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The traditional process of designing and tuning the magnetic lattice of a particle storage ring lattice to
produce certain desired properties is not straightforward. Often solutions are found through trial and error
and it is not clear that the solutions are close to optimal. This can be a very unsatisfying process. In this
paper we take a step back and look at the general stability limits of the lattice. We employ a technique we
call GLASS (GLobal scan of All Stable Settings) that allows us to rapidly scan and find all possible stable
modes and then characterize their associated properties. In this paper we illustrate how the GLASS
technique gives a global and comprehensive vision of the capabilities of the lattice. In a sense, GLASS
functions as a lattice observatory clearly displaying all possibilities. The power of the GLASS technique is
that it is fast and comprehensive. There is no fitting involved. It gives the lattice designer clear guidance as
to where to look for interesting operational points. We demonstrate the technique by applying it to two
existing storage ring lattices—the triple bend achromat of the Advanced Light Source and the double
bend achromat of CAMD. We show that, using GLASS, we have uncovered many interesting and in some
cases previously unknown stability regions.
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I. INTRODUCTION

Assume that one has a storage ring and wants to adjust
the lattice settings to obtain certain properties or a combi-
nation of properties such as low emittance, small momen-
tum compaction, high brightness, small beam size, etc.
Finding settings that will provide the desired properties is
not straightforward and can be a very difficult. It is in fact
much more difficult than the inverse problem where the
optical elements are given and one is asked to compute the
resulting properties of the beam. Going from the properties
and finding the settings is a nonlinear problem with many
local minima.

In many ways finding a solution is an art which is aided
by the instincts and experience of the practitioner.
Traditionally, the approach is to first find a stable solution
(often by trial and error) that roughly meets the desired
properties and then to locally optimize around it. This
traditional approach has several weaknesses. In particular,
the process can be slow and does not guarantee that one has
obtained an optimal solution.

What is desirable is to be able to obtain a global under-
standing or view of the lattice to rapidly guide one towards
optimal solutions. For very simple lattices such as a focus/
defocus cell, it is possible to analytically determine the
entire linear stability region—the so-called necktie dia-
gram [1]. For somewhat more complicated lattices, scans
of quadrupole settings have been done to help get a wide-
ranging feel for the different stability regions [2,3]. With
the increase in computer speed, global scans have become
more practical. In this paper we extend this idea of per-
forming wide scans and present a technique that we have

developed that rapidly identifies stable regions, computes
lattice properties, and provides a global view of the lattice.
This technique takes the guesswork out of the optimization
process, making it more transparent and efficient.

Having a method of gaining a global understanding of a
lattice is useful and can significantly guide the lattice
designer. The technique that we use to search for different
operational modes is straightforward and powerful. Yet, to
our knowledge, this approach has not been fully exploited
before.

II. GLASS TECHNIQUE

In this approach, instead of trying to fit the lattice to find
specific properties, we follow the steps: (i) Scan ALL
possible quadrupole settings; (ii) find ALL stable settings;
(iii) compute properties of ALL stable settings; (iv) filter
by property those settings that may be of interest.

At the end of the process one has a database with all
possible solutions and associated properties. Then, by
querying the database against certain properties, it is pos-
sible to find any and all lattice settings that satisfy the
properties. In addition, the data can be viewed such as to
give a global understanding of the lattice. We call this
technique GLobal scan of All Stable Settings or GLASS.

At first, it seems impractical to scan all possible lattice
settings. In fact for relatively simple lattices, it is not only
possible but also practical. We illustrate this with two
examples: (1) the Advanced Light Source (ALS) which
has a triple bend (TBA) achromat structure and (2) the
CAMD Light Source which has a double bend (DBA)
structure. Both of the examples that were chosen are
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representative of TBA and DBA lattice structures that are
amongst the most common lattice structures used in stor-
age ring lattices. This analysis could just as easily have
been performed on other lattice structures such as a theo-
retical minimum emittance lattice and other more complex
lattice structures. This will be discussed later in the paper.

