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Colliders use final focus systems to reduce the transverse beam sizes at the interaction point in order to
increase collision event rates. The maximum focal strength (gradient) of the quadrupoles, and the
maximum beam size in them, together limit the beam size reduction that is possible. The goal of a final
focus system design is to find the best compromise between quadrupole aperture and quadrupole gradient,
for the magnet technology that is used. This paper develops a design method that identifies the intrinsic
limitations of a final focus system, validates the results of the method against realistic designs, and reports
its application to the upgrade of the Large Hadron Collider final focus.
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I. INTRODUCTION

Since the appearance of the alternating focusing theory
[1], there have been attempts to find systematic tools to
study the effect of multiplets of quadrupolar magnets on
the beam phase space. One application is the design of a
final focus system [2] able to squeeze the transverse size of
two particle beams in the interaction point (IP) of a collider
and thereby to increase the interaction rate.

Several papers and reports have been written on this
topic, see [3,4]. The results, albeit useful as calculation
tools for the analysis of a layout (in particular when the
computational resources were limited), are not suited for
the design process of a modern IR due to the complexity of
the formulas that relate the layout parameters with the
performance goals.

An approach, used in particular for a linear collider by
taking advantage of the symmetries in the layout and using
a thin lens approximation (e.g. [5,6] and more recently [7]),
allows one to optimize the chromatic and geometric aber-
rations by using nonlinear elements and to achieve very
small spot size, but leads to longer and more complex
structures compared to the ones involving only linear
elements. In circular colliders, this approach has not been
yet proved satisfactory due to space limitations, which
does not allow efficient layouts, and to a nonexact cancel-
lation of the aberrations, which limits the dynamic aperture
(see [8]).

In recent years, the SSC (see [9]), the LHC ( see [10]),
and its upgrade (see [11]) triggered several studies for
developing optimization tools for final focus systems.
The high energy of the particles poses immediately a limit
to the focusing capabilities of the superconducting magnets
due to the limited peak field that superconducting cables
can sustain. Those studies were therefore motivated by the
importance of understanding the performance limits
(namely smallest possible beam size at the IP, aberrations,
aperture margins) induced by a given magnet technology,
not only for estimating the potential limitations of colliders
but also as a feedback for the research in the magnet
technology (see [12-14]).
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These studies used several approximations (e.g. thin lens
approximation in [15,16]) and restricted the analysis to
some particular cases (e.g. coarse parameter scan for the
SSC in [17] or symmetric triplets for the LHC in
[15,16,18]) in order to decrease the complexity of the
equation and reduce the dimensionality of the parameter
space. On the other hand, this strategy exposes the studies
to the chance of missing the true optimum and does not
answer the question of what limitations are induced by a
magnet technology compared to the limitations of a given
layout. In fact, the thin lens approximation is not always
accurate and usually requires a refinement using the exact
thick lens theory that spoils the generality of the results. A
symmetric triplet is a layout that offers good performance
close (e.g. in the nominal LHC), but not in all possible
scenarios.

This article tries to overcome those limitations by in-
troducing a simplified layout involving only quadrupoles
whose performance (beam size at the IP, required
peak field, chromatic aberrations) can be explored
systematically.

The equations used here well approximate the exact
thick lens theory. In the case of round beams at the IP,
they allow one to relate the layout parameters to the
performance goals through a set of univariate functions
found numerically.

A similar set of functions has been found in [18] for a
symmetric triplet layout, but they are valid in a limited
region of parameters.

The layout provides performance close to the best pos-
sible for a given magnet technology for round beams.
Although the layout is not practical as is, a small variation
of parameters allows designing a realistic layout with
slightly lower performance.

The performance of the layout, being close to the best
possible for a given technology, allows one to link directly
the limitations of a magnet technology with the limitations
of a final focus system for round beams.

The optimization of a flat beam option is not covered by
this paper because it relies on implementation details (e.g.
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beam screen) and physical effects (e.g. beam-beam effects)
that are difficult to model in a general and scalable way.
Nevertheless, the strategy and the approximations pre-
sented here, being more general, could be used in such
cases as well.

