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We have developed a novel method based on vector electromagnetic theory and Schelkunoff’s
principles, to calculate the spectral and angular distributions of transition radiation (TR) and diffraction
radiation (DR) produced by a charged particle interacting with an arbitrary metallic target. The vector
method predicts the polarization and spectral-angular distributions of the radiation at an arbitrary distance
from the source, i.e., in both the near and far fields, and in any direction of observation. The radiation
fields of TR and DR calculated with the commonly used scalar Huygens model are shown to be limiting
forms of those predicted by the vector theory and the regime of validity of the scalar theory is explicitly
shown. Calculations of TR and DR done using the vector model are compared to results available in the
literature for various limiting cases and for cases of more general interest. Our theory has important
applications to the design of TR and DR diagnostics, particularly those utilizing coherent TR and DR to
infer the longitudinal bunch size and shape. A new technique to determine the bunch length using the
angular distribution of coherent TR or DR is proposed.
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I. INTRODUCTION

Optical transition radiation (OTR) from metallic targets
is widely used for the measurement of transverse size,
divergence, and energy of electron and proton beams [1–
5]. Recently the use of diffraction radiation for similar
diagnostic purposes has been demonstrated [6–10]. Most
accelerators and beam radiation devices produce incoher-
ent transition radiation (TR) and diffraction radiation (DR),
e.g., at optical wavelengths which are usually much shorter
than the bunch dimensions. Incoherent TR has the interest-
ing property that, when the radiating foil is large, i.e., the
radiation parameter ��=2�� a the size of the radiator,
the angular distribution (AD) of the radiation is indepen-
dent of the frequency of the emitted photon out to the
plasma frequency of the radiating material. However,
when ��=2� � a, TR can be considered, by application
of Babinet’s principle [6,11], to be a form of diffraction
radiation and in this case the far field AD of the radiation is
frequency dependent even at frequencies much lower than
the plasma frequency. Similarly, in the case of DR from an
aperture, the AD is frequency dependent even when the
radiating surfaces can be considered to be large [11]. As a
result, for long wavelengths and/or at high energies, the far
field angular distributions of DR and TR are both functions
of the observed wavelength.

Coherent transition and diffraction radiation (CTR/
CDR) are produced at wavelengths near and longer than
the longitudinal bunch size. In the coherent regime, the
spectral-angular density of the radiation has the well-
known form:

 

d2Icoh

d!d�
�

d2Ie
d!d�

fN�N � 1�ST��T; k; ��SL��L;!�g; (1)

where the first term on the right-hand side (rhs) of the
equation is the single charge spectral-angular density, N is
the number of charges in the bunch, and ST and SL are the
transverse and longitudinal form factors of the bunch,
respectively. In most cases the transverse form factor ST ,
which depends on the transverse size and divergence of the
beam, is close to unity and it is the longitudinal form factor
SL that primarily determines the radiation production. This
term is the squared Fourier transform of the longitudinal
bunch distribution which, in principle, can be determined
from the frequency spectrum of the radiation, provided
some technique for retrieving the phases of the spectral
components can be developed.

The coherent spectrum can be measured directly [12] or
indirectly by means of autocorrelation interferometry
[13,14]. Radio frequency linacs commonly produce micro-
bunches with pulse durations (�t) in the picosecond re-
gime. In this case it is necessary to measure the spectrum in
the far-infrared to mm wave band. For shorter bunches
(�t� 300 fs), e.g., those produced by laser-plasma inter-
actions, the spectral content of the pulse extends to the THz
regime. Both CTR and CDR in these wavelength bands
have both been used to infer the longitudinal bunch size
and attempts have been made to determine the temporal
profile of the beam [14,15]. Because of the long wave-
lengths involved, the radiation factor �� can easily exceed
the size of the target used to generate the radiation even for
beams with low to moderate energies. In this case, the finite
size of the radiator introduces a frequency dependence into
the spectral-angular density of a single electron, i.e., the*Corresponding author: rfiorito@umd.edu
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first term on the rhs of Eq. (1). This must be taken into
account in order to correctly deduce the longitudinal bunch
form factor from the measured spectrum.

The effect of the finite size of the radiator and the finite
aperture of the detector or the transfer optics on the spec-
trum of CTR and CDR has been previously analyzed
[15,16]. The main effects are a low frequency cutoff in
the spectra of both TR and DR and, in the case of DR, an
additional high frequency cutoff produced by the aperture,
e.g., the slit width. Attempts to account for the low fre-
quency loss have been made with limited success (cf. [17]).

Additionally, in all previous studies of CTR and CDR
from finite targets with the exception of [15], the measure-
ments are assumed to be made in the far field or wave zone,
i.e., taken at R� �2�, a distance much larger than the
coherence length of the radiation. At long wavelengths, the
range of the actual measurements frequently violates this
condition, i.e., measurements are commonly made in the
near field or prewave zone. In the near field, the single
electron spectral-angular distribution has an additional
frequency dependence, which depends on the distance to
the source. This dependence must also be taken into ac-
count in the analysis of the spectral data.

Also, previous studies have considered only a few ideal
source/radiator shapes, i.e., circular or rectangular aper-
tures or foils (TR) and rectangular slits (DR) and the results
are only applicable to high beam energies and/or normal
incidence.

We call special attention to the case of off normal
incidence. In all other analyses of TR and DR, to our
knowledge, the inclination of the foil plays a minor role
in the evaluation of the radiation field (see, e.g., Ref. [6]).
This is the direct result of the approximation used in the
calculations, namely, that the electron’s fields, which are
considered to be the source fields on the radiator, are taken
to be purely transverse (i.e. radial) to the velocity of the
particle. The scalar transverse component of the field of the
electron is then integrated over the radiator surface
(Huygens scalar field formulation) and used to calculate
the radiation field at some distance from the source, either
directly [18] or through intervening apertures or optics
[19].

In this approximation, the longitudinal component of the
field, which is smaller than the transverse field by the
Lorentz factor �, is not taken into account. In addition,
the vector nature of the radiation field is obscured, in the
sense that the polarization of the radiation is, a priori,
assumed to follow that of the electron, i.e., the source field.
While these assumptions are approximately correct for
high energy beams and/or normal incidence, they are gen-
erally invalid. They are particularly inapplicable for low
energies and large inclination angles, large energies and
small inclination angles, and for small, (r 	 ��) and/or
asymmetric foils. In these cases, the transverse and longi-
tudinal components of the field of the electron are signifi-

cant and must be taken into account in order to correctly
predict the spectral-angular distribution and polarization of
the radiation.