A. Example 1—Triple bend achromat of the ALS

The entire ALS storage ring consists of 12 sectors. Each
sector is a simple triple bend achromat (TBA) structure.
The TBA structure is used in other storage rings such as the
Swiss Light Source, the Pohang Light Source, the Taiwan
Light Source, and others. The ALS lattice, in particular,
has been well studied over many years. Figure 1 shows the
layout of the ALS sector and the lattice functions in the
nominal operational mode. The basic ALS sector is a
mirror symmetric structure consisting of 3 families of
quadruples—QF, QD, and QFA. The present setting of
the ALS sector nominally operates at tunes ��x; �y� �
�1:19; 0:77� and � � 0:06 �m� (dispersion at the center of
the long straight sections) and at a nominal energy of
1.9 GeV.

Besides the nominal mode, the lattice has been operated
for users in a few other modes—zero dispersion in the
straights and at a vertical tune of 8.2 where the vertical
�-function is larger (4 m compared with 2.5 m in the center
of the straights). In special operation shifts, the lattice has
also been operated in a large emittance zero momentum
compaction mode. Recent theoretical studies have shown
that it is possible to significantly reduce the emittance from
the present operational mode [4].

Are there other interesting operational modes that can be
supported by this lattice? For instance, could one operate

with a lattice with a small emittance and a small�-function
in the straights? Or are there modes that have both a small
emittance and a small momentum compaction factor? We
have applied GLASS to see how these questions can be
answered.

1. Finding the ALS stable regions

The first step in the GLASS process is to scan the
quadrupole families over a wide range. For all 3 quadru-
pole families, the magnet strengths kQF, kQD, and kQFA are
each scanned over 1000 settings ranging between k �
�10 m�2 and 10 m�2. This large range covers the full
operational capabilities of the ALS power supplies. All
together, there are 1� 109 combinations scanned. For
each of these combinations, the 4D linear transfer matrix
is computed and determined to be stable [5], by requiring
the trace of the 4� 4 transfer matrix in both the horizontal
and vertical planes to be less than 2. The computation was
done using the code COSY [6] but can be done quickly using
any other matrix multiplication code. The total time to scan
all possible settings is less than one day on a 64 bit Linux
box. This process is a little time consuming but only needs
to be done once.

Of the billion initial combinations, approximately half a
million were stable. Each stable setting is recorded and
plotted in Fig. 2. As seen in Fig. 2, the stable points tend to
group in different regions. There are many (> 13) distinct
regions where stable solutions exist. We have enumerated
several different stable regions in Fig. 2. The nominal ALS
lattice setting resides in region 1.

Already, by performing this first step in GLASS of
finding the linear stable solutions, we are seeing something
interesting. First, there are many stable regions—many of
which were not previously known. Before doing the scan,
we had known about and operated the ring in only two
regions—regions 1 and 10 in Fig. 2. Second, the space of
stable solutions is sparse (< 1=1000) so without doing a
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FIG. 1. (Color) Lattice of one of 12 ALS sectors and associated
lattice functions (�x, �y, and �x) in the nominal operational
mode starting from the center of one straight section and going to
the center of the following straight section.

FIG. 2. (Color) All linear stable solutions in k-space for one of
the 12 ALS TBA sectors.
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scan it would be difficult to locate them. Most of these
regions are far from any that had been previously explored
or even known about.

It is important to note that the constraint of linear
stability is a necessary but not sufficient condition for
operation of storage ring. Not all lattices found are feasible.
Other considerations such as large amplitude and energy
stability (i.e. dynamic aperture) need to be considered. The
GLASS results contain all possible practical results as well
as some impractical results.