Section II reviews the equations for the beam size.
Section III shows the approximation for the beam size
equations valid in a final focus system and used throughout
the article. Sections IV, V, and VI introduce simplified
assumptions on the focus system in order to present a
family of abstract layouts that is close to the requirements
for a final focus system and whose parameters are com-
pletely solvable in terms of the designs goals. Section VII
shows an application for triplets layout and finds the rela-
tion between a design goal (the peak beta function) and the
design parameters (8%, L*, k). Section VIII compares the
estimated given by the abstract layout with the actual
values of existing designs. Section IX shows an application
for an upgrade of the LHC interaction region identifying
the limitations of possible final focus systems induced by
the limits of the magnet technology.

II. EQUATION FOR THE BEAM SIZE

The purpose of a final focus system is to reduce the size
of the beam as much as possible at the IP, while leaving
free space for the detector.

In the paraxial approximation, the transverse coordi-
nates x and y of a particle in a pure quadrupole field follow
the Hill’s equation:

x"(s) + k(s)x(s) =0 (1)

y'(s) = k(s)y(s) =0, 2

where k is the quadrupole normalized gradient and the
derivative refers to the magnet longitudinal position s.
The change of the sign between the two planes shows
that a quadrupole, while it is focusing in one plane, is
defocusing in the other.

It is possible to determine the beam size of a monochro-
matic beam using the ansatz (see [1]):

x(s) = 421 B(s) cos[ u(s) + @], 3

where I and ¢ are the action and the initial phase of the
particle in one plane and B(s) and u(s) are functions which
follow the equations:

3B"(5)B(s) — 1B'(s)* + k(s)B(s)* = 1 (4)
s 1
So :8(5/)

The rms beam size o of a beam can therefore be ex-
pressed as:

ds’. 5)

uis) =

o =./eB, (6)

where & = (I) is the emittance of the beam equal to the
average action of the particles and B is the amplitude
function, called the beta function.

The same treatment is valid for the other transverse
plane y by inverting the sign of k.

III. APPROXIMATION FOR FINAL FOCUS
SYSTEMS

Starting from the IP, where $ is minimal, and propagat-
ing the beta function in a field-free region where k(s) = 0,
Egs. (4) and (5) have the solutions:

B = B @
wu(s) = arctan(%) (3)
SR ER I

where 8% = B(0) is the beta function at the IP.

If s is much bigger than 8%, the phase advance in this
region is approximately 7.

This allows one to approximate the function

w(s) = 4/B(s) (10)

for s > B* by the trajectory of a particle with initial phase
equal to 7 and initial conditions:

x'(0) = 1//B". (11)

The approximation continues to hold in the final focus
system provided that B(s) remains large with respect to the
s coordinate, so that the contributions to the integral in
Eq. (5) remain negligible.

In this approximation the equation for w(s) is the same
as for x(s); that is,

w'(s) + k(s)w(s) = 0. (12)

x(0)=0

The same result can be found noting that the exact
differential equation for w(s) is

w'(s) + k(s)w(s) — 31 =0, (13)
w(s)
which is derived in [1].

In Eq. (13), the term 1/w?® becomes negligible if k is
bigger than 1/w* or w? is larger than the length of the focus
system.

A solution of Eq. (12) for a positive and constant k(s) =
kis

Wo
Vk

and for a negative and constant k(s) = —k is

w(s) = wq cos(svk) + sin(svk) (14)
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/
w(s) = wg cosh(svk) + Yo sinh(svk), (15)
Vk
where w, and wj, are the initial conditions.

A first application of the approximation (12) allows one
to find the maximum g inside a focusing quadrupole. If the
approximation is valid and the maximum g in a quadru-
pole is not trivially located in one of the two extremities,
the solution of the system

w(s,) = w,, = wgcos(s,,Vk) + \M/)—% sin(s,vk)  (16)

w'(s,,) = 0 = —woVksin(s,,vk) + w(, cos(s,,Vk), (17)

which is equivalent to

W/ g
tan(s,Vk) = —2- = — (18)
WO\/E Bovk
\2 aZ
m=w3n=w2+<ﬂ)= +2% 9
B 0 \/—IE BO ﬁok ( )
gives the value (3, and the location s,, of the maximum g,
assuming that wy = /Bp and wj, = —a/wy are the initial

conditions at the beginning of the quadrupole.