In this paper we will develop a method based on elec-
tromagnetic theory which does not make any assumptions
about the nature of the source field or the radiation field.
The method can accurately calculate the spectral-angular
energy density of both DR and TR from an arbitrary
metallic target or an aperture of arbitrary shape, in both
the near and far fields, for any energy and inclination angle
of the radiator. Such an approach provides the correct
specular-angular distribution and polarization of the radia-
tion fields which are not properly calculated in theories
based on the scalar Huygens formulation. These results are
essential to the design of diagnostics based on TR and DR,
particularly those utilizing coherent TR and DR, to mea-
sure longitudinal bunch properties.

Our theoretical approach is based on Love’s field equiva-
lence theorem and one of Schelkunoff’s field equivalence
principles [20–22] which can be considered as the vector
electromagnetic generalizations of Huygens’s principle.
The model uses only the spectral Fourier transform of the
field of the electron, i.e., no spatial-wave number trans-
forms are taken. We have used this method to calculate the
angular distributions of TR and DR, i.e., for infinite and
finite screens in various limiting cases where the distribu-
tions are theoretically well known, as well as in more
general cases. We first show that the solutions for the far
field and near field (prewave zone) accurately match the
available theoretical calculations which use the scalar
Huygens theory in the regime where this approach is
applicable, i.e., high energy or normal incidence; second,
we give an estimate of accuracy of our method in the near
field zone; third, we theoretically compare the Huygens
scalar and the vector solutions and demonstrate when the
Huygens solution is valid; fourth, we apply the method to
calculate the AD to situations where the Huygens scalar
method is inapplicable; and finally, we show that it may be
possible to use the AD of coherent TR and DR to infer the
beam bunch length.

For completeness we mention a recent conference paper
[23] which calculates TR using a vector diffraction ap-
proach developed by [24]. The latter applies the principles
of Love and Schelkunoff to the diffraction of electromag-
netic waves. We note, however, that [23] is a very prelimi-
nary analysis and is valid only in the limit of high electron
energy. In comparison, our approach is complete, quite
general, and applies Schelkunoff’s principles in a unique
way to compute TR and DR from an arbitrary radiator.

II. THEORY

A. Coordinate systems

In this work we use Cartesian coordinates �x; y; z�, with
unity vector triad �i; j;k�; traditional spherical coordinates
�r; �; ’� with unity vector triad � ~er; ~e�; ~e’�, where
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x � r sin� cos’, y � r sin� sin’, z � r cos�; and cylindri-
cal coordinates ��;’; z�, � ~e�; ~e’; ~ez� with x � � cos’, y �
� sin’. We designate the �x; z� plane as the horizontal
plane and the plane, which is parallel to and free to rotate
around the y axis, as the vertical plane (see Fig. 1). We also
utilize additional spherical coordinates, similar to the
globe’s latitude and longitude ��h; �v� with unity vector
diad � ~eh; ~ev�, where �h is the angle of observation in the
horizontal plane which measured from the axis z to the axis
x (see Fig. 1) and �v is the observation angle in the vertical
plane measured from the horizontal plane �x; z� to the y
axis. We describe the distribution of the intensity of radia-
tion as a function of �h at given �v as a ‘‘horizontal scan,’’
and the distribution of intensity as a function of �v at given
�h as a ‘‘vertical scan.’’ In most of the cases described
below, we assume that an electron with velocity ~V ( ~� �
~V=c, where c is the speed of light in vacuum) is incident on

or emerges from the flat surface of an ideal conducting foil
at the point x � y � z � 0. The orientation of the surface
of the conductor is characterized by the unit normal vector
~nS.

B. Previous calculations of TR from an infinite
conducting screen

At normal incidence, when Vz � V, Vx � 0, Vy � 0,
and nSx � 0, nSy � 0, nSz � 1, the spectral-angular inten-
sity of transition radiation TR produced by the electron
(forward and backward TR) is given by the familiar form
[25]

 I � I� �
d2W
d!d�

�
e2�2

�2c

sin2�

�1� �2cos2��2
; (2)

where W is the radiated energy, d! is the frequency band,
d� � sin�d�d’ is the solid angle, e is the charge, and � is
the Lorentz factor. This radiation is symmetric about the z

axis and the radiation field has a component in the ~e�
direction ( ~E � E� ~e�) only. At sin2� � ��2��2 � ��2 �
1��1 the intensity has maximum Imax � e2�2=4�2c. We
use this value of the intensity as a normalization factor and
refer to it as a unit of normal TR (NTR).

In other calculations of TR from an inclined conducting
foil [26], the author has chosen a ‘‘tilted’’ trajectory angle
for the electron, i.e. Vx � V sin , Vy � 0, Vz � V cos ,
nSx � 0, nSy � 0, nSz � 1, and the distributions of parallel
and normal components of intensity are

 Ik �
e2�2

�2c

cos2 �sin�� � cos’ sin �2

B2 (3)

 I? �
e2�2

�2c

cos2 �� cos� sin’ sin �2

B2 ; (4)

where B � 
1� ��sin� cos’ sin � cos� cos �� � 
1�
��sin� cos’ sin  cos� cos ��. Here the parallel and
normal polarization are related to the plane of incidence,
i.e., the �x; z� plane as above. Horizontal and vertical
scans are calculated using the coordinate trans-
formations: cos� � cos�h cos�v, sin’ � sin�h= sin�,
cos’ � sin�h cos�v= sin�.

Equations (3) and (4) can also be derived from the well-
known formulas of Pafomov [27] which are written in
Cartesian coordinates �x; y; z�, where the direction of the
radiation is given by the unity vector �cos�x; cos�y; cos�z�.
Pafomov’s formulas can also be written in terms of the
angles �v, �h using the transformations: cos�x �
cos�v sin�h, cos�y � sin�h, cos�z � cos�v cos�h.

C. Method of images applied to inclined foils

Transition radiation produced by an electron incident on
or emerging from a tilted, flat, infinite perfect conductor
can be calculated accurately and straightforwardly using
the method of images. Traditionally, TR is described in
terms of radiation produced by the rapid stop or start of
electron and its image charge [28]. In our paper we apply
the image method to describe the production of TR from an
inclined infinite foil but we do not require the instanta-
neous deceleration and acceleration of the electron. In our
picture, the electron always moves forward with a constant
velocity. However, the electron’s positive image can
abruptly change its direction of propagation, i.e., it ‘‘boun-
ces’’ from the flat surfaces of the media (see Fig. 2).