2. Computing the properties of all stable settings

The next step in the GLASS process is to compute
relevant properties for each of these stable settings. For
instance, one can compute the tunes, momentum compac-
tion, emittance, dispersion, beam sizes at the source points,
etc. [7]—whatever may be of interest. This takes very little
time (minutes). After this is completed we have a global
database containing each of the linear stable settings and
associated properties.

From this data, one can now query the database against
different properties. For instance, one can search for all
solutions where the emittance is small. Or one can look for
all solutions where the momentum compaction is small.
This requires no fitting or guess work. All possible solu-
tions are found.

Querying the database for multiple properties is effec-
tive for rapidly locating optimal solutions to a broad set of
questions. For instance, one could search for all lattices
that have a low emittance and a small horizontal
�-function in the straights, and a large vertical
�-function in the arcs, etc. The result is fast and compre-
hensive. In fact, the ability to query the database solves the
difficult inverse optical problem of finding the settings that
will generate certain desired properties. Now we will illus-
trate the usefulness of the technique using two examples—
lattices with small emittance and lattices with small mo-
mentum compaction factor. We could just as easily have
chosen other examples.

Low emittance solutions.—Emittance is an important
parameter because photon brightness depends inversely
upon its value. In Fig. 3 we plot the emittance for each
stable lattice setting. The emittances range over 5 orders
of magnitude from a few nm rad to about 0.1 mm rad.
One sees that several regions support low emittance
(< 10 nm rad. The current operating region, region 1,
supports small emittance but so do other regions—regions
2, 3, 4, 5, 7, 8, and 10. Even though all these lattices share
the property of small emittance, some of their other prop-
erties are very different which may have some potential
advantages over region 1. We will come back to the
uniqueness of the different solutions later. We shall now
consider another property, namely, the momentum com-
paction factor.

Small momentum compaction factor solutions.—The
momentum compaction factor is an important quantity

because the bunch length and longitudinal bunch shape
depend upon its value. As with the previous example, we
plot the momentum compaction of stable solutions in
Fig. 4. For an ALS lattice the values of the momentum
compaction factor can be positive or negative and range
from �0:004 to 0.008. The nominal ALS lattice momen-
tum compaction is 0.001 37. There are lattices in 3 regions
that support small momentum compaction values—re-
gions 2, 4, and 10. In fact, in region 10 there are two small
momentum compaction areas. Discovering all these differ-
ent regions was a surprise. Previously we had known of
only one of these regions—one of the two areas in region
10.

Even though each of these lattices shares the property of
small momentum compaction, some of their other proper-
ties are rather different. For instance, some have small
emittance while others have large.

FIG. 3. (Color) Emittance of all linear stable solutions in plotted
k-space for one of the 12 ALS TBA sectors.

FIG. 4. (Color) Momentum compaction of all linear stable so-
lutions in plotted k-space for one of the 12 ALS TBA sectors.
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3. Improved global understanding

We have now shown through GLASS how it is very easy
to find all possible solutions that have specific properties.
Next we will use GLASS to illustrate the characteristics of
the different solutions.

Separation by betatron tune.—We can use the computed
properties to try to further understand the stability regions.
In Fig. 5 the betatron tunes of all stable lattices are plotted.
As seen in the figure there are stable solutions covering a
large range per sector—from 0.5 to 2 horizontally and 0 to
2 vertically. The nominal tune of the ALS sector is (1.19,
0.77).

The tune space can be separated into regions that are
0:5� 0:5 wide. Looking at Fig. 5, there are 8 half-integer-
square regions in tune space where there are solutions.
Each of these 0:5� 0:5 regions has been plotted in a
different color. The colors will be used to connect the
different regions in tune space with the different regions
in k-space. The color scheme in Fig. 5 is then mapped back
into k-space in Fig. 6. In Fig. 7 the same k-space data is
shown from two different perspectives—projecting on kQF

and kQD plane (left) and projecting on the kQF and kQFA

plane (right).
It can be seen that the distinct regions in Figs. 5 and 6

can be separated by tune. Sometimes two regions in
k-space have the same tune. For instance, the 4 tune
regions spanning horizontal tunes of 0.5 to 2 and vertical
tunes of 0 to 2 (yellow, green, blue, and magenta regions)
cover 8 regions in k-space. Figure 6 shows a doubling of
the number of solutions corresponding to switching the
polarity of the QF=QD doublet. The nominal lattice of the
ALS has kQF positive and kQD negative, which is in the
yellow region in tune space and in region 1 in k-space.

