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We present the design and simulation of a three-dimensional photonic crystal waveguide for linear
laser-driven acceleration in vacuum. The structure confines a synchronous speed-of-light accelerating
mode in both transverse dimensions. We report the properties of this mode, including sustainable gradient
and optical-to-beam efficiency. We present a novel method for confining a particle beam using optical
fields as focusing elements. This technique, combined with careful structure design, is shown to have a
large dynamic aperture and minimal emittance growth, even over millions of optical wavelengths.
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I. INTRODUCTION

The extraordinary electric fields available from laser
systems make laser-driven charged particle acceleration
an exciting possibility. Because of the maturity of rf accel-
erator technology, it is tempting to try to scale down tradi-
tional microwave accelerators to optical wavelengths.
However, this proposal encounters several obstacles in
the structure design. First, because of the significant loss
of metals at optical frequencies, we wish instead to use
dielectric materials for a structure. Second, manufacturing
a circular disk-loaded waveguide on such small scales
poses a significant challenge. For these reasons, we must
consider structures which differ significantly from those
used in conventional accelerators.

So far, macroscopic, far-field structures have been in-
vestigated experimentally as a means to exploit high laser
intensities for linear particle acceleration. In the laser
electron acceleration program (LEAP), a free-space
mode was used to modulate an unbunched electron beam
[1]. The experiment demonstrated the expected linear scal-
ing of energy modulation with laser electric field as well as
the expected polarization dependence. The next stage of
the experimental program, to be performed at the E163
facility at SLAC, seeks to demonstrate net energy gain by
first optically bunching the electron beam using an IFEL
[2,3]. Beyond that, the desire is to demonstrate a scalable
acceleration mechanism. For that purpose, a near-field,
guided-mode structure would be more suitable.

Photonic crystals [4] provide a means of guiding a
speed-of-light optical mode in an all-dielectric structure.
They have been investigated for some time for metallic rf
accelerator structures because of their potential for elimi-
nating a major source of beam breakup instability [5,6]. In
the optical regime, a synchronous mode has been shown to
exist in a photonic crystal fiber [7]. Several years ago, a
study was conducted of two-dimensional planar structures
[8]. While the study was informative, such two-

dimensional planar structures are ultimately impractical
because they only confine the accelerating mode in one
transverse direction. In this paper we present a three-
dimensional structure which overcomes this deficiency,
confining the mode in both transverse dimensions.

In Sec. II we present the structure geometry and accel-
erating mode. Then in Sec. III we analyze the performance
of the structure in terms of accelerating gradient and
optical-to-beam efficiency. In Sec. IV we address single-
particle beam dynamics in the structure, presenting a
focusing-defocusing lattice and demonstrating stable
beam propagation.

II. STRUCTURE GEOMETRY AND
ACCELERATING MODE

The accelerator structure is based on the so-called
‘‘woodpile’’ geometry, a well-established three-
dimensional photonic crystal lattice designed to provide a
complete photonic band gap in a structure with a straight-
forward fabrication process [9]. The lattice consists of
layers of dielectric rods in vacuum, with the rods in each
layer rotated 90� relative to the layer below and offset half
a lattice period from the layer two below, as shown with the
coordinate system in Fig. 1. We consider laser acceleration
using a wavelength of 1550 nm, in the telecommunications
band where many promising sources exist [10]. At this
wavelength silicon has a normalized permittivity of �r �
�=�0 � 12:1 [11]. We let a be the horizontal lattice con-
stant, and take c � a

���
2
p

. As described in [9] the lattice has
a face-centered cubic structure and exhibits an omnidirec-
tional band gap. Based on those results, we take the rod
width to be w � 0:28a. The ratio of the width of the band
gap to its center frequency is 18.7%.

We form a waveguide by removing all dielectric mate-
rial in a region which is rectangular in the transverse x and
y dimensions, and extends infinitely in the e-beam propa-
gation direction z. In addition, there are two modifications:
In order to avoid deflecting fields in the accelerating mode,
we make the structure vertically symmetric by inverting*benc@txcorp.com
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the upper half of the lattice so it is a vertical reflection of
the lower half. Second, we extend the central bars into the
waveguide by 0:124a on each side in order to suppress
quadrupole fields. The consequences of this perturbation

will be discussed further in Sec. IV. The geometry, with a
defect waveguide introduced, is shown schematically in
Fig. 2 and visually in Fig. 3.

