the form of the expansion mode
basis so that particular modes of interest may be examined
in detail or so that a specific basis set can be chosen to
optimally suit a given FEL geometry. The eigenmodes of a
quadratic index fiber, for example, are particularly useful
as a virtual dielectric waveguide model because they are
composed of composite Gaussian functions (typically
Hermite-Gaussian or Laguerre-Gaussian functions) that
also arise in the solutions to the paraxial wave equation
for free-space propagation [6,7]. This correspondence es-
tablishes a useful connection between free-space modes
and the optically guided modes of the FEL, providing a
model that not only can describe optical mode propagation
from startup through high gain, but also both the input
(seeding) and output radiation characteristics.

In this framework, the coupling and propagation char-
acteristics of well-known Laguerre-Gaussian (LG) modes
can be studied explicitly for FELs. These modes are of
particular interest since, for higher-order azimuthal modes,
they are known to possess a well-defined value of orbital
angular momentum (OAM) as a result of an azimuthal
component of the linear photon momentum [8]. Modes
of this type may be particularly relevant for study with
next-generation x-ray FELs which will have the ability to
probe the structure of matter on short length and time
scales. For future FEL light sources with, for example,
flexibility in the polarization, the ability to generate intense
higher-order LG modes would further extend the opera-
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tional capabilities. Advances in LG mode amplification
and transport in FELs may also provide additional experi-
mental versatility for potential applications like micros-
copy [9], information encoding [10], and entanglement
schemes [11]. Coherent OAM modes also allow the possi-
bility of light-driven micromechanical devices or the use of
torque from photons as an exploratory tool [12].

The amplification of OAM modes in an FEL at the
fundamental frequency has been investigated previously
using a linear fluid model to describe the evolution of the e-
beam in the cold beam limit [13]. This approach utilizes a
specific case of the general formulation presented in [5]
where the signal fields are described through a general
expansion consisting of dielectric waveguide eigenmodes.
The e-beam is ponderomotively coupled to the fields and a
set of coupled 3D excitation and evolution equations are
derived. The FEL eigenmode equations, or supermode
solutions, are obtained by examining the fixed-profile so-
lutions of the mode amplitudes, such that the individual
mode coefficients in the field expansion are constant with
respect to each other, and the overall field grows exponen-
tially along the undulator. This description utilizes the
advantages of the modal description technique wherein
the characteristics of single modes can be studied in detail.
Without the effects of energy spread, however, this ap-
proach is limited to cold e-beams. For optical wavelength
FELs, analysis in the cold beam limit is often adequate.
With the advent of shorter wavelength, high-gain systems,
however, it is critical to include thermal effects in describ-
ing the evolution of the electron beam in the FEL.

In contrast to the fluid analysis, in the alternate formal-
ism presented in Ref. [14], the general 3D solution for
the field evolution is derived from a simultaneous solution
of the Vlasov equation that describes the evolution of the
e-beam distribution function for an arbitrary energy
spread and Maxwell’s equations in the paraxial limit.
Eigensolutions for the FEL system are obtained by exam-
ining separable field solutions that have a fixed transverse
profile and an exponentially growing amplitude. In this
way, thermal effects in the longitudinal dimension are
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included in the description of the electron beam dynamics
component of the FEL instability.

Both formulations [5,14] describe the evolution both of
the e-beam and the signal fields, beginning from the startup
period and continuing through the linear growth regime.
Both assume that the transverse charge density gradient in
the field polarization direction is negligible ¢?V,;p, <
d,J;, and that the transverse e-beam size, which is fixed
along the undulator length (no active transverse rearrange-
ment of the electrons), is large compared to the micro-
bunching wavelength in the moving frame, ry > y,A.

