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Different applications of TE modes in accelerator physics are discussed. In this discussion, the Fourier
transform of the squared axial component of magnetic field, Bz2�z�, plays an important role. If it turns out
to be zero, the rf field-particle energy transfer is negligible and the focal length of the TE mode lens is
phase independent. Such rf lens focuses continuous beams just as a solenoid. In order to compensate
spherical aberrations and emittance growth caused by field nonlinearities of a focusing solenoid, the rf
focusing is used also even if the beam space charge is taken into account. If the transform has its
maximum, excitations of TE mode resonances and electron beam self-focusing are possible. Furthermore,
the rf field of the TE mode can be used to expand the radial acceptance of a FEL for the THz region.
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I. INTRODUCTION

In most particle accelerators, the electric rf field of a TM
mode is applied to accelerate charged particles to higher
energies. Besides the TM modes, there is a TE mode, a
second class of rf fields, where the magnetic component is
applied only along the symmetry axis of the cavity. In
superconducting cavities, the maximum axial field, achiev-
able with reasonable surface field strength, is of the order
of 0.3–0.4 T. In past years, the application of TE modes has
been discussed in connection with superconducting rf guns
[1], where the magnetic rf field can replace the static field
of a solenoid, used in warm rf guns.

The present paper gives an overview of the possible
applications of the TE mode. The paper is arranged as
follows: first, the system of coupled equations determining
the TE mode and particle motion is derived under assump-
tion of rotational symmetry. Then, different applied aspects
are discussed. One of them is the emittance compensation
in a superconducting rf gun, which can be reduced com-
pletely like that in the case of the static field of a solenoid.
It will be also shown that the TE mode can compensate
spherical aberration of a static solenoid. The excitation of
TE mode resonances and the self-focusing of an electron
beam are discussed. We demonstrate also that the TE mode
rf field can create a radius dependence of the beam energy,
which allows the enhancement of the FEL radiation in the
THz region.

II. FIELD EQUATION, PARTICLE MOTION, AND
ENERGY TRANSFER

The rf field inside a cavity forms a standing wave. The
fields �E and �B are solutions of the Maxwell equations with
the parallel component of the electric field and the perpen-
dicular component of the magnetic field vanishing at the
conducting surface. In what follows, it is useful to repre-

sent �E and �B as derivatives of vector potential �A defined by
the wave equations [2]:
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where SI units are used. The TE modes (or magnetic
modes) are special solutions of Eq. (1) where (in the axially
symmetric case) only the vector components Bz, Br, and
E’ differ from zero. In the cylindrical coordinate system,
the Maxwell equations for the magnetic modes and the
field components of �E and �B read as
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The paraxial approximation Bz��r; t� � B��r; t�jr�0 �
B�z; t� and constant trajectory radius of particles in the
cavity are assumed hereby. These will also be assumed
everywhere below where the sign � appears.

Space and time dependencies enter the electric and
magnetic components separately, that is why one can write
down

 

�A� �r; t� � �A� �r�ej�!t���; �B��r; t� � �B��r�ej�!t���: (3)

From this it follows that �A��r� � �E� �r�=j!, i.e., the vector
potential coincides in space with the TE electric field and
also has only azimuthal components: �A��r� � A’��r�.

The magnetic field components can be expressed from
(2) and (3) as

 rBr��r� � �
@
@z
rA’��r�; rBz� �r� �

@
@r
rA’��r�: (4)

Therefore, the vector
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is tangential to the pattern (equipotential) lines rA’� �r� �
const. The solutions of Eq. (1) are labeled through the
number of knots of the axial field in z, r, and ’ directions.
We will restrict ourselves to the rotationally symmetric
TE0NM mode. The pattern lines of TE011 mode in a
TESLA cell [3] are shown in Fig. 1. There shown also is
the magnetic field distribution on the axis and at the surface
of the cavity. The frequency obtained is nearly twice the
frequency of the corresponding accelerating mode TM010.
In all rf calculations throughout the paper, the code
SUPERLANS [4,5] has been used.

In the next step, we will discuss the particle motion in
the rf field of the magnetic mode. The equation for an
electron motion in an external electromagnetic field
d
dt m� _�r � e �E� e _�r� �B changing for cylindrical coordi-
nate’s z, r, and ’ reads for the TE mode field as follows:
 

m
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� � 1=
���������������������������������������������������
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(5)

By using Eq. (2) and taking into account that d
dt �

@
@t�

_z @
@z� _r @

@r , we can rewrite final equation (5) as follows:
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It is possible to integrate the equation for the angular
component of the particle momentum P’ � m�r _’, and
then we obtain the first identity:

 P’� �r; t� � �eA’� �r; t� � const=r

� �e
r
2
B�z; t� � const=r; (7)

const � eA’0r0 � P’0r0, where P’0, r0, and A’0 are the
parameters at the cavity entrance. We put below const � 0.