4. Properties of some of the ALS regions

From the earlier discussions, it is known that regions 1,
2, 3, and 4 can support low emittance. Also, regions 2 and 4
can support small momentum compaction. An examination
of the Twiss and dispersion functions leads to a better
understanding of these four regions.

Low emittance solutions.—An example of a stable so-
lution in each of these four regions is shown in Fig. 8, and
in Table I we provide some data on each. As seen in these
figures there are distinct qualitative differences in the
Twiss and dispersion functions. The horizontal
�-functions are very similar for regions 1 and 3 with large
values in the center of the straight section, whereas in
regions 2 and 4 the horizontal �-functions in the center
of the straight are smaller. The lower horizontal �-function
generates the higher horizontal tunes of regions 2 and 4. On
the other hand, the vertical �-functions are similar in
regions 1 and 2 with a small value in the central bend,
whereas in regions 3 and 4 the vertical �-function is large
in the central bend. Again this small �-function in the
central bend produces the larger vertical tunes in regions 1
and 2. Each of these solutions is different. This illustrates
that, depending on the beam size or divergence required in
the straights or arcs, this analysis would identify the opti-
mal regions.

Figure 8 also shows that the dispersion function is differ-
ent in regions 2 and 4 compared with regions 1 and 3. In 2
and 4 the dispersion function is slightly negative in the
outer bends where it is positive in regions 1 and 3. This
negative dispersion function makes it possible to adjust the
momentum compaction to small or even negative values in
regions 2 and 4 but not in regions 1 and 3. The possibility of
operating the ALS in a low emittance, low momentum
compaction optics mode is attractive. In the future we
will investigate the feasibility of operation in these regions.

Two very different regions.—An examination of the
black region—region 10—is interesting. One feature of

FIG. 5. (Color) All stable solutions plotted in tune space for one
of the 12 ALS TBA sectors. Note the nominal ALS sector tune is
(1.19, 0.77). Each of the half-integer-square regions in tune
space is given a distinct color.

FIG. 6. (Color) The color mapping scheme in Fig. 5 is mapped
into k-space for one of the 12 ALS TBA sectors.

ROBIN, WAN, SANNIBALE, AND SULLER Phys. Rev. ST Accel. Beams 11, 024002 (2008)

024002-4



FIG. 8. (Color) A lattice of one of 12 ALS sectors and associated lattice functions in region 1 (top left), region 2 (top right), region 3
(bottom left), and region 4 (bottom right).

(a) (b)

FIG. 7. (Color) k-space data shown in Fig. 7 is shown from two different perspectives—projecting on the kQF and kQD axis (left) and
projecting on the kQF and kQFA axis (right).
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some lattices in this region is that it is also possible to
operate with a low or even negative momentum compac-
tion. This was previously known [8]. As one can see from
the sector plotted in Fig. 9, it is very different from the low
momentum compaction lattices in regions 2 and 4 (see
Fig. 8). In region 10 the dispersion is positive in the outer
bends and negative in the inner one.

The GLASS analysis also revealed some very curious
effects about region 10. One such curiosity is that in the
black region it is possible to turn off either the QFA or both
the QF and QD magnets and still be stable! This can be
seen in Fig. 7. This fact is probably of little practical
interest but is nevertheless a interesting and counterintui-
tive result.

