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The installation of elements in the main linac of future linear colliders can only be done with a limited
precision. The inevitable misalignments lead to unacceptable emittance growth. Beam-based alignment,
e.g., one-to-one correction, dispersion free steering, or ballistic alignment, is necessary to reduce the
emittance growth. In some cases, this is, however, not sufficient. For further reduction of the emittance
growth, so-called emittance tuning bumps have to be used. A general strategy for the design of emittance
tuning bumps has been developed and tested. Simulations suggest that the method can be conveniently
used to understand the weaknesses of existing emittance tuning bumps and to significantly improve their
performance in terms of, e.g., emittance reduction capability and convergence speed. An example of an
application is the design of ten orthogonal knobs that, according to simulations, can reduce the normalized
emittance growth in the Compact Linear Collider (CLIC) main linac from 23.8 to 0.34 nm with
convergence within two iterations. Four orthogonal knobs have also been designed for the International
Linear Collider (ILC). Simulations show that these knobs converge within a single iteration and reduce
normalized emittance growth from 3.8 to 0.05 nm.
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I. INTRODUCTION

For both the Compact Linear Collider (CLIC) [1] and
the International Linear Collider (ILC) [2], it is of highest
importance that emittance is preserved throughout the
machine. Emittance growth leads to luminosity decrease
and consequently to a lower event rate for physics experi-
ments. One of the parts of a collider that contributes most
to emittance growth is the main linac. The emittance
growth in the linac is mainly caused by wakefields in
misaligned accelerating structures and by dispersion due
to misaligned quadrupoles.

For CLIC, the element misalignments will be kept at a
reasonable level by an active prealignment system that
offers a precision of 10 �m [3,4]. The accuracy of the
survey system proposed for ILC is 200 �m [5]. For both
machines, the limited alignment precision leads to unac-
ceptable emittance growth, and one or more of the beam-
based alignment methods described below have to be used.
For the simulations presented in this paper, the misalign-
ments remaining after prealignment were based on num-
bers from [6,7], see Table I. The beam position monitor
(BPM) resolution was assumed to be 0:1 �m for CLIC and
1 �m for ILC. All CLIC results were obtained using the
1500 GeV lattice described in [8]. For ILC a laser-straight
(not following the earth curvature) lattice was designed to
accelerate electrons from 15 to 250 GeV using an accel-

erating gradient of 31.5 MV/m and an rf frequency of
1.3 GHz. There were 24 accelerating structures per quad-
rupole, and the phase advance per focusing-defocusing
(FODO) cell was 75� and 60� in the horizontal and vertical
plane, respectively. Beam parameters for CLIC and ILC
are presented in Table II. Observe that, throughout this
paper, the term emittance refers to normalized emittance
(�N) in the vertical plane.

The method that is foreseen to be used in order to reduce
emittance growth after prealignment is beam-based align-
ment. Beam-based alignment is a collective term for a few
different alignment schemes that have in common that the
BPM readings along the machine are used to align ele-
ments. Examples of such methods include one-to-one
steering, dispersion free steering (DFS) [9], and ballistic
alignment [10]. In the simulations presented in this paper
the first two will be used.

TABLE I. Root-mean-square element misalignments after pre-
alignment.

Element
�

(CLIC)
�

(ILC)

Quadrupole displacement [�m] 50 300
Accelerating structure displacement [�m] 10 300
BPM displacement [�m] 10 200
Accelerating structure vertical angle [�radian] 10 300
Girder displacement [�m] 0 200
Girder angle [�radian] 0 20
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The least complicated beam-based alignment method is
one-to-one steering. Each quadrupole is displaced in order
to center the beam in the next downstream BPM. Since the
BPMs are themselves misaligned and have a limited reso-
lution, the obtained beam trajectory is not the ideal one,
and in general further alignment is necessary. Even though
one-to-one steering is insufficient on its own, it is often
used as a first step to give the more elaborate alignment
schemes a better starting point.

In this case, DFS was used to improve emittance after
the initial one-to-one steering. During DFS, the nominal
beam and one or more test beams of different energies are
used to simultaneously optimize the nominal trajectory and
to minimize dispersion (by minimizing trajectory differ-
ences). In other words, the aim is to minimize the target
function

 �2 � w0

Xn
i�1

y2
0;i �

Xm
j�1

Xn
i�1

�yj;i � y0;i�
2; (1)

where n and m are the number of BPMs and test beams,
respectively. The offset of beam j in BPM i is denoted yj;i,
where j � 0 for the nominal beam. The weight w0 speci-
fies the relative importance of the nominal trajectory and
the dispersion.