The inversion of half the lattice introduces a planar
defect where the two halves meet, but this waveguide still
supports a confined accelerating mode. Indeed, the mode is
lossless to within the tolerance of the calculation, placing
an upper bound on the loss of 0:48 dB=cm. Its fields are
shown in Fig. 4. For this mode a=� � 0:364, so using a
1550 nm source determines a � 565 nm. The individual
rods are then 158 nm wide by 200 nm tall. The mode was
computed using the finite-difference time-domain method,
including a uniaxial perfectly matched layer to include
losses [12].

guide planar defect

rod extends
infinitely in z

crossbar centered
at z = na
crossbar centered
at z = (n + 1/2)a z

y

x

FIG. 2. The geometry of a vertically symmetric waveguide
structure.

FIG. 3. A symmetric waveguide.

FIG. 1. A diagram of 8 layers (2 vertical periods) of the
woodpile lattice.

FIG. 4. The accelerating field seen by a speed-of-light particle,
averaged over a lattice period, normalized to the accelerating
field on axis, shown with structure contours for a transverse slice
at z � 0. The inner rectangle denotes the interface between free
space and the absorbing boundary in the simulation.
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III. PERFORMANCE OF THE ACCELERATING
MODE

We can now explore the performance of this structure
from the point of view of accelerating gradient and optical-
to-beam efficiency. The gradient is limited by optical
breakdown to the structure material. We can define a
parameter, which is a property of the mode itself and
independent of the material, which relates the accelerating
gradient to the breakdown threshold of the dielectric.
While the mechanism of optical breakdown is not fully
understood for most materials, let us suppose that break-
down occurs when the electromagnetic energy density
exceeds a certain threshold uth in the material. We then
define the damage impedance of an accelerating mode by

 Zd �
E2

acc

2umaxc
;

where Eacc is the accelerating gradient on axis and umax is
the maximum electromagnetic energy density anywhere in
the material. Then we can write the sustainable accelerat-
ing gradient as

 Eacc �
�����������������
2Zduthc

p
: (1)

For the mode in the woodpile waveguide, we have Zd �
11:34 �. Optical breakdown studies in silicon have shown
a breakdown threshold of uth � 13:3 J=cm3 at � �
1550 nm and 1 ps FWHM pulse width [13], resulting in
an unloaded accelerating gradient of 301 MV=m.

With designs for future high-energy colliders calling for
beam power exceeding 10 MW, optical-to-beam efficiency
is a critical parameter for a photonic accelerator. Here we
compute the efficiency, and the characteristics of the par-
ticle beam required to optimize the efficiency. Unlike
conventional metallic disk-loaded waveguide structures,
the waveguide we consider here has a group velocity a
significant fraction of the speed of light; in this case vg �
0:269c. As the particle bunch and laser pulse traverse the
structure, the bunch will generate wakefields in the wave-
guide which destructively interfere with the incident laser
pulse. Because the beam-driven wakefield has amplitude
proportional to the bunch charge, wakefields limit the
practical amount of charge one can accelerate: If q is the
bunch charge, then the energy gained by the bunch scales
as q, but the energy loss due to wakefields scales as q2.
Increasing the charge too much ultimately decreases the
energy gain, and thus the efficiency, of the structure. To
improve the efficiency, we can embed the structure within
an optical cavity in order to recycle the remaining laser
pulse energy for acceleration of subsequent optical bunch
trains.