In this work, in order to establish a solid connection
between the two formalisms and to explore the interaction
of multiple mode structures in the presence of an energy
spread on the e-beam, the field evolution integral from [14]
is reexpressed through an expansion of the field as a sum
over dielectric waveguide eigenmodes. This provides: (a) a
unified description that shows the equivalence between the
formalisms in the linear gain regime, and (b) a compact set
of mode coupled equations used to study the amplification
and coupling to OAM modes in the FEL with the effects of
energy spread included. The latter is a useful extension to
results presented in Ref. [13], which concentrated only on a
cold e-beam. The resulting equations are then used to
explore the unique effects of longitudinal dispersion of
OAM modes in the FEL, which arise due to the helical
transverse phase dependence and mode-dependent cou-
pling characteristics.

II. INTEGRO-DIFFERENTIAL SOLUTION

The integro-differential equation for the FEL field am-
plitudes E derived in Ref. [14] is (in cgs units)
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where the transverse field of the amplified wave in the
undulator is E | (r, 1) = E,(r |, 2)e®@/c=0 jo(r,) is the e-
beam current density, 0, = K/y = e|H|/&yk,, is the rota-
tion angle in a helical undulator with peak magnetic field
amplitude |H|, k,, is the undulator lattice wave number,
&y = ymc? is the nominal energy of an electron, 6 =
k/2y? =k, = w/v, —k — k, is the detuning parameter
for a free-space paraxial wave, y; 2 = y~2 + 67, v, is the
mean axial velocity of the e-beam, k, = k = w/c is the
free-space wave number and P = & — &,. The energy
spread function F(P) satisfies [ FdP = 1.

Equation (1) describes the self-consistent excitation and
evolution of the amplified radiation fields from the source

e-beam during the FEL interaction, including the effects of
longitudinal space charge and energy spread. The field
amplitudes are slowly varying functions of z, and can be
expressed as the product of two functions: E(r;,z) =
®(r,)exp(Az) for solutions of the high-gain FEL super-
mode, which propagates self-similarly in the transverse
dimension with an exponentially growing amplitude.

A. Field expansion

In the field expansion approach from [5], the transverse
field is described by a sum of dielectric waveguide eigen-
modes:

EL@r0) =2 CREL Ik ()
q

where k_, is the axial wave number of the gth mode and
C,(z) is the slowly growing amplitude coefficient. The
differences between the wave numbers of the modes leads
to modal dispersion in the medium (and in the FEL), which
also means that the detuning varies with the mode number.
The transverse components of the modes are eigenfunc-
tions of the dielectric equation:

V2EL,(ry) +[nr)?k2 = k2,JE,(r)) =0, (3)

and are determined by the form of the refractive index
n(r ). It is assumed that the fiber is weakly guiding and has
a “slow” transverse variation (Vn?> < k). The eigenmodes
also form a complete and orthogonal basis set, with or-
thogonality defined as

<glq|glq/> = [ E"j_qglq’dzrl = 5q,q’ |A|2’ (4)

where A is a normalization constant that may carry units.
The mode power is P,(z) = k,|A[*|C,(2)|*/8k.

The use of waveguide eigenmodes in the self-consistent
equations requires a modified form for Eq. (1) because the
mode-dependent wave number k,, alters the form of the
paraxial approximation since k,, # k. Using the dielectric
waveguide eigenmodes in Eq. (2), the modified integro-
differential equation becomes
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The dielectric eigenmode relation in Eq. (3) is inserted to
remove the transverse Laplacian term and simplify using
orthogonality of the basis functions. The current density is
written as jo(r;) = ecnyf(r, ), where n, is the electron
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density and f(r;) is the transverse profile distribution

function. The relativistic plasma wave number 6, =

J4mnge?/Eyy? is identified and Eq. (5) becomes

d :
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This equation describes the evolution of the waveguide
mode amplitudes from the FEL startup through the high-
gain regime. It can be used to solve for the evolution of
individual modes along the undulator for a given energy
spread F(P). The e-beam/mode overlap coefficient, or
generalized ““filling factor” is defined as

F,.

a9 |A|2 <5J_q|f(rj_)|gj_q> (7

which can be computed for an arbitrary form of the e-beam
profile function f(r;). With an LG mode basis it is
straightforward to compute [,/ analytically for several
different transverse e-beam profiles, including Gaussian,
parabolic, and flattop distributions. The coupling between
modes in the virtual dielectric for a specified form of the
refractive index in Eq. (3) is given by

k2

K,
AR TY
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The sum over the product of the elements of [, ,» and [<» ,
in the second term in the z-integrand results from the
integral
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In the second step the identity operator unlg n q//)@ 14"l

has been inserted with the condition that the eigenmode
basis forms a complete set.