In Eq. (7), we have obtained the precise and approximate
equations. The Busch theorem [6] is a special case of
approximated Eq. (7) but here it is extended to the case
of a nonstatic or time-dependent electromagnetic field
(! � 0, � � 0):
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In the next step, if we replace in Eq. (5) _’ with Eq. (8)
(const � 0 is assumed), we obtain
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These equations are identical to the equation for an
electron, moving in a static magnetic field, where the
square of static vector potential A2

’��r� is replaced by
time-dependent A2

’��r; t�. For rf field (3), we have
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The particle trajectories in this field depend on the phase
� of the rf mode. Therefore, the magnetic field focuses
each bunch of the beam, entering the cavity at different
phases, with different strength. At the same time, the static
part of the rf acts in the same way as a static field with the
lower strength of the effective rf amplitude. Such an rf lens
is able to focus continuous electron beams. This issue will
be discussed thoroughly in the next section.

Let v be the nonazimuthal component of particle
velocity, such that v2 � _z2 � _r2. The insertion of

_’� �r; t� from (8) to � in Eq. (5) gives � �

1=
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FIG. 1. (Color) Field pattern lines, axis, and surface field of the
TESLA cell.
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Now we analyze the equations (9). Multiplying both
sides of upper Eq. (9) by � _z, lower one by � _r, and sum-
ming them, we obtain
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Integrating Eq. (12) over t in the same manner applied
for Eq. (7), we obtain the second identity for the non-
angular component of the particle momentum Pv � m�v:

 P2
v��r; t� � P
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2 ����r; t�c; (13)
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For a static solenoid � � 0, � � �0, and if A’0 � 0, a
slight rearrangement of terms gives

 v� �r; t� �
���������������������������������������������
v2

0 � 
A’��r; t�e=�m�
2

q
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Now let us have a look at the particle energy equation
W � mc2�. Using (7) and (13) and the relativistic relation
j �Pj2 � P2

v � P2
’ � W2=c2 �m2c2, we obtain the third

identity:

 W2��r; t� � W2
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The condition �jt!1 � 0 means that the final energy is
not changed. One can note that, using (2) and (8), Eq. (14)
of energy alteration � can be rewritten in the following
way: �� �r; t� � 2 m

e

R
t
0 �r _’E’d� � 2 m

e

R
t
0� _�r 	 �E�d�, i.e., it

possesses that the energy transfer holds only in particle-E-
field interactions, which is corresponding to the conclu-
sions of classical physics [2].

We note that the accuracy of numerical calculations of
particle dynamics in TE mode fields by any tracking code
can be easily verified with the assumption of Eq. (8): the
azimuthal component of particle velocities must be zero if
the particles initially having zero azimuthal velocity in free
space are left out of TE field. In all dynamics calculations
throughout the paper, the unique code ASTRA [7] has been
used. Its accuracy is good enough. As a rule it becomes
better by an order if the cylindrical system of coordinate is
applied instead of the Cartesian one (it is predicted by
MATHCAD simulations).

III. COMPENSATION OF EMITTANCE GROWTH
IN A SUPERCONDUCTING RF GUN

For generation of electron bunches with a charge of 1 nC
and an emittance of �1 mm mrad laser driven rf photo-
cathode guns are applied [8]. These guns are based on
normal conducting cavities and operated only in a pulsed
rf mode. In order to minimize the emittance, the beam is
focused inside the cavity by two solenoids. Application of
superconducting cavities allows the continuous mode op-
eration, necessary for high average currents. In these cav-
ities, one has to replace the static magnetic field of the
solenoids by the magnetic field of an additional rf mode.
Numerical simulations have shown that the magnetic rf
focusing by the TE mode discussed above compensate the
emittance growth [9] and the results depend very weakly
on the phase � of the TE mode.

In the following, we will discuss the phase dependence
of the magnetic rf focusing in more detail. A simple
consideration shows that the focal length F of the magnetic
lens, which is generated by the axial field B�z�, is given by
F � �r0=

dr
dz jz�1. With an account for Eq. (9) we rewrite

this definition as 1=F � � 1
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The first term of (18) corresponds to the focal strength of
static lens with Bstat � Bz=

���
2
p

. The second one character-
izes the phase dependence of the rf lens. This integral is
proportional to the Fourier transform of B2�z�. The fre-
quency dependence of the Fourier transform decreases
with the frequency increase and has a number of maxima
alternating by minima. The minima are equal to zero if the
distribution B�z� is symmetrical, i.e. B�z0 � z� � B�z0 �
z�. This consideration for the resonance frequency! of the
TE mode leads to the following:

 

��������Z 10 @A2
’� �r�

@r
ej2!tdt

��������� r0

��������Z 10 B2�z�ej2!tdt
��������� 0:

(20)

From Eq. (20) and the approximation discussed before,
it follows that the energy transfer �W given by Eq. (17) is
equal to zero. In this way, the phase independence of the
focal length and the zero energy transfer between the

APPLICATIONS OF CAVITY TRANSVERSE MODES IN . . . Phys. Rev. ST Accel. Beams 11, 061302 (2008)

061302-3



magnetic rf field and particle energy coincide with the case
of static magnetic field completely. The particle trajecto-
ries inside the TE mode field can differ from the corre-
sponding trajectories in the solenoid, but outside they agree
with a good approximation.