To compute the efficiency, we follow the treatment
described in [14]. According to that description, the effi-
ciency of the structure depends upon several parameters.
First, the characteristic impedance of the mode, which

describes the relationship between input laser power and
accelerating gradient [15], is

 Zc �
E2

acc�
2

P
� 484 �;

where P is the laser power. Second, the group velocity of
the mode affects the efficiency, as modes with group
velocity closer to the speed of light couple better to a
relativistic particle beam. This is quantified by the loss
factor, which is given by [16]

 k �
1

4

c�g
1� �g

Zc
�2 ;

where �g � vg=c. An optical bunch with charge q will
radiate fields in the accelerating mode with decelerating
gradient equal to kq. We can use the loss factor as a point of
comparison with conventional accelerators. We find that
the woodpile structure couples much more strongly to a
particle beam than an rf accelerator, with a loss factor of
5:56� 109 �V=m�=pC versus 19:7 �V=m�=pC for the
SLAC linac [17]. However, this is entirely due to the
smaller wavelength. If we compare the quantity k�2, we
find values of 0:013 V m=pC for the woodpile structure and
0:22 V m=pC for the SLAC linac.

Finally, the Čerenkov impedance ZH parametrizes the
energy loss due to wideband Čerenkov radiation.
Following [18], we can estimate ZH from its value for a
bulk dielectric with a circular hole of radius R, which is

 ZH �
Z0

2��R=��2
;

where Z0 � 376:73 � is the impedance of free space. For
arbitrary accelerating structures, we can let R be a length
characterizing the radius of the vacuum waveguide, even if
the guide is not circular. In our case the aperture is rectan-
gular, so we define the parameter R by R �

����
A
p

=2 �
0:451�, where A is the aperture area. This yields ZH �
295 �.

The accelerator, particle beam, and laser fields operate
on several length scales. First, the particles must be opti-
cally bunched in order to sample only a small range of
optical phases; thus each optical microbunch must have
length � � or equivalently have duration on the order of
tens of attoseconds. We consider particles to come in trains
of N optical bunches, with the optical bunches being
spaced by �. The length of the train is then N�. We also
wish to use ultrafast laser pulses of duration �� on the
order of 1 ps. Because the group velocity of the waveguide
is less than c, a relativistic particle beam will outrun the
laser pulse. We must therefore construct the accelerator in
short segments, and recouple laser pulses at every segment.
In a segment of length L, the laser pulse will slip with
respect to the particle bunch train by time �� � �L=c��
�1� �g�=�g. Following [14], we assume an accelerator
segment is inside an optical cavity with a round-trip loss of
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5%, and the laser pulses are coupled into the cavity through
a beam splitter with reflectivity r. We consider each bunch
in our train to have the same charge, and assume that the
duration of the train is much less than the slippage time ��.
We also assume that �� � 3��. For example, if we
choose a laser pulse duration of 1 ps, then �� � 3 ps,
which gives a structure length of L � 331 �m. Then N �
L=� � 214.

As described above, trying to accelerate too much
charge can reduce the efficiency of an accelerator due to
wakefield effects. Therefore, for a given r and N, the
structure has a maximum efficiency �max. For each N,
we choose r to maximize �max. These optimum values
are plotted in Fig. 5. From this we see that the efficiency
can be made quite high. Even with just a single bunch, the
efficiency reaches 38%, while for a train of 100 bunches,
the efficiency is 76%. Once the optimum r is computed for
each N, the total train charge qt and external laser pulse
amplitude are chosen so that they together satisfy two
conditions: First, that the peak unloaded gradient is equal
to the maximum sustainable gradient in the structure,
which we take to be 301 MV=m from the above discus-
sion. Second, we require that the charge maximize the
efficiency. We plot the optimum charge as a function of
the number of bunches in Fig. 6. As expected from the
results in [14], the optimum total charge is low, only
1.41 fC for a single bunch and 12.3 fC for 100 bunches.
With the charge having been computed, we can then find
the average initial gradient (the gradient experienced by
the first optical bunch in the train) for each N. We can also
compute the induced energy spread on the beam as the
difference between the average accelerating gradient ex-
perienced by the first and last bunches in the train, relative
to the average initial gradient. These quantities are plotted
in Fig. 7. From this plot we see that wakefields have a