Solutions to Eq. (6) for a sufficiently long interaction
length are the supermode solutions of the FEL. The super-
mode field profile maintains a fixed transverse distribution
as the resonant interaction between the active source e-
beam and the signal field results in optical guiding of the
radiation field, balancing the diffraction effects. The
guided supermode (SM) fields are identified by a fixed
superposition of the expansion modes that grows in ampli-
tude exponentially along z:

£ qu(r) = [quéiq(m)}e"sz. (10)
q

This expression is obtained by a simple transformation of
the mode amplitude coefficients,

Cy(2) = byebontar, (1)

where the complex supermode wave number is defined as a
modification of the free-space wave number by a perturba-
tion associated with the FEL interaction,

ksy = k + k. (12)

Equation (11) can be inserted into Eq. (6), transforming it
into an algebraic relationship for a direct calculation of the
supermode coefficients b,. This transformation allows a
straightforward evaluation of the integral over the longitu-
dinal coordinate, since all the dependence on z is com-
pactly located in the exponential term. For each b,
03150 ')’%
k

(8k — Ak )b, = —qu,[K;{q, + (5%, )
q/

k262 k.
x{ Fy =S, Ky
4kzq 9,9 ; kzq q,9q
—@(&—Ak )F (13)
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where Ak, = k,,

detuning are expressed as a single function S(8k, ), de-
fined by the integral

— k. The effects of the energy spread and

- 00 dF/dP
S(85k, 6) = f dP%. (14)
—00 6]( - 0 + mp

The e-beam mode coupling parameter for dominantly
transverse modes is closely approximated in the limit k =
kzq’ > k,, by [4,5]

@ /_02 k202
9.9

P 4k, (15)

This characterizes the coupling between the e-beam and
the waveguide modes. For a planar undulator geometry,
6? = K?/2y?, and Q,, must be multiplied by the factor
JI =[Jy(a) — J,(a)T?, where J, and J, are Bessel func-
tions of the first kind and @ = K?/(4 + 2K?).
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It is wuseful to define the parameter M, , =
(kyy/k.o)F, s and to write Eq. (13) in matrix form. The
matrix elements are indexed by the mode subscripts: the
matrix @ contains elements Q, ., the matrix Ak has
elements Ak, 0, ,, and so on. The matrix I is the identity.
Equation (13) is then

k 3

(16)

The supermode coefficients b,, which are elements of the
column vector b (or matrix b if the index is double valued:
g = {p, 1}), are given by solutions to Eq. (16). The domi-
nant, or highest gain, supermode coefficients correspond to
the solution that yields the most negative value of Im{&k},
defined to be 8k;. The full complex valued solution 6k =
8k, + i8k; is inserted, with the corresponding set of ei-
genvalue coefficients b,, into Eq. (10) to yield the domi-
nant supermode field of the FEL. The 3D power gain
length, or e-folding length, is given by Lg = 1/]28k;].

For a monochromatic beam the energy distribution func-
tion is given by F(P) = 6(P — P;). The energy spread
function in Eq. (14) is then

. ko7 k -2

S(8k, ) = —(5k —0+——p ) . an
Eov2 Eoy? l

with P; = 0 the cold beam energy spread function from

Eq. (17) is inserted into the supermode matrix equa-
tion (16). In determinant form it becomes

I[L(8k — 6)> — 02M][1 5k +IK — Ak] + Q| = 0. (18)

This is precisely the supermode equation derived using the
linear e-beam fluid model in Ref. [5]. The effects of
longitudinal space charge are included through the Q%M
term. In the 1D limit the matrix elements are degenerate:
F—1Iand K, Ak — 0, and Eq. (18) effectively reduces to
the familiar FEL cubic equation with gain parameter @ —
1Q = 1(0,0,)*k/4 = L(2k,p)’, where p is the well-
known Pierce parameter often used in FEL theory [15].