There are three stages of interaction of the electron with
the conducting layer: (i) incidence of the electron on the
first vacuum-metal interface, (ii) motion of the electron
inside the conductor, and (iii) emergence of the electron
from the second interface. In the first stage, the image
charge moves in the direction of specular reflection with
respect to the electron’s direction. In the second stage, the
image moves with the electron in the same direction thus
nullifying the field of the electron. In the third stage, the

Sn

z
x

x

β

Ψ

x zk k+

hθ

0

foil

FIG. 1. Coordinate system used to calculate TR and DR from
an inclined foil.

VECTOR ELECTROMAGNETIC THEORY OF TRANSITION . . . Phys. Rev. ST Accel. Beams 11, 012801 (2008)

012801-3



image again moves in the direction of specular reflection
with respect to the electron’s direction. Since the velocity
of the electron is constant it does not radiate. Rather, it is
the image charge that radiates since its velocity changes
discontinuously, first from the specular to the forward
direction and then from the forward to the specular direc-
tion. In the Fraunhofer zone (far field), the radiation of a
charged particle that sharply changes its direction of propa-
gation is given by the well-known Bremsstrahlung formula
which, in the long wave approximation [29], is given by

 I �
d2W
d!d�

�
e2

4�2c

��������
~�2 � ~n

1� ~�2 � ~n
�

~�1 � ~n

1� ~�1 � ~n

��������
2
; (5)

where ~�1 � ~V1=c, ~�2 � ~V2=c and ~V1, ~V2 are the veloc-
ities of the image charge before and after the bounce. For
backward transition radiation (BTR) ~�1 � ~�� 2 ~nS� ~� �
~nS� and ~�2 � ~�. For forward transition radiation (FTR)
~�1 � ~� and ~�2 � ~�� 2 ~nS� ~� � ~nS�.

In the case of an electron moving parallel to the z axis
(Vx � 0, Vy � 0, Vz � V) and a foil tilted in the horizontal
plane (nSx � sin , nSy � 0, nSz � cos ), it follows from
Eq. (5) that the horizontal and vertical components of the
intensity of TR are given by

 Ih �
d2Wh

d!d�

�
e2�2

4�2c

�
sin��h � 2 �

1 � cos�v cos��h � 2 �


sin�h

1� � cos�v cos�h

�
2

(6)

 Iv �
d2Wv

d!d�

�
e2�2sin2�v

4�2c

�
cos��h � 2 �

1 � cos�v cos��h � 2 �


cos�h

1� � cos�v cos�h

�
2
; (7)

where Ih;v are the horizontal (parallel to ~eh) and vertical
(parallel to ~ev) polarization components. These equations
are useful if a polarizer is used in the experiment. Formulas
(5), and consequently (6) and (7), are the benchmark
solutions for TR from an infinite, flat metallic surface,
i.e., they will be used to verify other models and ap-
proaches, including the method we present below.

D. Vector theory for TR and DR from an arbitrary
conducting screen

Formulas (3)–(7) all describe both forward and back-
ward transition radiation from a perfectly reflecting, infi-
nite, flat, tilted foil observed in the Fraunhofer zone equally
well. However, if the radiator has structure (i.e. holes, finite
size, contours, etc.) with characteristic dimension L �
���=2� cos , then the radiation is different from TR
from a flat, infinite foil, and can be described as diffraction
radiation (DR) [3].

We now present a general vector approach to the calcu-
lation of DR for an arbitrarily shaped screen inclined at an
arbitrary angle with respect to the velocity vector of an
electron with arbitrary energy. Our goal is to produce a
theory which can serve as a benchmark for the calculation
of DR from a finite radiator, just as the image model
provides for TR from an infinite radiator. As above, we
first assume that the electron moves along axes z (Vz � V,
Vx � 0, Vy � 0). In cylindrical coordinates �, ’, z, the
Fourier components of the electric and magnetic fields of
an electron moving in vacuum are
 

~Ee��;’; z;!� �
e�
�V

�
~e�K1���� � ~ez

i
�
K0����

�
exp�ikez�

(8)

 

~B e��;’; z; !� � ~e’
�e�
�V

K1���� exp�ikez�; (9)

where K0���� and K1���� are the zero and first order
MacDonald functions, � � !=V� and ke � !=V.

In the Weissacker Williams approximation or the
method of virtual photons [29,30], the Fourier components
of the field of a relativistic electron are interpreted as plane
electromagnetic waves each with a purely radial (trans-
verse) electric field and a perpendicular, circular magnetic
field of the same magnitude. This is a good approximation
for high energy. However, in our model we assume that the
electron has an arbitrary energy. Hence, the Fourier com-
ponents of the fields of the electron are not purely trans-

e

ε = ∞

e+

FTR

BTR

e
e+

FIG. 2. (Color) Schematic of conducting foil, directions of the
incoming charge, the image charge, and directions of TR gen-
erated, using the method of images.
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verse and thus cannot be considered to be virtual photons in
the traditional sense. We can, nevertheless, refer to the
Fourier components of the field of an electron with arbi-
trary energy as waves with frequency ! and wave number
ke propagating along the axis z with phase velocity V, but
we note that these waves are not electromagnetic waves
because electric field has a longitudinal component Eez
which increases as the energy of the electron decreases.
Moreover, the ratio of the magnetic to the electric field of
these waves, Be’=Eer � �, decreases as the energy
decreases.

We now consider how one of these waves interacts with
a perfectly conducting boundary. The Cartesian compo-
nents of the electric field (8) are

 Eex �
e�
�V

K1���� cos’ exp�ikez� (10)

 Eey �
e�
�V

K1���� sin’ exp�ikez� (11)

 Eez � �
i
�
e�
�V

K0���� exp�ikez�: (12)

Assume that electron is incident on or emerges from the
surface of a perfect conductor and induces the radiation of
electromagnetic wave from the surface. The surface S can
have an arbitrary shape characterized by the unit vector
function ~nS�xS; yS; zS� which is locally normal to the sur-
face, at point �xS; yS; zS�, and is directed into the vacuum.
Since the fields inside the conductor are zero, the boundary
conditions for the tangential component of the fields on the
surface are given by

 ~n S � � ~Ee  ~ES� � 0 (13)

 ~n S � � ~Be  ~BS� �
4�
c
~je; (14)

where ~ES, ~BS are the fields of the radiated electromagnetic
wave and ~je is an induced surface electric current which
is necessary to satisfy the boundary condition. From
Eqs. (13) and (14), it follows that the tangential component
of the electric field of the radiated wave is exactly defined
by the electric field of the electron

 ~n S � ~ES � � ~nS � ~Ee; (15)

whereas the magnetic component

 ~n S � ~BS �
4�
c
~je � ~nS � ~Be (16)

has an uncertainty due to the uncertainty of the surface
current ~je. Note that the magnetic field of the radiated
electromagnetic wave is dictated by the electric field of
this wave rather than by the magnetic field of the electron,
~Be.