The final lattice that we show for the ALS is a lattice in
region 9 whose functions are shown in Fig. 10. This is also
a stable region that was previously unknown. It has very
small tunes in each plane and the lattice functions are
rather different from other regions that have been pre-
sented. The �-functions and dispersion look very different
from those presented before. It is a region with reasonably
large emittance (see Fig. 3) but might be of interest for
some applications. The purpose of showing this region is to
illustrate that the lattice has a lot of flexibility and diversity

in the settings that it can support. One can continue the
analysis for the other regions.

B. Example 2—double bend achromat of CAMD

Now we will briefly show some results from a different
lattice structure—the double bend achromat structure of
the CAMD Light Source at Louisiana State University.

Similar to the TBA, the DBA is another common lattice
structure that is used in many machines. Here we take one
example—that of CAMD—and apply the GLASS tech-
nique to it.

The CAMD lattice consists of 4 double bend achromat
sectors. In Fig. 11 we show the structure and Twiss pa-
rameters [9] for one of those sectors. As seen in Fig. 11, the

FIG. 9. (Color) Lattice of one of 12 ALS TBA sectors and
associated lattice functions in region 10.

TABLE I. Lattice parameters for displayed ALS lattices.

Region
kQF

[m�2]
kQD

[m�2]
kQFA

[m�2] �x �y

"x
[m rad� 10�9]

1 2.48 �2:56 3.02 1.362 0.686 4
2 3.2 �3:08 3.18 1.686 0.693 3
3 2.32 �1:44 2.98 1.338 0.398 5
4 3 �1:84 3.12 1.644 0.266 3
9 �0:40 3.12 2.08 0.954 0.399 99
10 2.08 �1:60 1.18 0.594 0.737 190

FIG. 10. (Color) Lattice of one of 12 ALS TBA sectors and
associated lattice functions in region 9.

FIG. 11. (Color) Lattice of one of 4 CAMD sectors and asso-
ciated lattice functions in a nominal operational mode starting
from the center of one straight section and going to the center of
the following straight section.
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structure consists of 2 dipoles, and three quadrupoles—QF,
QD, and QA. For these settings shown in Fig. 11, the
CAMD sector operates as an achromat, with tunes
��x; �y� � �0:811; 0:291� and dispersion at the center of
the long straight sections, � � 0:0 �m�.

For all 3 quadrupole families, the magnet strengths kQF,
kQD, and kQA are each scanned over 500 settings ranging
between k � �5 m�2 and 5 m�2. As in the previous ex-
ample, we found that it was instructive to look at the results
in tune space. The results are plotted in Fig. 12 where the
different half integer regions are plotted in color (similar to
Fig. 5 for the ALS TBA sector). As in Fig. 5 we see that
there are several half-integer-square regions that contain

stable solutions. They are somewhat different from those
for the ALS TBA.

In a similar manner to what was done for the TBA lattice
(see Fig. 6), in Fig. 13 we plot the stable solutions in
k-space in color. The color mapping is determined by the
tune space as plotted in Fig. 12. There are approximately
12 distinct regions of stability in k-space but the shape and
locations of the regions are much different than for the
ALS TBA lattice. In Fig. 14 the same k-space data is shown
from two different perspectives—projecting on the kQF

and kQD plane (left) and projecting on the kQF and kQA

plane (right).

1. Low emittance solutions

Consider the low emittance regions for CAMD operat-
ing at the energy of 1.3 GeV. In Fig. 15 we plot the
emittance for each stable setting. The emittance ranges
over 3 orders of magnitude from about 46 nm rad to about
0.1 mm rad. One sees that several regions support low
emittance (< 100 nm rad) lattices. The current operating
region 3, supports small emittance, but so do other re-
gions—regions 1, 2, 3, 4, and 7. As was seen for the
case of the ALS TBA (Fig. 8), there are large differences
in the shape of the lattice functions for the different
regions.