For CLIC, a realignment of the accelerating structures
has to be carried out as a last step of the beam-based
alignment. This alignment can be done with a precision
of 10 �m using BPMs incorporated into the structures.
Several previous CLIC studies show that, in addition to
beam-based alignment, emittance optimization using emit-
tance tuning bumps is absolutely necessary to achieve
acceptable emittance levels [11–13].

An example of how much emittance growth can be
reduced with beam-based alignment for initial misalign-
ments according to Table I is shown in Fig. 1. The pre-
sented result is the average emittance for 100 randomly
misaligned CLIC main linacs. The emittance at the en-
trance of the linac is 5 nm, and the goal is to keep the
emittance growth ��N along the linac below 5 nm (corre-
sponding to a relative emittance growth of 100%). As can
be seen the emittance growth is a factor of 100 too large in
case only one-to-one correction is used. By using DFS in
addition, the performance is significantly improved, and
then finally by realigning the accelerating structures, the
emittance growth is reduced to 23.8 nm. This remaining

emittance growth is far from acceptable and is mainly
caused by wakefields. To reach the emittance goal, emit-
tance tuning bumps have to be used.

For ILC, beam-based alignment alone might be suffi-
cient to reach the emittance target [14]. The aim is that
maximum 10% of the randomly misaligned ILC main
linacs have a relative emittance growth of more than 50%
(��N � 10 nm). Despite the efficient beam-based align-
ment, emittance tuning bumps have been shown to reduce
emittance growth significantly in ILC [15,16].

The design of emittance tuning bumps is not trivial. The
bumps should reduce emittance to acceptable levels, pref-
erably very fast and in general under certain constraints,
e.g., limited element displacements. In the following sec-
tions, the concept of emittance tuning bumps will be ex-
plained, a strategy for design of optimal bumps will be
developed, and the new bumps will be shown to success-
fully reduce emittance growth to very low levels.

II. EMITTANCE TUNING BUMPS

A. General description

The emittance tuning bumps described here are based on
the idea of ‘‘trajectory bumps’’ introduced in [17,18].
Examples of emittance tuning bumps include dispersion
bumps and wakefield bumps [15].

A dispersion bump is used to introduce dispersion in y
and y0 at some point along the linac. This may, for example,
be achieved using displacements of two quadrupoles sepa-
rated by an integer number of betatron oscillations. By
kicking the beam out of its ideal orbit with the first quad-
rupole and back into the ideal orbit with the second one,
dispersion is introduced. A problem is that the offset of the
beam also generates wakefields in the accelerating struc-
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FIG. 1. Average emittance along 100 random CLIC main
linacs for different beam-based alignment schemes. By using
one-to-one (121) steering, DFS, and finally realigning the accel-
erating structures (rfalign), the emittance growth can be reduced
to 23.8 nm. To achieve the emittance growth target of 5 nm, the
additional use of tuning bumps is necessary.

TABLE II. CLIC and ILC beam parameters.

Parameter CLIC ILC

Initial energy [GeV] 9 15
Final energy [GeV] 1500 250
Initial emittance [nm] 5 20
Particles per bunch [109] 2.56 20
Bunch length [�m] 30.8 300
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tures between the quadrupoles. By registering the effect on
the emittance at the end of the linac, the dispersion setting
that minimizes emittance can be found.

A wakefield bump, on the other hand, is most easily
implemented as a displacement of one or more accelerating
structures. If the structures are not on movers, wakefield
bumps can also be constructed using quadrupole displace-
ments, but in that case it is difficult to avoid introducing
dispersion as well. The structure displacements are ad-
justed such that they minimize emittance at the end of
the linac. Observe that in reality girders will be displaced
rather than single accelerating structures. Each such girder
supports a few accelerating structures.

The term emittance tuning bumps is, more generally,
used to represent a set of so-called knobs and a measure-
ment station. A knob is used to change some property of
the beam line and consequently also of the beam. This
property might be the vertical position of one or more
accelerating structures (as for a wakefield bump) or the
vertical position of a pair of quadrupoles (as for a disper-
sion bump). A knob might also be used to control, for
example, BPM target values or to artificially introduce
dispersion at a certain point along the beam line.