We would like to remark that there exist two important
properties of rf lenses following from the Fourier
transformation.

(i) One can always design a focusing cavity having those
resonant frequencies of TE modes, that the phase depen-
dent part of focusing strength, Eq. (20), is equal to zero and
rf lens is operated as a static lens, i.e., such rf lens is able to
focus continuous beams.

(ii) Those TE modes can always be chosen in such a way
that resonant frequencies are large enough to obtain the
weak phase dependence.

Now we will design a ‘‘phase independent’’ TE mode
cavity which is able to focus continuous beams. In the first
step, we define an axis field B�z�. Then we calculate the
Fourier transform D�!� � j

R
1
�1 B

2�ct�ej2!tdtj and deter-
mine the roots !0 of D.

Let us give a simple example of a pillbox cavity. For the
axial field we assume

 B�z� �
B0 cos��z=L� for jzj 
 L=2

0 for jzj � L=2:
(21)

The Fourier transform of the field is D�!� �
B2

0

2! �
1��!L=�c�2

1��!L=�c�2
j sin�!L=c�j and the lowest root !0 is equal to

2�c=L or k � !0=c � 2�=L. The axial field of Eq. (21)
corresponds to a pillbox cavity with the length L and radius
R in the TE110 mode. The frequency of the pillbox cavity is

given by !pb � c
����������������������������������������
��=L�2 � �p001=R�

2
q

, where p001 is the
first root of the Bessel function J1. Now we put !pb equal
to the root !0 of the Fourier transform and obtain the
relation

 

R
L
�

p001

�
���
3
p ; Bz � B0 cos

�
k
2
z
�
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When this ratio between the radius and the length of the
pillbox cavity holds, the focal length defined in Eq. (18) is
phase independent and the energy transfer �W between
field and particles is zero. In the case of a realistic field
distribution, the reconstruction of the cavity shape from the
axis field B�z� is more difficult. In the first step, one has to
calculate the axial field and frequency for a given cavity
shape. Subsequently, one changes the shape radius for the
constant cell length in such a way that a root of the Fourier
transformed axial field agrees with the cavity frequency.
This procedure has been applied in [9]. In this paper, the
beam properties of a superconducting rf gun have been
optimized using three different cavity shapes. The mag-
netic focusing has been applied by the rf field of a TE mode
inside and behind the accelerating cavities. Figures 2–4
show the shapes of the cavities, the field pattern, and the

axis and surface fields of the corresponding TE modes. In
all cases, the optimal axis field has its maximum at�0:3 T
and the peak of the surface field is below the critical
quench value of a superconducting cavity.

The Fourier transform of the TE mode axis fields to-
gether with the corresponding frequencies are given in
Figs. 5 and 6. In the case of 3 1

2 cells, the TE mode and

fTE=1613 MHzfTM=1300 MHz

Axis fields: Emax=50 MV/m Bmax=0.305 T

Surface fields

0.4 m0.30.20.10
Bmax=0.093 T

FIG. 3. (Color) Shape, field pattern, the axis, and surface fields
of 1 1

2 cell superconducting cavity of the rf gun with the separated
focusing TE011 mode having the frequency of 1613 MHz.

Emax=50 MV/mBmax=0.276 T

0.1 0.2 0.3 0.4 0.5 m

Axis Fields:

Surface B Field

Bmax=0.13T

0.3T

0

FIG. 2. (Color) Shape, field pattern, the axis, and surface fields
of 3 1

2 cell superconducting cavity of the rf gun having TE021

mode with the frequency of 3781 MHz.
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the acceleration TM mode are in the same cavity.
Therefore, the cavity shape is a compromise between the
optimal electric TM axis field near the cathode and the
phase independence of the TE mode axis field. The Fourier
transform minima of this TE mode axis field are small, but
not zero. This occurs due to the nonsymmetrical distribu-
tion of B2=� in respect with its center z0: B2�z0 � z�=� �

B2�z0 � z�=�. For the bunch charge of 2.5 nC and bunch
length of 21 ps, the transverse emittance of 0.99 mm mrad
was obtained [9]. This is an excellent value, which changes
only by�4%, during phase variation of the TE mode field.
We would like to note that, in this case, the energy � and
velocity v are time dependent due to acceleration of elec-

trons and one has to incorporate these values in the inte-
grands of Eqs. (18)–(20).