serious effect on the acceleration. For just a single bunch,
the average initial gradient is reduced from 218 MV=m
(which is reduced from 301 MV=m due to the advance-
ment of the electrons with respect to the Gaussian laser
pulse envelope) to 197 MV=m. The minimum at around 7
optical bunches is due to two competing effects. First, as
the number of bunches increases from the single-bunch
case, the total charge increases, generating more wake-
fields which are recycled within the cavity. But we see
from Fig. 5 that, as the number of bunches increases, the
reflectivity decreases, so a smaller fraction of these wake-
fields is recycled. More concerning is the effect on the
energy spread of the beam. Even with only two bunches,
the spread in gradient is 6.2%, and with 5 bunches, the
spread is 16.5%.
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FIG. 5. The optimum reflectivity and the corresponding maxi-
mum efficiency as a function of the number of optical micro-
bunches in the bunch train.
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FIG. 6. The optimum total charge of a bunch train or maxi-
mum efficiency as a function of the number of optical micro-
bunches.
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FIG. 7. The average initial gradient and induced energy spread
as a function of the number of optical microbunches.
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IV. PARTICLE BEAM DYNAMICS

As remarked above, we adjusted the geometry of the
structure because of beam dynamics considerations,
namely, to make the structure symmetric in order to sup-
press deflecting fields. Here we examine the particle beam
dynamics in this structure in more detail. Two concerns
immediately arise. First, the structure has an extremely
small aperture, approximately � in each transverse dimen-
sion, so confining the beam within the waveguide presents
a serious challenge. Second, since the structure is not
azimuthally symmetric, particles out of phase with the
accelerating field will experience transverse forces. As it
turns out, an investigation of the second problem will yield
insight into the first: The optical fields in the structure
provide focusing forces which are quite strong compared
to conventional quadrupole magnets and can be used to
confine a beam within the waveguide. Therefore, we begin
with a description of the transverse forces in the woodpile
structure. We then propose a focusing scheme, and com-
pute the requirements on the phase-space extent of the
particle beam.

In our analysis of the beam dynamics in this structure,
we use the average of the fields over one longitudinal
period of the photonic crystal waveguide. This is justified
by two effects. First, we consider the particles to be rela-
tivistic, and the longitudinal velocity deviates from the
speed of light by only O�1=	2�, where 	 is the Lorentz
factor. Second, the submicron period together with field
intensities limited by damage threshold prohibits particles
from acquiring relativistic momentum on the scale of a
single period. To see this, one need only examine a nor-
malized vector potential of the fields, defined by

 A �
eEa

mc2 ;

where E is the electric field magnitude. The angular de-
viation of a particle trajectory within a period isO�A=	�. In
our case, E � 301 MV=m, so A � 3:3� 10�4. Thus, the
variation of a particle’s trajectory within a period is negli-
gible, so the time-averaged force on the particle is well
approximated by the force due to the longitudinally aver-
aged fields. We therefore proceed to define the longitudi-
nally averaged fields, as seen by a speed-of-light particle
beam. Taking the fields to have ei!t time dependence, we
can define the averaged electric field amplitude by

 

�E�x; y� �
1

a

Z a

0
E�x; y; z�eikzzdz;

where E is the complex electric field amplitude and kz �
k0 � !=c is the Bloch wave number in the periodic struc-
ture. It follows that the average amplitude of the transverse
force on a particle is given by

 F? �
ie
k0
r? �Ez:

Thus, Ez essentially forms a ‘‘potential’’ for the transverse
force. We note that the factor of i implies that particles
experience a transverse force to the extent that they are out
of phase with the crest of the accelerating wave.

Since the mode has speed-of-light phase velocity, Ez
satisfies r2

?
�Ez � 0 in the vacuum region. This implies

that r? � F? � 0, so that focusing in both transverse di-
rections simultaneously is impossible. It also means that
we can expand �Ez as a polynomial in the complex coor-
dinate w � �x	 iy�=�. Using the symmetries of the struc-
ture, we find we can write �Ez as

 

�E z �
X1
m�0

A2m Re�w2m�: (2)

We then have that

 

@Fx
@x

��������x�0;y�0
�

ie
��

A2:

Thus, a particle ahead in phase by 
 (kz�!t � 
) will
experience focusing gradients Kx and Ky, in the x and y
directions, respectively, given by

 Kx � �Ky � �Re
�
ieA2

��E
e�i


�
� �

eA2

��E
sin
: (3)

This is equivalent to a quadrupole magnet with focusing
gradient �A2=��c� sin
. The coefficients A2m for m> 1
correspond to nonlinear forces.