We assume that the radiated wave propagates from the
surface into a vacuum. On the surface the distribution of
the tangential component of the electric field of this wave
is given by (15), but the distribution of the tangential
component of the magnetic field is unknown because ~je
is not known. Fortunately, the radiation from a surface with
a known distribution of electric field but an unknown
distribution of magnetic field can be calculated using
Schelkunoff’s field equivalence principles. Here we follow
the formulation of the Love’s theorem and Schelkunoff’s
principles as given in [20].

According to Love’s field equivalence theorem, the fur-
ther propagation of the primary electromagnetic wave
which is incident on an imaginary surface is equivalent
to the termination of this wave on this surface and the
radiation of a secondary wave by a virtual surface magnetic
current given by

 

~j Vm �
c

4�
� ~nS � ~ES� (17)

and a virtual electric current given by

 

~j Ve �
c

4�
� ~nS � ~BS�: (18)

Both of these currents radiate downstream only. This for-
mulation solves the so-called ‘‘backward wave’’ problem
of Huygens’ scalar model which produces both forward
and backward radiation from an arbitrary surface.

Schelkunoff modified Love’s theorem by introducing
another virtual ideally reflecting surface adjacent to and
upstream of Love’s virtual electric and magnetic current
sheet. If the Schelkunoff surface is an ideal electric con-
ductor then the image electric current induced on this
surface is opposite to the virtual electric current ~jVe and
the total radiating electric current is zero. At the same time
the image magnetic current is equal to the virtual magnetic
current ~jVm and the total radiating magnetic current dou-
bles (see page 38 of [20]).

In practice this means that it is enough to know the
distribution of the electric field of the electromagnetic
wave on the surface in order to calculate the further propa-
gation of this wave.

We now apply Schelkunoff’s formulation directly to
calculate transition and diffraction radiation from perfectly
conducting surfaces. From Eq. (15), the source electric
field on the surface is just the negative of the electric field
of the electron whose components are given by Eqs. (10)–
(12). The radiating electric and magnetic fields are then
calculable in terms of the magnetic vector potential know-
ing the magnetic surface current ~jVm defined above in
Eq. (17). The vector potential and the radiation fields at
point ~R are then given by

 

~A �
2

c

Z
S

~jVm
exp�ikRS�

RS
dS (19)
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~E � ��r� ~A�; ~B �
i
k

r�r � ~A�  k2 ~A�; (20)

where RS � j ~R� ~rSj is the distance from dS to the point
~R, ~rS is the radius vector of dS, and ~ES is a complex vector

which includes the phase kez of the field of the electron.
In the far zone (RS � R! 1, 1=kR� 1), the expres-

sion (19) can be rewritten as

 

~A �
exp�ikR�

R
~A�; ~A� �

2

c

Z
S

~jVm exp�i ~k � ~rS�dS;

(21)

where ~A� is a slowly changing amplitude. Hence, Eq. (20)
can be reduced to

 

~E � �i� ~k� ~A�; ~B � k�1� ~k� ~E�; (22)

where ~k k ~R is the vector wave number. The electric field
multiplied by R is given by

 � ~ER� � �i� ~k� ~A�R � �i exp�ikR�� ~k� ~A�� (23)

and the polarization component normal to the observation
plane which is characterized by the normal unity vector ~nr
is

 � ~E?R� � ~nr
 ~nr � � ~ER��: (24)

The total and the polarization components of the spectral-
angular energy density of the radiation are given by

 I �
d2W
d!d�

� c� ~ER� � � ~ER��;

I? �
d2W?
d!d�

� c� ~E?R� � � ~E?R�
�; Ik � I � I?:

(25)

E. Quasispherical wave approximation

At a finite distance R the radiation fields and the
Poynting vector, which describes the energy flux, can be
calculated using (19) and (20). Here we immediately con-
front the practical problem that the computation involving
vector differential operators is very time consuming and
possibly inaccurate and unstable. However, in many cases
the distance to the observation point R is moderate in the
sense that the wave front is almost spherical, but the
angular distribution of intensity is very different from the
distribution at infinity (i.e. the far field distribution). In this
case, to simplify the calculations we can use expressions
(19) and (22) to calculate the radiation fields. Formula (19)
gives an exact solution for the magnetic vector potential
and formula (22) gives an approximate, quasispherical
solution for the fields. The question is how much does
the approximate solution (22) deviate from the exact one
(20). To answer this question we assume that R is large
enough so that the deviation of the approximate solution

from the exact solution is small. In this approximation
using (19) and (22) and

 

~E? � ~nr� ~nr � ~E�; (26)

the spectrum of the energy flux and of its polarization
components passing through the elementary area ds of a
sphere with radius R are given by

 J �
dW
d!ds

� c ~E � ~E�; J? � c ~E? � ~E
�
?;

Jk � J� J?:
(27)

Evidently the limit of solution (27) at R! 1 matches the
exact solution (25) when the substitution ds � R2d� is
made.

The deviation of the approximate solution (27) from the
unknown exact solution can be found by estimating the
terms neglected in (22) in comparison with (20). Using
local Cartesian coordinates �x̂; ŷ; ẑ� with (ẑ k ~R, ~k k ẑ) and
the origin at the observation point ~R, the approximate
components of the electric field (22) at the point ~R can
be presented as

 Ex̂ � ikAŷ; Eŷ � �ikAx̂; Eẑ � 0: (28)

Here Ax̂;ŷ;ẑ are the exact components of the vector potential
(19). These components can be presented in the form
Ax̂;ŷ;ẑ � ~Ax̂;ŷ;ẑ exp�ikR�, where ~Ax̂;ŷ;ẑ are slowly varying
functions of the coordinates. In this case the approximate
intensity can be written as

 J � c
jEx̂j
2  jEŷj

2� � k2c
j ~Ax̂j
2  j ~Aŷj

2�: (29)

At the same time taking into account that @=@ẑ � @=@R,
Eq. (20) yields the exact components of the field:
 

Ex̂ �
@Aẑ
@ŷ
�
@Aŷ
@ẑ
�

�
�ik~Aŷ 

@ ~Aẑ
@ŷ
�
@ ~Aŷ
@R

�
exp�ikR�

Eŷ �
@Ax̂
@ẑ
�
@Aẑ
@x̂
�

�
ik ~Ax̂ �

@ ~Aẑ
@x̂

@ ~Ax̂
@R

�
exp�ikR�

Eẑ �
@Aŷ
@x̂
�
@Ax̂
@ŷ
�

�@ ~Aŷ
@x̂
�
@ ~Ax̂
@ŷ

�
exp�ikR�: (30)