In particular, consider solutions that are both low emit-
tance and achromatic (� � 0 m in the long straight sec-
tion). In Fig. 16 we plot one lattice in each of the four low
emittance regions (1, 2, 3, 4) for CAMD. In Table II we
provide some data on each lattice. As seen in Fig. 16 and
Table II, there are distinct qualitative differences in the
Twiss and dispersion functions. The horizontal�-functions
are very similar for regions 1 and 3 with large horizontal
�-functions in the center of the straight section, whereas in
regions 2 and 4 the horizontal �-functions in the center of
the straight are smaller. The lower horizontal �-function
produces higher horizontal tunes in regions 2 and 4. On the
other hand, the vertical �-functions are similar in regions 1
and 2 with a small vertical �-function in the straight
section (and also in the central quadrupole), whereas in
regions 3 and 4 the vertical �-function is larger in the
straight sections (as well as in the central quadrupole).
Again this small �-function in the straight section results
in larger vertical tunes in regions 1 and 2. This illustrates
that, depending on what beam size or divergence one
would like in the straights or arcs, this analysis would
help to guide one to the optimal regions. In fact CAMD
is preparing to move the nominal operating region from
one in region 3 to one in region 1. The reason for the
change is to operate with a reduced vertical �-function in
the straight section to minimize the impact of a proposed
high field multipole wiggler [10]. It should be noted that
this new working point was discovered by the GLASS
technique.

FIG. 13. (Color) The color mapping scheme in Fig. 12 is
mapped into k-space.

FIG. 12. (Color) Using different colors to illustrate how the
different regions in tune space for one of the four CAMD
DBA sectors correspond with the different regions in k-space.
Each of the 0:5� 0:5 regions in tune space is given a distinct
color.
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Finally, we present a solution from region 7 in Fig. 17
and in Table II. In this region the polarity of QF and QD
quadrupoles is reversed. We see that in this region we have
a very small vertical �-function in the straight and a larger
horizontal �-function in the straight. The actual values of
the �-functions get somewhat large and probably make it
impractical for operation but the shape is interesting and
has many of the qualitative features that one might like for
a low emittance lattice—this analysis for low emittance
lattices is just an illustration of how one could use GLASS.

III. EXTENSION OF GLASS

The GLASS analysis is general and can be extended to
more than 3 parameters. This is desirable because many

storage ring lattices consist of more than 3 quadrupole
families. One could also consider extending the technique
for the investigation of nonlinear effects such as sextupole
strengths, amplitude dependent tune-shifts, and so on. In
addition, it is possible to improve upon the data mining
process to obtain a better understanding of the optimal
tradeoffs. Below we discuss ways of how the GLASS
process can be extended.

A. Increasing the number of parameters

An obvious concern when increasing the number of
scanned parameters is the increase in computing time.
There are several ways to deal with that. The brute force
was is to use more computing power or time. Also one
could easily imagine a somewhat simple minded approach
where several iterations are performed—the earlier itera-
tions using a large grid spacing to locate the stability
regions and then subsequent iterations to make finer step
sizes to more carefully map out the stability regions. This is
a simple extension.

In addition there are more sophisticated global search
methods, such as the so-called multiobjective evolutionary
algorithms, that are well suited to this type of problem.
Below we will briefly discuss what they are and how they
may be useful.

1. Multiobjective evolutionary algorithms

Multiobjective evolutionary algorithms, (MOEA) are
relatively new optimization algorithms, which have
achieved notable successes in finding global optimums
and tradeoffs for problems in science, commerce, and
engineering. MOEA do not use any gradient information
(no knowledge of the derivative of the objectives with

FIG. 15. (Color) Emittance of all linear stable solutions of one of
the four CAMD DBA sectors plotted in k-space.