An important property of systems described by a given
k(s) is that the solution of Eq. (12) for a given initial
condition is still a solution of the differential equation after
a rescaling of the type

w— aw, (20)

because Eq. (12) follows a linear homogeneous equation.
Therefore all the possible solutions of a given problem
depend only on one parameter w, = w(0)/w’(0). This
property can be used to scale the solutions for identical
systems whose initial conditions are linearly dependent.

IV. CONSTANT GRADIENT FINAL FOCUS
SYSTEM

It is possible to construct a simple layout for a final focus
which can be completely solved and is already close to an
optimal final focus in terms of minimum beam size for a
given peak field.

The layout consists of a piecewise constant gradient
which assumes only two values:

k(s) = kk, (21

where k is a positive number and k = =1 for a focusing
quadrupole and for a defocusing one, respectively. Figure 1
shows an example using three quadrupoles.

Using this assumption, it is possible to introduce a
function w(#) that depends on a normalized quantity 6
and is defined by the equations:

0 = svVk (22)

10
1.0
1 03
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0.5
16

= 0.0 3
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—1.0f
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0
0

FIG. 1. (Color) Point to parallel constant gradient triplet with
initial condition wy = 4, w;, = 1. The boxes represent the posi-
tion, length, and polarity of the quadrupoles. The curves show
w = /B as a function of the normalized longitudinal position
6 = s+/k. A scaling of the initial condition translates into scaling
w while keeping the same lengths for the quadrupoles (property
1). The solution remains unchanged if k — ak, § — 0/a, wj —
awy).

w(s) = w(8/Vk) = w(6). (23)
The function w(6) follows the differential equation
w'(8) + kw() = 0. (24)
B The solution can be written, respectively, for k=1and
k= —1, as

w(f) \ _ Wo

(v@) = xe () 2
w()\ _ wo

(o)) = 7O (5) 6)

where R(#) and H(0) are circular and hyperbolic rotations:

B _( cos(f) sin(6) (0 -1
R(6) = " = (— sin(0) cos(0)> I = (1 0 )
(27)
B _(cosh(@) sinh(0) (0 1
H(O) = e” = (sinh(a) cosh(a)> 5= (1 o)‘
(28)

Using these simple maps, it is possible to derive a
complete system of equations that are sufficient to find
the equations that allow one to find the maximum w and the
normalized lengths as a function of the initial and final
conditions (see [19]).
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V. SCALINGS FOR FINAL FOCUS SYSTEMS

The scaling properties of the constant gradient final
focus systems allow one to optimize one layout in normal-
ized quantities and scale the results all the parameters
involved. In particular, we are interested in final focus
systems that use efficiently the aperture of the quadrupoles
in order to limit the peak beta function in the quadrupoles,
which is a source of aberrations and sensitivity to errors,
and, at the same time, to limit the lengths of the quadrupole
because the particles at the edge of the beam will see the
maximum bending field.

It is possible to derive the constraints that allow one to
find the layout which minimizes the peak beta function and
the lengths of the quadrupoles. This information represents
also an intrinsic limit of the final focus system because all
the variation would imply larger beta and larger lengths.

The analysis that follows is limited to a final focus
system where the beta functions are equal in both plane
at IP (round beams). This is the case for the final focus
systems for hadron colliders like the LHC, the SSC,
TEVATRON, RHIC. The initial conditions depend on
only one parameter 8% and L* which is a beta function at
the IP and the distance of the first quadrupole of the focus
system from the IP.

They can be written for both planes as

L* 1

"0) = —. (29)
B R

Therefore if we use the initial conditions in normalized
coordinate

w(0) =

w(0) =wy=LVk  w(0) =1 (30)

and use Eq. (20), we can find the equations
s =— (€1))

which allow one to scale the quantities from normalized to
not normalized values.

VI. CONSTANT GRADIENT POINT TO PARALLEL
FOCUSING

It is now possible to introduce generalizing assumptions
on the layout of final focus systems in order to disclose the
intrinsic limitations by neglecting the practical aspects that
concern only specific cases.

We first assume that the final focus system is in charge
only of reducing the beam divergence to zero, thus the
conditions at the end of the last quadrupole are for both
planes w' = w' = Q.

In order to focus a round beam, it is necessary that the
focus system has equal focusing properties for both planes.
Only a set of quadrupoles larger than 3 exhibits this prop-
erties. The analysis can be carried out for multiplets of any
number of elements as shown in [19], but here we limit the

analysis to triplets, which have a more general interest
because they result in the shortest structures.