The exact intensity can be written as JE � c
jEx̂j
2 

jEŷj
2  jE ẑj

2� � J 	J. Using the complex number in-
equality �

P
ai� � �

P
ai�
� 	

P
�ai � a

�
i �, the deviation of the

approximate solution from the exact solution (30) can be
estimated:
 

	J 	 c
���������@

~Ax̂
@R

��������
2


��������
@ ~Aŷ
@R

��������
2


��������
@ ~Aŷ
@x̂

��������
2


��������@
~Ax̂
@ŷ

��������
2



��������@
~Aẑ
@x̂

��������
2


��������@
~Aẑ
@ŷ

��������
2
�
: (31)

A further approximation of 	J can be made by replacing
all components ~Ax;y;z with ~A � k�1c�1=2J1=2 � ~Ax;y;z [see
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Eq. (29)]. If we define the relative deviation D � 	J=J,
then the maximum estimate of D is

 Dmax �
1

2k2J2

��
@J
@R

�
2


�
@J
@x̂

�
2


�
@J
@ŷ

�
2
�
: (32)

Note that the first term in Eq. (32) is the estimate of the
terms �k�2R�2 which are neglected in the far zone ap-
proximation. Indeed, if J � J0R

�2 then the first term of
(32) is 2k�2R�2. The derivatives are estimated numerically
as

 @J=@R � 
J��h; �v; R 	R� � J��h; �v; R��=	R (33)

 �@J=@x̂� � R�1
J��h  	�h; �v; R� � J��h; �v; R��=	�h
(34)

 �@J=@ŷ� � R�1
J��h; �v  	�v; R� � J��h; �v; R��=	�v;

(35)

where �h, �v are the angular coordinates of observation
point and 	R, 	�h, 	�v are the small but finite variations of
the angular coordinates. The integral root-mean square
deviation (RMSD) is defined as

 RMSD �
�
���1

Z
��

D2
maxd�hd�v

�
1=2
; (36)

where �� is the solid angle of observation.
Depending on the wavelength observed, the position of a

detector used to measure the radiated energy can be in the
far field or in the near field zone. The estimate (36) is very
useful because it helps to estimate the error in the calcu-
lation of the distribution of radiation for a given detector
distance. In addition, a small value of the RMSD guaran-
tees that the detector is placed in a radiation zone which has
a well-established spherical or quasispherical wave front
and flux of energy.

F. Comparison of vector and scalar Huygens models

The Huygens principle is usually used in diffraction
problems to calculate the distortion of the intensity of a
ray at small deflection angles that is introduced by an
obstacle. It is assumed that the ray can be described as a
monochromatic scalar wave characterized by amplitude u0

and the wave vector ~k0. Assume that there is a surface S
which intersects the primary wave. According to the ‘‘sim-
ple’’ original formulation of the scalar Huygens principle
[31], the surface cancels the propagation of the primary
wave and the forward propagation of the wave is described
as a radiation of secondary waves from the surface. The
amplitude U of the secondary wave at the point ~R can be
found as

 U � �
ik
2�

Z
S
u0 cos�

exp�ikRS�
RS

dS; (37)

where u0 is a complex amplitude of the primary-source

field on the surface, cos� � k�1
0 � ~nS � ~k0�, and ~nS is a unity

vector normal to the surface. In the case of an electromag-
netic wave it is assumed as a ‘‘zero’’ approximation that
each field component of the primary wave produces the
corresponding field component of the secondary wave.

If the primary wave is the Fourier component of the field
of the electron moving along the z axis, then it is assumed
that the secondary radiation is produced by the field ad-
jacent to the solid part of the foil. The polarization com-
ponents of the intensity are assumed to be the intensities of
primary scalar waves produced by the corresponding po-
larized components u0 � ux � �Eex and u0 � uy �
�Eey of the electric field of the electron. In the virtual
photons approximation, the longitudinal component of the
field is entirely neglected, i.e., it is heuristically set equal to
zero: u0 � uz � �Eez � 0. Alternatively, if the magnetic
field is used, u0 � ux � �Bex and u0 � uy � �Bey and
the longitudinal component of the magnetic field of the
electron is zeroed, i.e. Bez � 0. The virtual photon ap-
proximation is usually identified with the scalar Huygens
model and we shall continue to refer to them in equivalent
terms.

The scalar Huygens model is attractive from a computa-
tional point of view. Unfortunately, there are limitations to
this model. First, it is not clear how to take into account the
longitudinal component of the electric field of the electron
and second how the polarization of the source field is
related to the polarization of the radiation field. These
limitations can be better understood if one compares the
fields derived by the scalar (37) and vector (19) and (22)
models.

We can rewrite the vector formula for the radiated
electric field as

 

~E � ~nS� ~k � ~F� � ~F� ~k � ~nS�; (38)

where Eez of the electron is included and where

 

~F � �
i

2�

Z
S

~ES
exp�ikRS�

RS
dS (39)

is of the same form as Eq. (37). From (38) it follows that in
the vector model each component of the radiation field is
composed of all of the components of the source field. In
contrast, i.e., in the scalar Huygens model, each component
of the source field produces the same corresponding com-
ponent of the radiating field. The question arises: Is there a
case when the scalar model reproduces the accurate vector
solution?

To answer this question, we compare the results of the
vector and scalar models for the cases of normal incidence
and inclined incidence on a flat infinite conductor in light
of Eqs. (38) and (39). At normal incidence ~nS � ~z the
components of the radiated field Ex;y;z calculated using
the vector model are given by
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 Ex � �Fxkz; Ey � �Fykz; Ez � kxFx  kyFy:

(40)

It is immediately obvious that the corresponding compo-
nents of the electric field calculated from the scalar model
(cf. Eq. (37)) do not match those of the vector model. Also
it is clear from (39) and (40) that the component ESz does
not participate in radiation, thus making it reasonable to
zero the longitudinal field as is done in scalar Huygens
model. The intensity JV of the radiation computed from
vector model can be written as

 JV � JS � c�Fxky � Fykx�
2; (41)

where

 JS � ck2jFxj2  ck2jFyj2 (42)

is the intensity produced by the scalar approach. Thus the
scalar intensity differs from the vector intensity by the term
�JVS � c�Fxky � Fykx�

2. Note that this term equals zero
in the case of an azimuthally symmetric field with an
arbitrary radial distribution, a purely radial polarization
and centroid on the ~z axis (the direction of the incident
particle). This is the case of TR or DR from an azimuthally
symmetric target such as a disk with a concentric circular
hole and/or circular annuli. Thus, if the calculation of the
spectral-angular distribution of TR or DR is done based on
the electric field of particle, then the intensity calculated
from the scalar model exactly equals that of the vector
model at all observation angles and all energies of the
electron. In this case, however, there is a problem with
determining the polarization ( ~E is not normal to ~k). On the
other hand, if the magnetic field is used to calculate the
intensity using the scalar model, then there is no problem
with the polarization ( ~E ? ~k), but the intensity has to be
heuristically divided by �2 in order to match the prediction
of the vector model.