FIG. 14. (Color) k-space data shown in Fig. 13 is shown from two different perspectives—projecting on the kQF and kQD axis (left)
and projecting on the kQF and kFA axis (right).
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respect to the parameters is required) and in many cases
mimic the natural selection process. They are robust, effi-
cient, and widely applicable in optimization problems and
work well for discretely continuous solutions (unconnected
sets). This is just the type of problem one faces in lattice
optimization where there are islands of stability. MOEA

work with a population of solutions at each iteration and
utilize stochastic and deterministic operators for the evo-
lution of the population. A successful application of such
algorithms in accelerator physics was toward the optimi-
zation of a high brightness dc gun photoinjector [11]. As a
result, MOEA are well suited to lattice optimization.
Below we present an overview of the most salient features
of these algorithms. For a more detailed description the
reader is referred to [12–14].

The general problem one wants to solve with MOEA is
to optimize one or more sets of objectives while satisfying
some constraints. In our case, the constraint could be linear
stability and the objectives the optimization of quantities
such as emittance, momentum compaction, �-functions,
and so on. There are many different evolutionary algo-
rithms but they typically go through the same process. One
begins with a large number of initial trial solutions. The

FIG. 16. (Color) A lattice of one of four CAMD DBA sectors and associated lattice functions in region 1 (top left), region 2 (top right),
region 3 (bottom left), and region 4 (bottom right).

TABLE II. Lattice parameters for displayed CAMD lattices.

Region
kQF

[m�2]
kQD

[m�2]
kQA

[m�2] �x �y

"x
[m rad� 10�9]

1 2.14 �2:12 2.68 0.795 0.544 300
2 4.62 �3:02 2.68 1.330 0.659 190
3 1.90 �1:46 2.68 0.814 0.294 290
4 4.42 �2:54 2.68 1.289 0.362 225
7 �4:78 4.94 2.68 1.133 0.822 195
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following steps are then performed for each iteration to
generate a new population: (1) selection, (2) crossing, and
(3) mutation. In the selection process the constraints and
objective functions are evaluated for the population. A
fitness value is assigned to each member of the population
based on a comparison relation. A selection operator is
then applied to create a mating pool of some fixed size with
a preference for solutions with better fitness. A determi-
nistic crossing operator then generates new offspring solu-
tions, and a stochastic mutating operator can be used to
diversify the population. If the process is done correctly,
the population of solutions moves towards the so-called
Pareto-Optimal set that contains all the ‘‘best’’ solutions,
trading between the different objectives of the optimization
problem. MOEA have proven to be very efficient from the
computing time point of view, allowing to optimize many
parameter-family problems where the use of a brute force
systematic-scan approach can be completely unthinkable
[11].

In our case, one could imagine using MOEA in the first
step of the GLASS process as a more efficient way of
locating and mapping the stable regions than a simple but
large grid search. But once the stable regions are found,
then one could populate them with points to create a
database of solutions readily accessible in a later time.
Or if one is primarily interested in understanding the trade-
offs of some specific objectives (say emittance versus
momentum compaction), then one could apply multivar-
iant evolutionary analysis to aid in the data mining process.
From the technical point of view, the success of GLASS is
based largely on the fast evaluation of the transfer matrices.
It is conceivable that we use the same tool for MOEA to
increase the speed of the optimization process. In the end,

MOEA and GLASS may be organically combined to form
a new tool of optimization.

IV. CONCLUSION

A newly extended technique GLASS allows one to see
all possible linear stable solutions and associated proper-
ties for a given simple lattice. It has been shown that, by
using GLASS, one can uncover many interesting and
previously unknown stability regions. In a sense, GLASS
functions as a lattice observatory clearly displaying all
possibilities. Already GLASS has located a superior op-
erational point for CAMD that will be used for operation in
the near future. GLASS is an example of a global analysis
technique which gives the lattice designer clear guidance
as to where to look for interesting operational points. The
technique is robust and global. The examples given were
for lattices with 3 parameters. Extension to more complex
lattices and improved data mining should be possible using
more sophisticated evolutionary algorithms.
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