The final focus systems that minimize the beta function
in the quadrupoles are the ones for which the peaks of the
beta are the same. In this case both apertures are used
efficiently. For a triplet structure the number of peaks is
two, as Fig. 1 shows.

Another assumption is to put no gaps between quadru-
poles. The layout is not a practical final focus system as it
is, but a small variation of the parameters and the addition
of gaps between the quadrupoles allows it to become a
realistic final focus system at the cost of an increase of the
peak beta function.

The layouts that are compatibles with the mentioned
assumptions have the property to be at the border between
a focusing and a defocusing system while minimizing the
peak beta function.

VII. TRIPLET LAYOUT

A triplet layout uses three alternating gradient quadru-
poles. Figure 1 shows the triplet structure together with w,
and w, as a function of the longitudinal coordinate s.

For a triplet layout, the previous assumptions translate in
three constraints using the normalized lengths of the quad-
rupoles 6, 6,, 63 and the initial condition w, as free
parameters:

W = Wiz = AW + W) (32)
wii=0 (33)
Wiy =0, (34)

where w2, is proportional to the beta peak in the triplets and
Wy | _ Wo
(55 ) =oo('Y) >
W _
( o ) = e reHE)(") 66

(30) = RedHEIREN(P) 6D
x3

It is possible to use the constraints to eliminate the 6,
0,, 65 and write w,,, 81, 65, 05 as a function of w. Figure 2
shows the functions w,, (W), 8,(W), 8:(W), 85(Wg) com-
puted numerically.

For w,,(w,) it is possible to find a good fit:

W, (Wo) =2+ 1.11e %0 + yp,, (38)

which gives a smaller error of 1% for w, ranging from O to
50.
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10 ' . ' ' 20 The previous results show that the first quadrupole has
o Lile ™ 4o 118 always the smallest beam size. At the cost of a specialized
st 01 magnet with a smaller aperture and a larger gradient but

02 11.6
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FIG. 2. (Color) Solution for a triplet final focus system. The
figure shows the normalized lengths #; = [;+/k and the maxi-
mum w = /B as a function of the initial conditions parame-
trized according to w = L*/k, w' = 1. The solution can be
scaled to any B*, L*, k according to the equations shown in
the labeling of the axis. Values for the 6, 6,/2, 65 have similar
values, which is why is sometimes convenient to use quadrupoles
of the same length to reduce the complexity of the final focus
system at the cost of suboptimal performance.

Using Eq. (31), the maximum beta function for constant
gradient point to parallel final focus system is given by
2+ Llle LVk + L*/k)?

kB* '

The system can be extended to any multiplet. A quadru-
plet shows a slightly smaller peak of w but a larger overall
length as compared to the triplet solution. The quintuplet
shows no improvement in terms of beam size compared to
the previous solution, while increasing the number of
magnetic elements. A larger number of elements follow
this trend; the only effect is to progressively reduce the
difference between w, and w, which is in most of the case
an unwanted feature.

Bu(B*, L*, k) = (39)

TABLE I.

with the same pole field ( = wk), it is possible to push the
performance a bit further.

VIII. ESTIMATES FOR EXISTING DESIGNS

Colliders like RHIC, TEVATRON, SSC and the LHC
(see [10,20-22], respectively) use triplets as final focus
systems. Table I shows the parameters of their final focus
systems and justifies the hypothesis of the method pre-
sented in this paper.

The beat peaks of the existing designs are always larger
than the minimum peak given by Eq. (39) because of the
presence of gaps between the quadrupoles, the short focal
length [Eq. (39) assume infinite focal length for the triplet
assembly] and finally simplified structures.

The gaps are usually necessary to provide room for the
interconnections (can be long for superconducting mag-
nets) and corrector magnets. A short focal length is usually
required for matching the beam size in the final focus
system with the requirements of the rest of the machine
(e.g. arc cells). Simplified structures are used, for instance,
for reducing the number of magnet types in the final focus
system (usually two like in TEVATRON and the LHC as
opposed to three like in RHIC, SSC and the triplet pre-
sented in this paper) and recover the flexibility by adjusting
the gradient of the quadrupoles or the gap lengths between
the quadrupoles.

Nevertheless realistic structures present beta peaks close
to the minimum values which can be used as realistic and
good estimates without requiring a complete design.