Now if the foil is inclined, i.e. ~nS � ~nx  ~nz, the situ-
ation is changed. At small angles of observation kx, ky �
kz � k the components of the radiating field are given by

 Ex � k�nxFz � nzFx�; Ey � �knzFy; Ez � 0;

(43)

where nx � sin�, nz � cos�. In this case the ESz compo-
nent always participates in radiation [see Eq. (39)]. As we
can see from Eq. (43), this component affects the radiation
along with the ESx component. Therefore the intensity
obtained from the scalar model never matches that of the
vector model unless ESz � 0, i.e., the limit of high energy
of the electron. In this limit the scalar model intensity
matches the vector one, i.e.

 JV � JS � ck2�F2
x  F2

y�cos2�: (44)

However, the problem remains that there is no way to
correctly calculate the polarization components of the

intensity using the scalar Huygens approach, especially
in the case of an arbitrary radiator and/or non relativistic
energy of the electron.

G. Computational considerations

Our computational implementation of the vector and
scalar models used to calculate of TR or DR achieves
high speed and accuracy by implementing an azimuthally
symmetric mesh with a singularity in the center conform-
ing to the singularity of the field of the electron. The
Fourier component of the electric field of the electron is
an azimuthally symmetric function with singularity at �!
0, E��� � K1���� � ��1; hence the density of energy flux
grows to infinity E2 � ��2. In the code the integration of
the field over the surface of the interface is done in cylin-
drical coordinates �, ’, z using an azimuthally symmetric
mesh d’, d� with angular cell d’ � 2�=N’, where N’ is
an integer. The radial mesh is adjusted in a way to keep the
area of the cell dS � �d�d’� �2d’. This is done in
order to equalize the energy flux E2dS through the cells
as much as possible and to minimize the number of
‘‘empty’’ cells with very small energy. Accordingly, the
radial mesh is generated as �N � �1�1 d’�N , where �1

is the minimum radius. As the result, this mesh allows an
accurate integration with a reasonable number of cells (e.g.
if N’ � 150 and 0:001 	 �� 	 10 then N � 220, and N �
N’ � 3:3� 104 cells) which makes it very practical to
calculate TR, DR for any situation. Note that a ‘‘homoge-
neous,’’ nonadjusted mesh with the same accuracy would
require �108 cells which make calculations impractical
and barely stable.

III. RESULTS

In this section we present calculations of TR and DR
using the models and formulas described above for various
cases in order to elucidate their similarities and differences.
All the calculations referred to as the ‘‘vector model’’ are
done by the same code ‘‘Vector’’ which incorporates
Eqs. (10)–(12), (15), (17), (19), (22), (26), and (27).
Different cases are calculated by specifying all the relevant
parameters including the geometry of the radiator and the
distance to the observation point. The calculations referred
to as the Huygens or scalar model are calculated similarly
by another code ‘‘Scalar’’ which is based on Eqs. (10),
(11), and (37).

Figure 3(a) shows a comparison of the solution [Eqs. (3)
and (4)] with the solution obtained with the image charge
model [Eqs. (6) and (7)]. The figure shows a horizontal �h
scan, taken at �v � 0, of the total (unpolarized) TR inten-
sity generated by a low energy electron (� � 5) incident on
a perfectly conducting foil oriented at 45 degrees with
respect to the velocity of the electron. Since the Pafomov
formula uses a tilted trajectory and the image charge model
uses a tilted foil, we have transformed the image model
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curve by reflecting it about zero degrees and shifting it by
the appropriate angle (45 degrees) in order to more easily
compare the results. Figure 3(b) shows a polar plot of the
image charge solution, the electron velocity direction, and
the foil for reference purposes. Figures 3(a) and 3(b)
clearly show that forward and backward TR from flat foil
is mirror symmetric about the plane of foil.

Figure 4 shows comparison of the corresponding vertical
scans of TR calculated using the two methods presented
above. Figures 3(a) and 4 show excellent agreement be-
tween the two models.

Figures 5 and 6 compare horizontal and vertical scans
for the image charge, vector, and scalar models for the
same parameters as Figs. 3 and 4. The agreement between
the vector and the image models is excellent. But the scalar
Huygens solution is quite different in amplitude from the
vector and image model solutions; the differences are more

pronounced in the case of the horizontal scan in compari-
son to the vertical scan.

Figures 7 and 8 compare the horizontal and vertical
scans (respectively) for the image, vector, and scalar mod-
els in the somewhat extreme case of a high energy particle
(� � 500) incident at near grazing incidence ( �
89:5 degrees). Again the image and vector horizontal
scan solutions match perfectly but the scalar Huygens
solution has a different distribution than the two other
models. The vertical distributions for vector and the image
model also agree perfectly while the Huygens solution is a
little lower in amplitude than the other solutions. Note that
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FIG. 4. Vertical scan �v (� � 5,  � 45�) of unpolarized
intensity of TR; solid line: Pafomov formula at �h � �=4
(forward radiation) and at �h � 3�=4 (backward); dotted line:
image charge model calculation at �h � 0 (forward radiation)
and at �h � ��=2 (backward).
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FIG. 5. Comparison of horizontal scans of intensity of TR
from an infinite screen inclined at angle � � 45 degrees for
an electron with Lorentz factor � � 5, computed from image
charge (solid), scalar Huygens (dashed), and vector (dots) mod-
els.
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FIG. 3. (Color) (a) Horizontal scan �h at �v � 0 (� � 5,  �
45�) of unpolarized intensity of TR. Solid line: Pafomov for-
mula; dashed line: image model; dotted line: transformed image
model. (b) Horizontal polar plot at �v � 0 of image model,
showing the orientation of the foil and direction of the electron.
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the relative difference between the Huygens and the vector
vertical scans are about the same for all angles. These
figures also demonstrate the accuracy and stability of the
code used in this extreme case.