For the 1 1
2 cell cavities, the TM and TE modes are

separated and we have determined the shape of the TE
mode cell by the procedure discussed before. In this case,
the transverse emittances are 1.13 mm mrad and
1.46 mm mrad, respectively, and the phase dependence of
these values is �0:3%. This value is within the numerical
noise of the applied tracking calculation. The slightly
larger emittance for the 1 1

2 cell cavities can be explained
by a larger distance of the magnetic field maximum to the
cathode in these cases.

We close this section by recapitulating the advantages of
the TE mode application with respect to the solenoid field
close to the superconducting rf gun: (i) The magnetic field
maximum can be placed near the cathode, which improves
compensation of the emittance growth. (ii) No phase stabi-
lization and frequency tuning is needed; only amplitude
stabilization of the TE mode is necessary. (iii) The neces-
sary rf power is on the order of several tens watts, which
can be generated by a semiconductor amplifier. (iv) No
additional shielding is needed; the hole of solenoid shield-
ing around the beam pipe must be as small as possible to
place the solenoid near the superconducting cavity. This
leads to an increase in the B field nonlinearities and emit-
tance growth. (v) No additional mechanical adjustment is
necessary. (vi) The application of a TE mode focusing is
less expensive than the focusing by a solenoid.

IV. FIELD NONLINEARITY COMPENSATION

It is known [10] that the nonlinearities of the static B
field near the axis similarly to the nonlinearities of the
acceleration rf field [11,12] is a reason of the spherical
aberration and emittance growth. This always has a nega-
tive influence on the beam quality and could not be com-
pensated in any combination of static lenses or rf cavities

 fTE=2487 MHz

Axis Fields: Emax=50 MV/m    Bmax=0.342T

He He

m
Bmax=0.11T

Surface fields

FIG. 4. (Color) Shape, field pattern, the axis, and surface fields
of 1 1

2 cell superconducting cavity of the rf gun with the separated
focusing cavity having TE011 mode frequency of 2487 MHz.

0 0 .5 1 1 .5 2 2 .5
10 5

10 4

10 3

10 2

10 1

10 0

0.001

0.002

0.003

0 t (ns)

f (GHz)

1613 MHz

B
2

   Β e     dt
 Τ

0

2 j2ωt    Β      e     dt
 Τ

0

2
j2ωt

2
d B
dz

FIG. 6. (Color) TE mode axis fields, frequencies, and the Fourier
transform for the 1 1

2 cell rf gun [9] with separated focusing TE011

mode having the resonance of 1613 MHz shown in Fig. 3 (� �
const). The dotted line dependence is analyzed in the next
chapter.

FIG. 5. (Color) TE021 mode axis fields, frequencies, and the
Fourier transform for the 3 1

2 cell cavity [9]. In this case, energy
��t� and velocity v�t� are time dependent.
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separately if the space charge is not taken into account.
Because of the spherical and chromatic aberrations, the
resolution of electron microscopes is improved only by two
orders compared to light microscopes, but it seems to be of
five orders according to the ratio of the light wavelength to
the electron one. We shall compare the nonlinearities of
static solenoid fields and the rf field of TE modes and then
analyze the differences to its applying for the compensa-
tion of spherical aberration and the emittance growth. In
this problem the space charge is taken into account.

Let us define the axial symmetric B fields through the
nonlinearity factor (b) as follow:

 Bz� �r� � B�z� � b�z� 	 r2; B�z� � Bz� �r�jr�0: (23)

By using Eq. (2) we obtain
 

b�z� � �
k2

4
B�z� �

1

4

@2B�z�

@z2 ;

E’� �r�=j! � �
r
2
B�z� �

r3

4
b�z�;

Br� �r� � �
r
2

@B�z�
@z
�
r3

4

@b�z�
@z

:

(24)

In the first terms of Eq. (24), the axis distribution of
nonlinearity factor b�z� is obtained. We assume here that
the independent variation of the k and field distribution
B�z� are possible in some limits. In a simple static solenoid
(k � !=c � 0), at a maximum of B field (z � z0), the
factor b�z0� always has a positive value (for B> 0):

 bsolenoid�z0� � �
1

4
B00 > 0; B00 �

@2B�z�

@z2 : (25)

But for the rf field of TE mode this factor becomes a
negative value due to the addend with the k2 coefficient.
Since the dynamics equations depend on A2 � �r=2�2B2

field (see Sec. II), we must consider the nonlinearities of
the B2 field, i.e. B2� �r� � B2�z� � r22B�z�b�z�. For the
example of the TE field presented in Fig. 6, this factor is
2BbTE=B2

max � �4300 1=m2, but for the static solenoid
within the same B field distribution and k � 0, it is
2Bbsol=B

2
max � 1050 1=m2. The differences between the

static and rf nonlinearities will be clearer if we consider
their distributions along the axis. The distribution of factors
2B�z�b�z�=B2

max on axis for the TE field of Fig. 6 and for
the solenoid field having the same B�z� distribution with
k � 0 are presented in Fig. 7.