The general supermode matrix equation in (16) can be
written in eigenvalue form as

b=2AXb, 19)

1=

where W = [1k/SEy? — 2MI[K — Ak] — 5k62M +
Q with eigenvalue A= —kék/ S&Eyy? for a given &k. If

the waveguide expansion basis given by Eq. (3) is also the
eigenmode basis of the FEL, then W is diagonal.

Otherwise, the eigenvectors can be transformed by b =
T u, where 271! T is a diagonal matrix and the vectors u

are eigenvectors of the FEL system.

III. MODE COUPLING AND DISPERSION

Equation (6) describes the evolution of the individual
waveguide mode amplitudes from the initial startup regime
through the high-gain linear regime. Equations (16) and
(19) can both be used to directly solve for the fixed-profile
eigenmodes of the FEL. The coupling to guided Gaussian
modes can be investigated by choosing an expansion com-
posed of Laguerre-Gaussian (LG) (or Hermite-Gaussian)
eigenmodes of a quadratic index medium [7,16,17]. These
modes form a complete basis and can be used to investigate
the amplification of transverse mode structures at the fun-
damental frequency like, for example, the hollow intensity
profiles of azimuthal LG modes that carry orbital angular
momentum. An axisymmetric e-beam profile that lacks a
dominant OAM seed (either in input field or in the e-
beam), exhibits equal coupling between the / < 0 and [ >
0 OAM modes and the net amplified OAM in the optical
beam is zero [see Eq. (15)]. Figure 1 shows such a scenario
for model parameters of the SPARC FEL [18], depicting
the dependence of the inverse gain length for / = 0, 1, and
2 modes on the energy spread for a Gaussian e-beam.
These curves are obtained by finding the dominant solution
to Eq. (16) with only a single azimuthal mode in the field
expansion. This is possible for an axisymmetric beam since
the OAM modes do not couple to each other. The curves in
Fig. 1 therefore show the gain of the eigensolutions to
Eq. (6) in the case of a single OAM mode defined as an
initial value [C),;(0) = 1, for example, with C,,(0) =0
for p # 0 and [ # 1]. The energy spread F(P) is taken to
be Lorentzian [being a reasonable approximation to a
physical beam and giving an analytic solution to
Eq. (14)], with a FWHM of 8&. It is clear from the plot
that the modes with [ = 0 identify the dominant modes of
the system at zero detuning, since they have the shortest
gain lengths and thus the highest gain. This is attributed, in
part, to the geometry of the field structure for |/| > 0 modes
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FIG. 1. (Color) Differential power for individual OAM modes
on a Gaussian e-beam profile, with 11 radial modes included in
the expansion. FEL model parameters are: §, = 0.7 m™!, § =
0, =300, K=18, I, =500 Amps peak current, A=
425 nm.
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since they have zero field on-axis and shorter Rayleigh
lengths for the same spot size than the fundamental
Gaussian. Both effects conspire to reduce the effective
coupling to the e-beam. It is possible, for certain FEL
parameters, to detune such that the hollow OAM modes
have a shorter gain length than the on-axis modes [14].
Further details regarding OAM mode amplification have
also been explored elsewhere [13].

In addition to the increased gain length of OAM modes
(and high-order modes in general) near resonance, the
reduced coupling also results in reduced values for the
effective optical guiding. This is given by the associated
real part of the dominant solution to Eq. (18) as Re{6k} =
8k,. This gives an OAM mode-specific value for the ef-
fective guiding index of refraction defined as

Reff = 1+ 6:1‘ (20)