To examine the implications of these forces for our
structure, we extract the coefficients A2m from the com-
puted fields. We do so by fitting polynomials of a form
similar to that in Eq. (2) for m � 0; . . . ; 6 to the computed
Ex and Ey fields; these are sufficient to compute the co-
efficients of the other components using the Maxwell
equations. As noted in Sec. II, we have modified the
structure geometry by extending the central bars into the
waveguide in order to suppress the quadrupole fields. This
insertion distance was determined by computing the fitted
A2 coefficient as a function of insertion distance, and
finding the value for which A2 � 0. This prevents particles
from being driven out of the waveguide by the linear
focusing force, but does not yet provide a mechanism for
stable propagation within such a small waveguide.

To address the question of stable propagation, we note
from Eq. (3) that, because of the optical scale of �, the
focusing gradient can be quite large. This suggests using
these strong focusing forces to confine the particle beam by
running a similar structure with the laser field �=2 out of
phase with the particle beam. We explore this possibility by
again modifying our structure by inserting the central bars,
this time to optimize the fields for focusing. For this
purpose we wish to suppress the lowest order nonlinear
field component, in this case the octupole field given by the
A4 coefficient, for maximum stability. We find that, by
inserting the central bars by 0:188a, we can suppress the
octupole field, while the focusing gradient for fields at
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damage threshold is equivalent to an 831 kT=m magnet.
The accelerating field for this structure geometry is shown
in Fig. 8.

Having found suitable optical modes for both accelera-
tion and focusing, we can now describe a system of focus-
ing elements designed to confine the particle beam. We
consider a focusing-defocusing (F0D0) lattice,1 in which
each cell consists of a focusing segment of length Lf run
�=2 behind in phase for focusing in the x direction, fol-
lowed by an accelerating segment of length La, a focusing
segment of length Lf run ��=2 behind in phase for
defocusing in the x direction, and then another accelerating
segment of length La [19]. We are free to choose the
parameters Lf and La. Let K be the peak focusing gradient
for the focusing segment, given by Eq. (3) with E the
energy of the ideal particle. Assuming an initial ideal
particle energy of 1 GeV, we find that, if we run the
focusing structure at damage threshold (with an on-axis
accelerating gradient of 133 MV=m), we haveK � 2:49�
105 m�2. For our lattice we choose Lf � 0:2=

����
K
p
�

401 �m, which gives a focal length of f � 10:0 mm.
We also choose the betatron phase advance per half-cell
to be �=4; then La �

���
2
p
f � 14:2 mm. The maximum

beta function value is then �F � 48:4 mm, the length of
the unit cell is Lc � 2�La 	 Lf� � 29:1 mm, and the be-
tatron period is 4Lc � 117 mm. As the particle energy
increases, we consider these lengths to scale as 1=

����
K
p
/����

E
p

.

The lattice described in the previous paragraph is stable
under linear betatron motion. However, nonlinear trans-
verse forces in the accelerating and focusing modes may
cause instabilities which limit the dynamic aperture of the
lattice and constrain the allowable emittance of the particle
beam. To determine the effect of these forces and compute
the required emittance of a particle beam, we perform full
simulations of particle trajectories. These simulations in-
clude the dynamics of the particles in all six phase-space
coordinates. They were performed by using the polynomial
fits as analytic expressions for the fields, and propagating
particle trajectories within each segment using an ordinary
differential equation solver based on an explicit Runge-
Kutta (4, 5) formula.