A reasonable question occurred: Could the phase inde-
pendence in such a field for any r be proved when Eq. (20)
is completing, i.e.

 

��������Z 10 B�z�b�z�ej2!tdt
���������

��������Z 10 BB00ej2!tdt
��������� 0? (26)

For the above-mentioned pillbox cavity having cosine
distribution of Eq. (22), the phase independence completes
always, B00 � �k2=4�B, but for another cavity, the optimal

shape must be found in order to complete Eqs. (20) and
(26). In Fig. 6, the Fourier transform of the nonlinearity
part r22B�z�@2B�z�=@z2 for the field distribution of TE
cavity Fig. 3 is depicted. In the resonance frequency
1613 MHz it is small enough (< 0:01), i.e., the nonline-
arity compensation will be held with an accuracy of �1%.
This is correct for the TE cavity of Fig. 4 also.

It would be logical to predict that the rf lens has those
aberration factors having the opposite sign to the static
solenoid one, and in the combination of a TE lens and a
static solenoid their aberration factors could be compen-
sated to zero. The emittance growth caused by the non-
linearities of these fields must be compensated also.

These predictions are reconfirmed by the numerical
ASTRA simulations. In Figs. 8–11, we show the calculated
trajectories of 3 MeVelectron beams emitted from a dotted
source and focused by the static solenoid, by the rf lens of
Fig. 4 (both having the field distributions like Fig. 6), and
by its combination. The initial emittance just after the
source is equal to zero, but due to these nonlinearities,
the emittance growth after both lenses up to 4.1 and
25:4� mm mrad (see Figs. 8 and 9) occurred. The focal
rms spot sizes that are the resolution defined of scanning
microscopes [13] are 0.08 and 0.63 mm, respectively.

The Bmax amplitude of TE mode in both lens combina-
tions of Figs. 10 and 11 is optimized to compensate the
aberrations completely. In the first combination of Fig. 10,
the rf lens is disposed into the static solenoid. The focal
strengths and focal rms spot sizes here depend on the rf
phase of TE mode because Eq. (20) for the field sum is not
adjusted to zero; therefore it can be used for bunched
beams only and with phase adjusting systems applied. On
the contrary, the second combination in Fig. 11 is insensi-
tive to the phase. The calculated resolutions and emittances
in both lens combinations in Figs. 10 and 11 are practically
zero within the range of numerical calculation accuracy.

Unfortunately, there is a resolution growth due to chro-
matic aberrations that depend on the factor �2�2 men-
tioned in Eq. (18). In Figs. 10 and 11, we depict these
resolutions when the electron source has the rms energy
spread of �E=E � 0:1%. For this reason, the resolution of

FIG. 7. (Color) Distributions 2B�z�b�z�=B2
max of the TE lens

and the static solenoid fields of Fig. 6.
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recent available electron microscopes cannot be less than a
few of nanometers, even if they will have zeroth spherical
aberrations [13].

We note here that, by such double combinations of the rf
and solenoid lenses, we can focus those beams having
larger radius, i.e., more current beams could be focused
qualitatively. Such doublets are compatible for transport-

ing beams (continuous included) to long distances where
the periodically placed focusing is applied many times.

In order to confirm it by simple equations, let us consider
those models of such a doublet presented in Fig. 11, in
which the spatial charge is taken into account. Ideally, the
continuous beam here must have a zeroth emittance in both
(entrance and focal point) cross sections and equal trans-

Bmax=0.141(T)

ε = 4.1 (πµ)
σ  =0.08 (mm)  R

z (m)
r 

(m
m

)

FIG. 8. (Color) Probe particle trajectories of the beam in the static solenoid. " is normalized rms transversal emittance after the lens;
�R is rms spot size in the focal point.

Bmax=0.2 (T)

ε = 25.4 (πµm)
σ  =0.63 (mm)  R

z (m)

r 
(m

)

FIG. 9. (Color) Probe particle trajectories of the beam in the rf lens (!=2� � 2:47 GHz).

Bmax=0.141(T)
sol

Bmax=0.117(T)TE

σ       0        0.1    %
σ    0.004  0.018 mm
ε     0.06   0.65    πµm

E

R

σ  R

z (m)

r 
(m

)

FIG. 11. (Color) Probe particle trajectories of the beam in the combination of the static solenoid and rf lens (!=2� � 2:47 GHz).

Bmax=0.141(T)
sol

Bmax=0.076(T)TE

σ       0        0.1     %
σ    0.009  0.02    mm
ε     0.13     1.5    πµm

E

R

σ  R

z (m)

r 
(m

)

FIG. 10. (Color) Probe particle trajectories of the beam in the combination of the static solenoid and rf lens. �E is rms energy spread
just after the source, before the lens. !=2� � 2:47 GHz.
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verse sizes, i.e., all trajectories must be parallel to the axis
and the particles must have zero transversal momenta in
both cross sections (beam waist) [14,15]. This occurs if the
integrated transversal momentum of focusing forces on the
distance from the entrance up to the focal point is compen-
sated by the space charge forces.