Since the modes each have a different guiding index, they
propagate with different phase velocities, leading to modal
dispersion in the e-beam (Fig. 2). For modes with a sig-
nificant transverse variation in phase, like OAM modes
which have helical phases, this can be an experimentally
observable effect as two modes shift in phase with respect
to each other, causing portions of the transverse profile to
change in intensity along the undulator axis. Figure 3
shows this effect for an OAM mode that is seeded and
amplified simultaneously with the fundamental mode
which grows due to a small, but nonzero value of pre-
bunching. Such is a simplified case of seeding on a beam in
the presence of SASE, when statistical noise on the beam at
the resonant wavelength grows exponentially. The OAM
mode in Fig. 3 is injected with enough power such that both
modes have the same power at the undulator exit.
Evident from the plots in Fig. 3 are both the off-axis
growth of the intensity which pushes the axial field null
aside, and the rotation of the peak intensity spot along z as
both modes are amplified. Both effects are explained by the
helical structure of phase of the OAM field. In general, the
phase is such that amplification of the pure OAM mode
tends to bunch the e-beam into a continuous helix (or
multiply twisted helices for |/| > 1) longitudinally. The
fundamental mode also tends to bunch the beam, but into
separated microbunches. With amplification of both an
OAM mode with index ! and the fundamental mode in
the system, the electrons are resonant on one side of the e-
beam, but are /7 out of phase on the opposite side (Fig. 4).
This means that there is higher growth of the signal field in
the transverse position(s) where the electrons are resonant,
and the intensity then grows off axis. This also explains
why the evolution toward the fundamental does not begin
with the peak intensity growing directly from the axial
center of the beam, as would be the case if the initially
dominant OAM mode were not present. The off-axis in-
tensity bulge grows along the undulator both transversely

and in amplitude due to the higher gain of the dominant
mode, rotating about the axis as the two modes shift out of
phase by i = |Angs|kAz, where Ang is the difference in
the effective refractive index between the modes in
Eq. (20), and Az is the length traveled along the undulator
during high gain. Thus, OAM modes with azimuthal mode
numbers differing by Al and with comparable amplitudes
interfere constructively off axis to generate an intensity
peak which rotates about the axis by /Al radians over the
length Az. In addition, since the different pure modes also
have different intrinsic radial profiles, the azimuthal mo-
tion of the intensity peak is accompanied by motion in the
radial direction as the initially off-axis peak moves toward
the radial maximum of the dominant mode of the system—
typically the axial center for an axisymmetric beam.

We note that the deviation from the simple microbunch-
ing profile of well-defined /-mode components is a mea-
surable phenomenon. The signature of microbunching
revealed through coherent transition radiation (CTR) has
been well developed theoretically [19] and experimentally
[20,21] for Gaussian mode profiles. As such, CTR mea-
surement is now a standard approach to diagnosis of beam
microstructure. This established methodology may be
straightforwardly extended to include microstructures in-
duced wholly or in part by OAM modes. The theoretical
basis of CTR measurement of helical beam microstructures
is the subject of a future study.

For the cold beam scenario in Fig. 3, the calculated
phase shift between modes is ¢y = 277/3. This is calculated
using the values of the refractive index for the OAM seed
and the fundamental given by the / = 1 and / = 0 curves in
Fig. 2. This phase shift is confirmed by visual inspection
from the motion of the peak intensity spot which travels
approximately 1/3 of the way around the axis over an axial
propagation distance of Az = 3L/4. An energy spread
changes the amount of observed rotation. This is because

[ =0 ]

4x10°8 ¢ 1

3X10'35 A

5, [ ]

k 2x10’8}_ I=+1 -
L ——______

[ --__———.

1x10%F ]

_______ I=+2 1

) T e ]

0.04 0.06 0.08 0.10 0.12 0.14
3lE

0.00 0.0

FIG. 2. (Color) Effective guiding due to the linear FEL interac-
tion for OAM modes at resonance. Higher-order modes have a
reduced coupling and are guided less strongly, and thus have a
larger axial phase velocity through the e-beam. FEL model
parameters are identical to Fig. 1.
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the phase difference between the modes is a function of
Angg, which varies for different values of 8&. It is found
here that |An.g| is larger (faster rotation) with increasing
8& if the fundamental mode / = 0 and an OAM mode |/| >
0 are present.