IX. ESTIMATES FOR THE LHC UPGRADE

As soon as the LHC reaches its nominal performance,
the present triplet magnets will be close to their perform-
ance limit. An upgrade of the interaction region (IR)

Parameters of final focus systems in existing designs. The first four columns show 8%, L*, and the largest normalized

strengths for the real designs. The fifth column estimates the minimum beta peak in the triplet using Eq. (39). Real designs show
always larger values for the beta peak with respect to the minimum possible because of the gaps between the quadrupoles, short focal
lengths (the estimates assume infinite focal length for the triplet), and not optimized structures. The last columns show the quadrupoles
filling ratio using unadslkll/ > il and an equivalent minimum beta peak computed using the normalized gradient scaled with the
filling ratio in order to take into account the presence of gaps. Using the equivalent quadrupole strengths, the estimates are closer but
always smaller or equal to the actual values. Data justifies the assumption that constant gradient point to parallel focusing systems can
be used to estimate the properties of real final focus systems without the need of a complete design.

B* L* Maximum k B Minimum S, Filling Equivalent k& Equivalent 3,,
[m] [m] [m~?] [m] [m] ratio [m~?] [m]
LHC 0.550 22.96 0.008 72 4425 3809 0.782 0.006 82 4401
Scaled LHC 0.250 22.96 0.008 72 9733 8379 0.782 0.006 82 9683
RHIC 0.700 25.36 0.05773 1906 1622 0.649 0.03747 1824
SSC 0.500 20.00 0.003 34 8029 7357 0.927 0.003 10 7810
TEVATRON 0.355 7.62 0.04192 1108 966 0.872 0.03657 1062
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together with a better understanding of the machine will be
required for a further increase of the LHC performance
(see [12-14,23]).

Using the results from the previous chapter, we can
systematically explore the options for an upgrade using
the existing NbTi technology and the new Nb;Sn technol-
ogy. In the following, we will use the results of the previous
chapter together with some empirical estimates to draw a
region in the parameter space compatible with the technol-
ogy and operation limits of the LHC.

A. Focus limit

As shown previously, constant gradient gapless final
focus systems give a good estimate of the minimum beta
function that a final focus can achieve with a given quad-
rupole gradient and 8*.

We can use Eq. (39) and the curves in Fig. 2 for finding a
first guess to the parameters of the final focus system that
optimize the compactness and the beta peak.

Choosing a value for L* and B8* (e.g. L* = 23 m and
0.25 m for the case of the LHC upgrade), it is possible to
show (see Fig. 3) the region of the parameters gradient and
peak beta function for which a constant gradient triplet can
focus a round beam in both planes. In other words, from
this plot it is possible to estimate which is the minimum
gradient needed to design a final focusing system which
features a given peak of the beta function. In fact, the
necessary variations, for transforming the limit case in a
realistic design (i.e. positive focal length, gaps between
quadrupoles), have the effect of increasing the peak beta
function. Such an increase can be partially recovered by
optimizing the first quadrupole.

20000

15000 [

positive focal length
f 10000 infinite focal length
5 [m]
negative focal length 0.25
5000 |
L* =23m
0 X : Y :
0 100 200 300 400 500

gradient [T/m]

FIG. 3. Focus limit. The figure shows the region in the (maxi-
mum S, gradient) space, where it is possible to find a solution for
a triplet final focus system for the LHC given L* = 23 m and
B = 25 cm. The upper area indicates the parameters of a triplet
that can focus in both planes. The curve shows the minimal 8
peak for a constant gradient focus system as a function of the
gradient.

B. Aperture limit

The apertures of quadrupole magnets are limited by the
field gradient (see [24]). Aperture d and gradient g are
roughly related by

d=2-L, (40)

where B, is the magnetic field that saturates the iron yoke
(B, =2 T for iron) for normal conducting magnets or the
peak field in the coil compatible with the critical surface,
temperature, and current of the superconducting coils (e.g.
B, ~7.5 T for NbTi coils or B, ~ 12 T for Nb;Sn coils,
refined values can be found in [25]) for superconducting
magnets.