We now compare our vector theory calculations of TR
done in the near field to those of Verzilov [32] for an
infinite conducting screen at normal incidence. Verzilov
uses the standard method of virtual photons which assumes
that only the transverse component of the electric field
need be used as source terms for calculation of the radia-
tion fields. This is the usual high energy approximation
used in most all calculations of TR. What is different about

Verzilov’s work is that he determines the radiation at an
arbitrary distance from the source. Thus, the radiation
intensity is determined in the near field (prewave zone)
as well as the far field. Moreover, he identifies the relevant
parameter, i.e., the vacuum coherence or ‘‘formation’’
length, as the distance where the near field solution differs
from the usual Fraunhofer solution for TR. He further
shows that the angular distribution of TR is a strong
function of the ratio R � 2�L=��2��, the distance to the
source in units of the vacuum coherence length. The ex-
perimental verification of the frequency dependence of the
AD of TR in the prewave zone, albeit in the incoherent

FIG. 8. (Color) Comparison of vertical scans of intensity of TR
from an infinite screen inclined at angle � � 89:5 degrees for an
electron with Lorentz factor � � 500, computed from image
charge (solid black), scalar Huygens (solid blue), and vector
(dots) models. In all cases �h � 0, �1�.
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FIG. 7. Comparison of horizontal scans of intensity of TR
from an infinite screen inclined at angle � � 89:5 degrees
(near grazing incidence) for an electron with Lorentz factor � �
500, computed from image charge (solid), scalar Huygens
(dashed), and vector (dots) models.

FIG. 9. (Color) Comparison of calculation of TR from an infinite
screen calculated in [32] and by vector theory for various
distances from the source, measured in terms of the dimension-
less parameter R � 2�L=��2��, the ratio of the distance to the
coherence length.
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FIG. 6. (Color) Comparison of vertical scans of intensity of TR
from an infinite screen inclined at angle � � 45 degrees for an
electron with Lorentz factor � � 5, computed from image
charge (solid black), scalar Huygens (solid blue), and vector
(dots) models. In all cases �h � 0, ��=2.
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regime (i.e. �� c�t) has been presented by Castellano
et al. [33].

Figure 9 presents Verzilov’s solutions for TR [32] and
our vector calculations for various distances from the
source measured in terms of the parameter R. Following
[32], the amplitudes are presented in normalized units
e2�2=�2c � 4 � NTR (see page 6 for the definition of
NTR). As is clear from Fig. 9, Verzilov’s and our vector
model calculations agree perfectly. Note that Verzilov does
not discuss the accuracy of his approximation. Our calcu-
lations of RMSD for all distributions presented in Fig. 9 are
2:31� 10�9, 3:15� 10�7, 7:4� 10�5 for the distance
parameter R � 10, 1, and 0.1, respectively. Down to the
smallest distance, the wave has a well-established spherical
front.

We now compare the result of vector theory and scalar
Huygens theory for the case of a finite screen in both the
wave and prewave zones. Both Shulga et. al. [34] and
Xiang et. al. [35] have used the scalar Huygens approach
to calculate TR for a finite disk. We will compare our
vector theory results to those of Xiang et. al. because their
results are in a clear form which simplifies the comparison.

Xiang et. al. have calculated the effect of finite target
size on the AD of TR from a circular disk observed in the
wave zone and DR from circular aperture in an infinite
metallic screen observed in the prewave zone. As we have
previously shown using Babinet’s principle, DR from the
aperture is directly related to TR from the complementary
screen, i.e., a finite circular disk and can be employed to
calculate the later [36]. The calculations of [35] are per-
formed using the method of virtual photons and an expan-
sion of the phase in terms of the distance between the target
and the observation point. The first term in the expansion is
retained for the wave zone and the first two terms are
retained for the prewave zone. Since both of the calcula-

tions are done for normal incidence of an electron passing
through the center of the disk or aperture, the radiator is
azimuthally symmetric with respect to the field of the
electron. Therefore, the analysis provided above in
Sec. II F following Eq. (42), indicates that, in these circum-
stances, theoretically there should be no differences be-
tween the vector and scalar Huygens calculations.

In Figs. 10 and 11 we present a direct comparison of the
ADs calculated from vector theory with those of Xiang
et. al. for wave zone TR (Fig. 2, [35]) and prewave zone
DR (Fig. 9 [35]). The comparisons show that the exact
vector calculations closely agree with the Huygens calcu-
lations although there are some small quantitative differ-
ences which are more pronounced for the far field (Fig. 10)
in comparison to the near field (Fig. 11). The discrepancies
are most likely the result of the approximations used in
[35] in the expansion of the phase term. The RMSDs for
distributions presented in Fig. 11 are 4� 10�7, 8:7�
10�7, 2:04� 10�6 for the distance parameters 7, 3, and
1, respectively.

Finally, we compare our vector theory to the heuristic
method devised by Naumenko [37] to calculate DR from a
finite target. Naumenko points out that the radiation field
can be deduced from an integral of the current density on
the surface of any target accounting for phase differences
at each point on the surface. He presents an unproven,
heuristic representation of the current density and uses
this to calculate the radiation. To test his formulation, he
shows that his solution matches known solutions for near
and far field TR [32] as well as far field DR [38] in the
appropriate limits. He then applies his method to the
calculation of DR in both the near and far fields of a finite
disk and a rectangular radiator which is inclined with
respect to the direction of the electron.

FIG. 10. (Color) Comparison of TR from a circular disk at
normal incidence using the scalar Huygens formulation of [35]
with vector theory for various values of the ratio of b, the radius
of the disk, to ��.

FIG. 11. (Color) Comparison of DR from a circular hole with
radius a � �� in an infinite metallic screen using the scalar
Huygens formulation of [35] with vector theory for various
distances L to the source measured in terms of the ratio R �
L=�2�.
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In Fig. 12 we compare our vector theory with
Naumenko’s calculations of DR from finite sized disk
(radius a � 0:5��), inclined at 45 degrees, for a particle
with Lorentz factor � � 1000 observed at � � 0:001 mm,
as a function of the distance from the source in units ofR �
L=��2��. Following [37] the amplitudes are measured in
normalized units e2�2=c � 4�2 � NTR. Note that there are
some small deviations between the two solutions for higher
values of R. The RMSDs are 1:25� 10�7, 1:51� 10�6,
4:12� 10�6, 1:66� 10�5 in descending order of R.
Again, the spherical wave approximation is very good.

Figure 13 compares the calculations of Naumenko for a
square target with dimension p measured in units of a �

p=��, with those calculated using the vector model. The
calculations using both methods are very close for all
cases.

IV. NEW METHOD FOR MEASURING BUNCH
LENGTH

With the exact vector method in hand, we can use it to
provide or test the calculation of the spectral-angular den-
sity of TR or DR for any situation. We now apply the vector
method to the calculation of coherent radiation from an
inclined finite circular foil with diameter D � 50 mm,
beam energy E � 100 MeV, and an incidence angle � �
45 degrees. The chosen observation distance L � 0:5 m
and the frequency range of the calculation is 20–
2000 GHz. These are typical experimental parameters of
interest for using CTR or CDR to measure the bunch length
of a picosecond micropulse.