To compute the dynamic aperture of the lattice, we
simulate particles with initial positions uniformly distrib-
uted throughout the waveguide aperture. The initial trans-
verse momenta of the particles are taken to be 0, as are the
initial deviations of the particle energies from the ideal
case. We first simulate particles which are exactly on crest
initially. We propagate the particles for 3 m through the
lattice and record whether or not each particle collides with
the waveguide edge. The initial particle positions, color
coded as to the particle’s survival, is shown in Fig. 9. In that
figure, a red marker indicates that a particle initially at that
position exited the waveguide aperture within 1 m of
propagation. A green marker indicates that it remained
within the waveguide through 1 m, but exited before 3 m,
while a blue marker indicates that the particle remained in
the waveguide through all 3 m of propagation. We see from
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FIG. 8. The accelerating field in the focusing structure modi-
fied to suppress the octupole moment. As in Fig. 4, the quantity
plotted here is the accelerating field seen by a speed-of-light
particle, averaged over a photonic crystal lattice period.
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FIG. 9. Initial particle positions, with colors indicating
whether, and when, each particle exited the waveguide aperture.
The bounds of the plot correspond to the physical aperture of the
structure.

1For the remainder of this section, we refer to the F0D0 lattice
as simply the ‘‘lattice,’’ not to be confused with the photonic
crystal lattice.
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the plot that most particles that are driven out of the
waveguide exited within the first meter. The figure also
indicates that the dynamic aperture extends to almost the
entire physical aperture of the structure (the dynamic ap-
erture being wider in x than y because the initial longitu-
dinal particle positions are at the high-�x point of the
lattice). The initial energy of the particles is 1 GeV, and
after 3 m the energy of the ideal particle is 1.87 GeV. The
ellipse indicated in the figure is the ellipse of largest area
which still contains only particles which remain in the
waveguide. If we take this ellipse to be the 3� boundary
of the particle distribution, we can use the relation �2 �
�" to obtain the emittance requirement of the lattice. We
find normalized emittances of

 "�n�x � 9:2� 10�10 m; "�n�y � 1:09� 10�9 m: (4)

While these emittances are several orders of magnitude
smaller than those produced by conventional rf injectors,
because of the small bunch charge as discussed in Sec. III,
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FIG. 10. Lineouts of average accelerating field seen by a
speed-of-light particle, normalized to the accelerating field on
axis. The fields are shown along the x axis (blue), the y axis
(green), and the x � y diagonal (red).

FIG. 11. Initial particle positions, with colors indicating whether, and when, each particle exited the waveguide aperture, for initial
phases ranging from �90 to 90 mrad.
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the transverse brightness (charge per phase-space area)
required in the optical structure is similar to that of con-
ventional accelerators.

Another consequence of suppressing the quadrupole
fields in the structure is low induced energy spread due
to nonuniformity of the accelerating field. Figure 10 shows
the average accelerating field seen by a speed-of-light
particle—the same quantity plotted in Fig. 4—along the
x axis, the y axis, and the x � y diagonal. We see a region
of uniform field near the center of the waveguide, consis-
tent with an r4 dependence. While the field decreases along
the diagonal, few particles within the dynamic aperture can
be significantly displaced along the diagonal, since �x and
�y are not simultaneously large. The uniformity of the
accelerating field is borne out directly in the simulation:
If we weight the particles within the dynamic aperture so
that their initial transverse spatial distribution is Gaussian
with the 3� ellipse shown in Fig. 9, we find that they
acquire a relative energy spread of only 7� 10�4 after
3 m of propagation.

We can also examine the beam dynamics for particles
which are slightly out of phase with the crest of the accel-
erating laser field. Running the same simulation as above,
but with the particles given an initial phase offset, we find
that the dynamic aperture is reduced as particles become
further out of phase. This is shown in Fig. 11. For particles
ahead in phase (
< 0), we can see in the plots a pattern
characteristic of a fourth-order resonance, indicating that
the octupole field in the accelerating structure becomes
significant as particles become off crest. The difference in
aperture shape between positive and negative phase shifts
could be attributed to the sign difference of that octupole
field.