Phase
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FIG. 3. (Color) Intensity and phase along the undulator for an
[ = 1 seed on a cold beam, prebunched at the fundamental. The
fundamental mode grows faster than the OAM mode, appearing
as a bright spot (red x) on the annular intensity pattern and
eventually pushing the phase singularity, located at the field null,
off to the side. The different effective phase velocities of the
modes is manifest in the rotation of the bright spot along the
undulator.

In Fig. 5, an [ = 2 OAM mode is seeded onto the same
prebunched beam as for Fig. 3, so Al = 2 between the
amplified modes. The initial phase at z = 0 is 7 rotation-
ally symmetric, so the e-beam that is bunched into a double
helix is resonant with the fundamental at two off-axis
locations which drives two intensity peaks appearing in
opposition at z = L/4. The peaks rotate along the undu-
lator axis according to the ¢ =~ 277 X (0.31) phase slippage
between modes over Az = L/2 meters. This results in a
rotation of /Al =~ 0.98 radians ( ~ 56°) before the peaks
appear to merge. The direction of rotation is also in the
same clockwise sense as in the seeding shown in Fig. 3,
since both OAM seeds have positive values of /. The gain
of the / =2 mode is less than the / =1 mode so the
fundamental clearly dominates at z = L. This contrasts
Fig. 3, where the influence of the OAM mode is still
recognizable at the end. It is interesting to note that the
field null for the / = 2 mode is still essentially pushed aside
by the dominant fundamental, but that the single phase
singularity at the undulator entrance is broken into two
vortices, each with topological charge 1. This occurs in the
interaction between the fundamental and all modes with
|| > 1 due to the symmetry in phase about the axis; the
fundamental peak evolves toward the center, fragmenting
the phase singularities and taking their place on axis.
Future investigations could shed light on this issue in de-
tail, showing exactly how much of the total orbital angular
momentum may be transferred to the e-beam in this pro-
cess, and how much may become coupled to the spin off
axis.

FIG. 4. (Color) Side by side schematic comparison of geometric
bunching due to different modes. The fundamental mode (top)
tends to generate separate bunches along the z axis. The OAM
modes (bottom) tend to bunch the beam in helices due to the
azimuthal component of the ponderomotive phase. If both modes
are simultaneously present, the electrons on one side of the e-
beam (thick arrows) are resonant (solid vertical line), while those
in a different transverse position (slender arrows) are bunched
out of phase (dashed vertical line). The intensity therefore grows
off axis, where the electrons are in phase.
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FIG. 5. (Color) Intensity and phase along the undulator for an
| = 2 seed on a cold beam. The axial phase singularity is broken
into two [ = 1 vortices as the fundamental grows.

In summary, an equivalence between two different de-
scriptions of an FEL in the linear regime has been demon-
strated, and used to explore the characteristics gain and
guiding of OAM modes. The 3D integro-differential field
equations obtained in Ref. [14] have been examined in the
case that the signal field is written as a sum over eigen-
modes of a dielectric waveguide. Self-similar guided fields
are obtained in the linear gain regime from solutions to a
determinant equation for fixed expansion mode coeffi-
cients. In the cold beam limit, these solutions reproduce

the supermode equations derived in Ref. [5]. The corre-
spondence between formalisms extends the versatility of
the waveguide mode evolution and supermode equations
derived using the linear fluid model approach in [5] to
include the effects of energy spread. This enables an en-
hanced description of coupling to specific EM mode struc-
tures and realistic e-beams. An experimental scenario is
suggested for the investigation of multiple pure mode
structures during amplification which would clearly dem-
onstrate the often hidden physical effects of mode disper-
sion, and hence unambiguously expose the effects of
guiding due to the real part of the solution to the modified
FEL cubic equation. Radiation in the form of CTR may
also be used, in addition to the FEL emission, as a diag-
nostic to characterize the helical microbunching of the e-
beam. Future theoretical work will be needed to extend the
present analysis to include the effects of significant beta-
tron motion and emittance effects, as well as the signature
of helical bunching on CTR radiation.
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