Figure 14 shows the horizontal angular distributions at
�v � 0 of the radiation J��h;!� calculated for nine differ-
ent frequencies in the range of 25 to 1000 GHz. These are a
few representative samples of the total ‘‘spectrum’’ of 123
distributions used in the calculations described below. For
the 8 sample frequencies which lie in the band of 25 to
800 GHz shown in Fig. 14, the RMSDs are respectively:
4:52� 10�2, 2:03� 10�2, 7:35� 10�3, 2:1� 10�3,
9:32� 10�4, 5:27� 10�4, 2:43� 10�4, and 1:34�
10�4. Note that the accuracy of spherical approximation
increases with the frequency. One can see that within solid
angle of observation, i.e., 0 to 0.2 mrad, the AD exhibits a
low frequency cutoff due to the finite size of the radiator.
Also note that the ADs are complex functions of angle and
frequency, which should be taken into account in any
method used to measure the spectrum of radiation and
consequently determine the bunch form factor.
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FIG. 13. (Color) Comparison of the calculation of far field DR
from [36] and the vector theory for an inclined (at 45 degrees)
finite square plate with linear dimension p� p measured in
units of a � p=��, Lorentz factor � � 1000, and observed
wavelength � � 0:001 mm, for various values of a.

FIG. 14. (Color) Angular distributions of single electron DR for
various frequencies in the range of 25 to 800 GHz for a 100 MeV
beam, 50 mm disk, inclination angle of 45 degrees at distance of
0.5 meters from the source.
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FIG. 12. (Color) Comparison of the calculation of DR from [36]
and vector theory for an inclined (at 45 degrees) finite circular
disk with radius a � 0:5��, for an electron with Lorentz factor
� � 1000 and observed wavelength � � 0:001 mm, for various
distances to the source measured in terms of R � L=��2��.
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Figure 15 presents the longitudinal bunch form factors,
SL��L;!�, of single Gaussian longitudinal charge distri-
butions with half amplitude widths: 1, 1.5, and 2 ps, re-
spectively. Figure 15 shows the effective high frequency
cutoffs on the frequency spectrum due to the finite bunch
length. These spectrums are relevant to the AD calcula-
tions that follow.

Figure 16 shows the angular distributions corresponding
to each bunch length, where each broadband AD is com-
puted from the integral

 

dW��L; �h�
d�

�
Z !2

!1

J��h;!�SL��L;!�d! (45)

using single Gaussian form factors and frequency depen-
dent angular distribution functions J��h;!�. Figure 16

shows that bunch lengths differing by 0.5 ps are easily
distinguishable. These results indicate that it may be pos-
sible to use the broadband AD alone to determine the rms
bunch width, eliminating the need and complexity in-
volved in measurement of the spectrum of the radiation.
We have taken a simple form for the pulse, i.e., a Gaussian,
for illustration, but any assumed shape could be assumed.
The point is that the resulting integration shown above in
Eq. (45) produces an angular distribution which is sensitive
to the bunch form factor and accordingly to the bunch
length and longitudinal distribution.

In an actual experiment, the detector response D�!� and
the transmission loss T�!� due to intervening optical com-
ponents, e.g., the observation window and possibly air
absorption, may affect the broadband angular distribution
calculated using Eq. (45). These effects must be either
mitigated by proper design of the experiment or measured
and taken into account. In the latter case, the integrand of
Eq. (45) can be modified to include them, i.e.

 

dW��L; �h�
d�

�
Z !2

!1

J��h;!�SL��L;!�D�!�T�!�d!:

(46)

Recent experimental data shows that the rms bunch
lengths measured with this new technique assuming a
single Gaussian form factor agree well with those obtained
using independent measurements [39]. In our preliminary
experiment the detector response was reasonably flat over
the frequency range of interest and the transmission losses
were small. Therefore Eq. (45) was adequate to fit the data
(i.e. a 6% overall rms deviation between measured and
fitted AD curves) and provided rms bunch widths that were
within 10% of independent measurements. The AD may
also be sensitive to the detailed distribution of the pulse and
thus is a possible diagnostic of the longitudinal bunch
shape. However, further experimental data need to be taken
and a comparative analysis of fits to the data for various
model distributions must be done to fully evaluate this
possiblity. These will be presented in a future publication.

V. CONCLUSIONS

In order to correctly calculate the spectrum and angular
distribution of transition or diffraction radiation for in-
clined, finite targets, it is important to have a method which
makes no assumptions about the energy of the charged
particle and the inclination of the target where the longi-
tudinal component of the electron’s field may play a role.
We have developed a very general vector approach which
is applicable to any conducting surface, i.e., finite, arbi-
trarily curved or shaped surface oriented at any inclination
angle with respect to the velocity of the particle.

We have tested our vector method with that of the image
charge model which is the most fundamental and accurate
solution for far field TR from an infinite, flat, perfectly
conducting surface, i.e., Eq. (5). We derived analytical

FIG. 16. (Color) Angular distributions of coherent TR from a
50 mm disk calculated from vector theory and a single Gaussian
longitudinal beam distribution with full widths of 1, 1.5, and
2 picoseconds.
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FIG. 15. (Color) Single Gaussian bunch spectra (longitudinal
form factor) for various FWHMs: 1, 1.5, and 2 picoseconds.

VECTOR ELECTROMAGNETIC THEORY OF TRANSITION . . . Phys. Rev. ST Accel. Beams 11, 012801 (2008)

012801-13



formulas (6) and (7) using the image model, in order to
conveniently verify other available solutions including our
vector method.

We have compared the AD of TR and DR calculated
from our vector model with other available models for
targets with various shapes and inclination angles. We
have found the vector method gives accurate solutions in
known situations where calculations are available and the
models can be directly compared.

We have shown that the scalar Huygens model for
calculating TR, and by extension DR, from an inclined
foil is inappropriate when the energy is low and/or the
inclination angle is high, i.e., the case of near grazing
incidence. In such cases there are noticeable differences
between the Huygens solution and correct solutions pro-
vided by our vector model, the method of images, and
Pafomov’s formula.

Furthermore, we have applied our vector method to
calculate the angular energy distribution of coherent TR
for a finite radiator observed at a moderate distance from
the source, i.e. R< �2�, a case of experimental interest for
the determination of the bunch length using CTR and CDR.

Finally, we have shown theoretically that the broadband
AD of energy (intensity integrated over the frequency band
relevant to the pulse duration) is sensitive to the rms bunch
length and may be used to measure this quantity. Recent
preliminary experimental data support this finding.
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