Let us consider for all trajectories the approximation
case with r�z� � const. If the beam has the uniform trans-
verse distribution of the current density (jo) then space
charge forces acting on the particle with r coordinate is
2�rj0=�I0c�2�2� [10], where Io � 4�"omoc3=e �
17 000 A. After adding this in the last line of Eq. (9), using
Eq. (2), and assuming d=dt � _zd=dz, TE and solenoid
fields are separated from each other in space, we obtain
 

d
dz
���r0� � �

�
e

2mc

�
2 r
��

B2
s�z; r�

�

�
e

2mc

�
2 r
��

B2
TE�z; r; t� �

2�j0

I0c
r

�2�2 ;

(27)

where r0 � dr=dz and Bs�z; r�, BTE�z; r� is correspond-
ingly the solenoid and TE mode field distributions. Then
using Eqs. (23) and (24), we consider (for simplicity) TE
and solenoid field distributions are identical to each other:

 

Bs�z; r� � Bs
Bs�z; r�=Bs� � Bsbb0�z� � r2b00�z�=4c;

b00�z� � @2b0�z�=@z2; (28)

 

BTE�z; r; t� � BTE
BTE�z; r; t�=BTE�

� BTE
b0�z� � r2b00�z�=4� r2k2b0�z�=4�

� cos�!t� ��; (29)

where Bs, BTE is the maxima of solenoid and TE mode
field distributions, respectively. Let us consider Eqs. (20)
and (26) are completed; the integrating of Eq. (27) on the
path length z � 0� L gives

 

�2�2�r0jz�L � r
0jz�0� � �r

�
e

2mc

�
2
�
B2
s �

1

2
B2

TE

�Z
b2

0�z�dz� r
2�j0

I0c
L
��
� r3

�
e

2mc

�
2
�
B2
s �

1

2
B2

TE

�Z
b0�z�b

00�z�dz

� r3

�
e

2mc

�
2 k2

4
B2

TE

Z
b2

0�z�dz � 0: (30)

In order to get the radial independence in Eq. (30), the
factors of r and r3 must be zero. This is possible if the
values of Bs, BTE meet the following requirements:
 

B2
TE
T

2� � 4�
Lj0

��
�
R
b0�z�b00�z�dz

k2

R
b2

0�z�dz�
2 ;

� �
8�c

I0�e=m�2
� 1:354� 10�17

�
m kg2

coul3 s2

� (31)

 B2
s
T2� �

Lj0

��
�R

b2
0�z�dz

�
1�

2
R
b0�z�b

00�z�dz

k2
R
b2

0�z�dz

�
: (32)

If the beam current is 100 A, beam radius is 20 mm, L �
1:5 m, and !=2� � 2:47 GHz, we get BTE � 0:022 T,
Bs � 0:028 T.

In all considered examples, the B field amplitudes of TE
modes have relatively small values. Also, these must be
less for low particle energies as B2 � �2�2 according to
Eq. (18). Therefore, these TE cavities may be made of
normal conducting materials. The rf power in the copper
cavity of Fig. 10 (E � 3 MeV) is equal to 260 kW and
maximal power density in the cavity wall is less than
250 W=cm2. In this case the water cooling is possible.

We note that all TE cavity sizes can be widely scaled
proportionally. In such a procedure, Eqs. (20) and (26) are
left completed always. For the unchanged focusing
strength, the dissipating power in the normal conducting

cavity wall is left unchanged, i.e., the power density is
changed inversely proportional to the scaling factor
squared.

V. TE MODE RESONANCES AND SELF-FOCUSING
OF AN ELECTRON BEAM

In Figs. 5 and 6, the Fourier transforms given in Eq. (20)
are shown for different magnetic fields. If for a certain
frequency !0 the transform is zero, the energy transfer
between the particles and the corresponding TE mode field
vanishes also. In further chapters, we will discuss the
converse case. The frequency of the TE mode is near the
maximum of the Fourier transform. Then the energy trans-
fer is sensitive to the phase of the rf field according to
Eqs. (14) and (17).