The aperture of the quadrupoles needs to be as large as
required by the size of the beam (or two beams as in the
LHC interaction region or TEVATRON). The aperture of
the beam can be given in terms of multiples of o and fixed
quantities that take into account the thickness of the items
in vacuum chambers (e.g. beam pipe, beam screen, cryo-
genic pipes) and tolerances. In the case of two beams
circulating in the same vacuum chamber, a separation
(usually given in multiples of o) is needed to reduce the
cross talks that distort the beam dynamics (beam beam
effect see [26]).

In the LHC the two beams must be separated by 100,
one from the other and from the walls of the vacuum
chamber. It is possible to give a crude estimate of the
required transverse mechanical aperture in the quadrupoles
including tolerances using

d>330 + 22 mm, 41

where d is the inner coil diameter, ¢ is the rms beam size,
and 22 mm is an empirical quantity which takes the me-
chanical tolerances of the magnet and the closed orbit, the
beam screen, and the beam pipe into account (see [27]).

Using the estimates for the maximum g in the triplet
Egs. (39), (6), and (40), and choosing a value for B, it is
possible to draw the lines that delimit the region of pa-
rameters compatible with a given magnet technology.

Figure 4 shows two lines (red) for different values of B,
compatible with NbTi and Nb;Sn, respectively. The region
below the red lines is compatible with the indicated peak
field because the beta peak and thus the beam size is
smaller than the aperture of the magnet.

C. Aberration limit

The aberrations reduce the size of the part of beam
which is stable after many turns. They are proportional to
some power of the beta function and may depend in a
nontrivial way on the field quality of the magnet. It is
difficult to find an empirical law which sets a limit for
the beta function and field quality. Experience shows that
for the LHC one reaches the limits for the chromaticity
correction with a beta function larger than 18 km in the
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Id at the beam size [T]
d

20000 T
75H 2

Aberration limit

15000

[m]

10000

o]

Na

5000 |

L*=23m NbTi

0 100 200 300 400 500
gradient [T /m]

FIG. 4. (Color) LHC upgrade. The figure shows the region in the
maximum (beta, gradient) space, where it is possible to find a
solution for a triplet final focus system for the LHC. The region
above the gray lines (focus limit) and below the red (aperture
limit) and blue (aberration limit) show the region of parameters
compatible with a given magnet technology (e.g. NbTi and
Nb;Sn) with a pole field of about 7.5 and 12 T. The points
represent some realistic upgrade layouts presented in [27] and
the nominal LHC.

final focus magnets and observes severe limitations on the
dynamic aperture (see [8,28]).
Figure 4 shows therefore a limiting line (blue) at 18 km.

D. Parameter space

All previous estimates define the region in the parameter
space for a realistic final focus (regions above the black
lines and below the blue and red lines in Fig. 4). Figure 4
shows in addition the matched optics presented in [27] and
the nominal optics. One can see how their parameters fit
the ones predicted by the method although the matched
optics does not strictly use the same layout. Figure 4 shows
that keeping the same layout for the triplet requires a
magnet with a larger peak field (e.g. using Nb;Sn coils),
but layouts compatible with the nominal technology exist
and require smaller gradients than the nominal layout.

X. CONCLUSIONS

A constant gradient point to parallel final focus is a
simple model whose parameters can be found for any
initial conditions through a set of functions of one parame-
ter. These functions are the solutions of a system of equa-
tions that can be solved numerically and can be used as a
design tool.

The approximation and properties stated so far are al-
ways valid for a final focus system and allow one to write
simpler conditions compared to the exact theory.

A realistic implementation of the layouts can be derived
including the necessary gaps between the quadrupoles.

This will change the layout parameters and increases the
maximum beta, total length, and chromaticity. As long as
the gap lengths are smaller than the magnet lengths, the
effect is small if the integrated strengths are kept constant.
A comparison between the estimates and existing designs
shows agreement and justifies the assumptions.

The method and the results can be used for exploring
systematically the expected performance of a final focus
system for which the pole field of the magnet is one of the
limitations. In addition, the method determines the layout
parameter such as length, position, and gradient of the
magnets.

The analysis was concluded for the case of the LHC in
the framework of the LHC IR upgrade studies. The con-
ditions for an effective final focus system are combined
with the constraints coming from the magnet technology
and the LHC machine parameters. The results show the set
of layout parameters compatible with the NbTi or Nb3;Sn
technology and the expected performance. The predictions
are compared with several realistic designs showing a good
agreement with the analysis.
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