With simulations of the dynamic aperture of the lattice
for both on- and off-crest particles, we can now compute
the dynamics of a realistic particle bunch, with variation in
all six phase-space coordinates. We take the initial normal-
ized transverse emittances to be those computed above for
on-crest particles and given in Eq. (4). We also take the rms
phase spread and relative beam energy deviation to be
�
 � 10 mrad and �� � 10�3, respectively. We track
the ensemble of particles for 3 m of propagation, as before,
and record the phase-space coordinates every 10 cm. We
find that 261 of the 13 228 particles simulated, or 2.0%,
exited the waveguide before completing the 3 m propaga-
tion. From the recorded phase-space coordinates we can
track the normalized emittances as a function of propa-
gated distance. The transverse emittances are shown in
Fig. 12. We see that the emittances increase initially, but
that this increase slows as the propagation continues. For
the full 3 m, "�n�x increases by 10.1%, while "�n�y grows by
7.3%. Thus, the growth in invariant emittance is much
smaller than the energy gain, so that the geometric emit-
tance of the beam will still be adiabatically damped. This
shows that particle bunches can be propagated stably in a

photonic crystal accelerator without an extraordinary en-
hancement to beam brightness.

V. CONCLUSION

We have found numerically an accelerating mode in a
three-dimensional dielectric photonic crystal structure.
This mode propagates with speed-of-light phase velocity
and is confined in both transverse directions with low loss,
and it is therefore suitable for acceleration of relativistic
particles. Based on breakdown measurements for bulk
dielectric, we estimate that the structure can sustain un-
loaded gradients in excess of 300 MV=m. We computed
that the structure can operate with high optical-to-beam
efficiency using the mechanism of recycling laser energy in
an optical cavity. However, the energy spread among opti-
cal bunches in a train remains a concern; some a mecha-
nism must be found to counter this effect or such an
accelerator would need to operate with less than optimum
charge.

We also showed a novel method for beam confinement
in a small aperture which uses optical fields in a modified
structure to focus the particle beam. We found that this
mechanism only required brightness comparable to con-
ventional accelerators, and resulted in minimal emittance
growth even for significant propagation distance.

While we have described the central features of a pho-
tonic accelerator here, many issues remain to be addressed
in order to develop a practical accelerator design. One
critical issue is a greater understanding of the structure
breakdown threshold. While the studies in [13] on bulk
silicon can provide an estimate for sustainable gradient, the
effects of the geometric structure on the breakdown thresh-
old must be investigated. Ultimately, the sustainable gra-
dient in the structure will have to be determined directly by
experimentation on manufactured prototypes.

FIG. 12. Transverse emittances of the particle bunch as a
function of propagated distance.
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Another issue to be addressed is the presence of higher-
order modes in the waveguide. As remarked in the
Introduction, photonic crystals have been attractive as
accelerator structures because of their potential for elimi-
nating a major source of beam breakup instability. This is
because a photonic crystal waveguides only confines
modes with frequencies in the band gap of the lattice.
Early indications from simulation indicate that the wave-
guide described here supports only a small number (less
than 10) of higher-order modes. However, this issue needs
to be examined in more detail to determine the properties
of each individual mode and their effects on accelerator
performance.

Finally, while fabrication of these structures at optical
length scales is likely to be challenging, much work on
fabricating the woodpile lattice is underway in the pho-
tonics community. Woodpile lattices with a small number
of layers have been constructed using a layer-by-layer
technique [20] and via wafer fusion [21]. Other experi-
mental techniques, such as interferometric alignment [22]
and stacking by micromanipulation [23], hold promise for
efficient, cost-effective fabrication. Preliminary studies
[24] on the fabrication tolerance of the accelerator struc-
tures discussed here indicated an rms layer-to-layer hori-
zontal misalignment tolerance of 25–30 nm. This figure
was based on the criterion that the wave number error be
small enough that the accumulated phase error is less than
� over a distance of 100 �m (the distance in which the
laser pulse envelope slips by roughly 1 ps with respect to
the particle beam). Such tolerances are encouraging, since
current semiconductor processing technology can meet
that requirement [25]. However, much more detailed stud-
ies are necessary to determine the effects of fabrication
error on other accelerator properties, including loss, effi-
ciency, and beam confinement.
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