For a beam without angular momentum and for a cavity
without TE mode field, there always exist small TE mode
field or beam angular pulse disturbances, which lead the
energy transfer appeared, according to Eqs. (8) and (17). If
the quality factor is high enough or dissipative power
losses in the cavity are small enough then such modes
can lead to an amplifying action. This is a quite distinct
mechanism of the TE field self-excitation. The same ef-
fects exist in the problem of dipole modes self-excitation,
which leads the breakup instability [16,17]. TE field self-
excitation only leads the beam focusing without the beam
breaking up.
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The phase of the self-excited TE field by synchronic
bunches must be determined by the condition that the
energy particle-field transfer has a maximum. From
Eq. (19) we obtain

 � � ��=2 � � arg
�Z 1
�1

B2�z�ej2!z=v0dz
��

2; (33)

and for the energy transfer Eq. (17) gets

 U �
�W
e
�

e! 	 r2
0

8m�0v0

��������Z 1�1 B2�z�ej2!z=v0dz
��������: (34)

We consider that this maximal energy is transferred to
the field of excited TE mode by a single particle synchro-
nized with the TE field.

In the following we will analyze the interaction between
the rf field of the TE mode and a pulsed electron beam in
the absence of an external rf source. For this purpose, as a
rule, the cavity is described by an equivalent circuit of an
oscillatory contour excited by an external current source
[18]. This excited voltage amplitude is U � �W=e, the
resonant frequency is 2!, and the quality factor is 2Q. This
doubling follows from 2� double phase dependence in
Eqs. (14) and (17). The quality factor and power losses P
of the equivalent circuit are given by equations

 Q �
!�
2
; P � !

J
Q
; (35)

where J is TE field energy, and � is the decay time of the
cavity voltage.

For the current I, we assume that it is composed of
bunches with the charge q and the repetition frequency
� so that I � q�=�2��. This current excites the field B�z�
of Eq. (34). We would like to remark that, in contrast to
previous considerations [19], the voltage U and the imped-
ance R=Q are not parameters, which are determined by the
cavity only. In the case of TE modes, they depend on the
energy, field phase, amplitude Bmax and r of particle tra-
jectories in the cavity also.

In order to give a numerical example, we have calculated
U0 by means of Eq. (34) as energy losses of particles in a
tracking calculation using the ASTRA code [7] and the
TE011 mode of the TESLA cell shown in Fig. 1. In this
calculation, the bunch charge of 1 nC is homogenously
distributed in a cylinder with a radius of 2 mm and a length
of 6 mm. The particle energy is 3 MeV (�0 � 6). Space
charge forces are included. Figure 12 shows the depen-
dence of the voltage U0 and the phase � from the ampli-
tude Bmax of the axis field B�z�. The phase � is obtained
from the condition that U0 has a maximum for each Bmax

value. TE field phase � of the cavity must be synchronized
with the beam bunches. For this purpose, the electronic
system of the phase control and the mechanical system of
cavity deformation must be used.
U0 can be quite well approximated by the polynomial of

second degree

 

U0
V� � B2
max
T��3054� 616B2

max
T� � 36B4
max
T��


 B2
maxU00; (36)

where U00 � 3054. For Bmax < 0:5 T the voltage is less
than 1 kV.

Taking into account Eq. (34) we obtain the amplitude U
for other parameters of r, �, ! instead of Eq. (36) calcu-
lated for ro � 2 mm, �0 � 6, and!0 � 2� 	 2:496� 109:

 U � U0 	 �r2!=��=�r2
0!0=�0� � U0�r2!=�� � 10�4:

(37)

In the stationary case the energy transfer of the bunch to
the rf field UI is equal to the energy losses at the cavity
surface [see Eq. (35)]. This is described by the equation
[18]

 UI � ! 	
J
Q
: (38)

Using the notation J � B2
maxJ0, where J0 � 138:4 bJ=T2c is

the CLANS calculated factor for the TESLA cell, we obtain
from Eqs. (36)–(38)

 IQ �
J0

U00

�

r2 � 104 � 450
�

r2 : (39)

In TESLA cell cavity (see Fig. 1: Q � 8� 109, ! �
2� 	 2:496� 109 Hz), the threshold current of the beam is
I � 88 mA. We can get the lower threshold current by one
or two orders if we choose the low energy of the beam,
large beam radius, and more compatible cavity shape. A
special shape design of the cavity can minimize the char-
acteristic value J0=U00, which enters Eq. (39) by 1 order of
magnitude in comparison with the TESLA cell value.

For the excitation of this resonance by the beam current
of a few tens mA, a large Q value of 108–109 is necessary.
These values are reasonable for a superconducting cavity,
but not reachable for a normal conducting one.
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The beam with the current of a few tens mA establishes
its own magnetic field and focused itself. In this way, we
have obtained an rf lens that is operated without an external
power source. But the electronic system of phase control
and mechanical system of the cavity tuning to the reso-
nance must be used. Each bunch is focused with the same
phase and amplitude. Therefore, this lens produces no
additional occasional growth of the beam emittance.

VI. ENHANCEMENT OF THE FEL ACCEPTANCE
IN THE THZ REGION

The transverse acceptance of a FEL is limited by the
(90�) phase slip condition [20]

 

�������� 1

�U
�

1

2��2 �1� h�
2�2
?i�

��������< 1

4LU
; (40)

where LU and �U are the undulator parameters and �? is
the electron velocity perpendicular to the beam axis. The
electron motion inside the FEL can be described by a
superposition of the oscillation with the wave number
2�=�U and betatron oscillation with the wave number
k�. For a helical undulator with the field parameter K,
one gets approximately [20]

 h�2�2
?i � K2

�
1�

1

2

�
2�
�U

�
2
R2
m

�
: (41)

The radius Rm �
�������������������
X2
m � Y2

m

p
is defined by the amplitudes

Xm and Ym of the betatron oscillation in the x and y
directions. These amplitudes depend only on the electron
coordinates x0, x00 and y0, y00 at the entrance of the FEL and
the wave number k� of the betatron oscillation, i.e.

 X2
m � x2

0 � �x
0
0=k��

2; Y2
m � y2

0 � �y
0
0=k��

2: (42)

If the beam waist is placed in the middle of the undu-
lator, we obtain R2

m � r2
0 	 �1�

4
�k�LU�2

� with r2
0 � x2

0 � y
2
0.

After this consideration, the acceptance condition of
Eq. (40) is transformed to
 �������� 1

�U
�

1

2��2

�
1� K2

�
1� r2

0

1

2

�
2�
�U

�
2
�
1�

4

�k�LU�2

�	���������
<

1

4LU
(43)

and delivers the upper limit for the initial radius r0 of the
electrons.

It is evident that an appropriate radius dependence on the
energy � cancels this limitation [21]. Neglecting terms of
the order of � r0

�U
�4 the radius dependence of � is given by

 � � �0

�
1� r0

2 K2�2

�U
2�1� K2�

�
1�

4

�k�LU�
2

��
: (44)

In this case, the wavelengths � are independent of the
electron radius at the entrance of the undulator and all
particles radiate with the same wavelength

 � �
�U
2�2

0

�1� K2�: (45)

In the next step, we will discuss the possibility that the
radius dependence of the beam energy given in Eq. (44)
could be generated through the rf field of a TE mode. In
this case, one has to accommodate the rf cavity directly
before the undulator. The energy transfer from the rf field
to the electron beam is given by Eq. (17). Neglecting the
time dependence of the radius inside the cavity, the trans-
ferred energy is proportional to the square of the radius.
Then the comparison of Eqs. (17) and (41) allows finding
the condition, that the radius dependence on the FEL
wavelength is compensated by a TE mode with the axis
field B�z� and the frequency !:
 

!
Z 1
�1

B2�ct�ej2!t�j2�dt � 8
�
�0mc
�Ue

�
2 K2�2

1� K2

�

�
1�

4

�k�LU�2

�
: (46)

In this equation, the undulator parameters and the beam
energy determine the strength of the magnetic axis field
that is necessary to cancel the radius dependence of the
FEL wavelength. Introducing the maximum axis field Bmax

from Eq. (46) gives

 Bmax
T� � 0:0151
�0����

F
p

�U
m�

K���������������
1� K2
p

��������������������������
1�

4

�k�LU�
2

s
:

(47)

The parameter F�!� � !j
R
1
�1

B2�ct�
B2

max
	 ej2!tdtj 
 1:7 is di-

mensionless. F denote maximum with respect to !. This
value is nonsensitive to the special shape of B�z�=Bmax. We
have approximated this shape by the Gaussian function,
quadratic function 1� �z=L�2 (jzj< L), and by the axis
field of the pillbox cavity discussed in Sec. III. The value of
F remains to be within the limit 1:6<F < 1:7. Assuming
F � 1:7,K � 0:7 and neglecting the term 4

�k�LU�2
in the root

of Eq. (47), we obtain

 Bmax
T� � 0:006 64
�0

�U
m�
: (48)

For a superconducting cavity, 0.3 T is an achievable
value of Bmax. Then an undulator period of 10 cm leads
to �0 � 4:52 and a radiation wavelength � � 3:6 mm. The
calculation of the parameter F has been done for a single
cell cavity. In the general case, one has to multiply the
obtained value by the number of cavities. It can substan-
tially enhance the FEL performances for wavelengths � �
1 mm.

VII. CONCLUSION

In a special shaped cavity cell, where the Fourier trans-
form of the square of the axis B field is zero, the magnetic
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field of a TE mode is equivalent to the non-time-dependent
field of a static solenoid and can be used for the same
intentions, e.g., for the focusing of continuous beams.
Because of the distinction of its nonlinearities, the com-
pensation of spherical aberrations is possible. A new deri-
vation of rf resonance amplitudes provides the condition
for the occurrence of TE mode resonances and the self-
focusing of an electron beam. For large values of the
mentioned Fourier transform, the TE mode field is able
to cancel the radial acceptance limit of a helical FEL for a
wavelength in the THz region. A quadruple TE mode
should be able to overcome this limit also for planar
radiation and shorter wavelength.
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