The purpose of the emittance tuning bumps is, as the
name suggests, to minimize emittance. For the tuning
bumps discussed in this paper, a station measuring the
emittance at the end of the linac assures that the optimal
knob settings are found. For CLIC, studies have also been
carried out measuring emittance at several points along the
linac [8]. In that case a knob was used to displace an
accelerating structure in order to optimize the emittance
locally, i.e., just after the structure. This was followed by
an adjustment of the displacement of a downstream struc-
ture, once again to minimize emittance locally. A number
of knobs could in this way be tuned, and since a change of
one knob does not affect the upstream knobs and measure-

ment stations, no iterations are needed. The disadvantage
of this method, apart from the obvious cost issue of using
multiple measurement stations, is that local emittance
minima do not guarantee that emittance is minimized
globally, i.e., at the end of the linac. The performance of
these bumps was still very good, and by displacing in total
20 accelerating structures, the emittance growth could be
reduced to just over 1 nm, see Fig. 2.

If emittance is instead measured only at the end of the
linac, the knobs will no longer be independent, and several
iterations may be needed to reach an optimum. This is of
course a disadvantage, but at the same time these bumps
are more powerful since they optimize emittance at the
most relevant position. Besides, global emittance tuning
bumps require only one measurement station.

The optimization method used to find the optimum knob
settings is intentionally simple to make it usable not only
during simulations but also in the control room. To tune a
knob, five different settings are tested, and for each setting
the measurement station reading is recorded. The optimum
knob setting can then be determined with a quadratic fit to
the obtained data points, see Fig. 3. Observe that emittance
is approximately a quadratic function of the amplitude of
an aberration. As long as the aberration amplitude is pro-
portional to the knob setting, a quadratic function fits the
data well. This is, for example, the case if a knob controls
the displacements of quadrupoles or accelerating
structures.

B. Potential problems

The performance of the tuning bumps is of course
mainly determined by their capability to reduce emittance.
However, several other factors also play an important role.
One example is the amount of time required to minimize
the emittance. This is related to the convergence speed of
the knobs.
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FIG. 2. Emittance growth along the CLIC main linac after
beam-based alignment and tuning of 20 knobs each controlling
the vertical displacement of an accelerating structure. The char-
acteristic zigzag pattern is caused by two knobs canceling wake-
fields at each of ten positions along the linac. Between these
bump positions emittance growth is not suppressed.
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FIG. 3. The optimal knob setting is obtained by fitting a
quadratic function to the emittance values measured for five
different knob settings.
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As mentioned above, the bumps described in this paper
are based on global emittance measurements. Since this in
general means that the change of one knob setting affects
the optimum of the others, iterations may be required for
the knobs to converge, see Fig. 4. For strongly interfering
knobs, the convergence may be very slow. In order to avoid
this, the knobs have to be ‘‘decoupled,’’ i.e., the change of
one knob should no longer affect the optimum settings of
any of the others. If the decoupling is successfully carried
out, iterations will, as in the case of local emittance tuning
bumps, be superfluous.

Another important issue to consider is the knob ranges.
From a purely mathematical point of view, knob settings
that reduce emittance to acceptable levels may exist. These
optimal settings may, however, not lie within the range of
the knobs. It is, for example, possible that the optimal
settings require unacceptably large element displacements.
Simulations show that the optimal accelerating structure
displacements for CLIC emittance tuning are of the order
of a mm when ten structures are used, see Fig. 5. In reality,
displacements of this magnitude are unacceptable since it
could lead to the beam hitting the beam pipe or the accel-
erating structure itself. Besides, the computer model of the
accelerating structure does not take quadrupolar wake-
fields into account. Consequently, wakefield kicks are not
accurately calculated for large beam offsets, and the ob-
tained structure displacements will most likely not repre-
sent a real optimum. The most straightforward way to
reduce the required displacements is to use a larger number
of elements. By moving two adjacent accelerating struc-
tures together, the displacement needed can be reduced by
a factor of 2.

If a knob is used to move an element, the minimum step
size of the mover that the element is attached to might
influence the performance of the tuning. In this paper,
limited step size was modeled by only allowing the mover
position to assume discrete values with a certain spacing
(step size). The sensitivity to minimum step size increase
with the number of elements moved. The solution is to
limit the number of elements by identifying and using only
the most efficient ones. Since the ILC quadrupoles may not
be on movers, an alternative, nearly equivalent, solution
could be to excite dipole correctors attached to the quadru-
poles. This way of implementing the bumps, and the
imperfections related to it, will not be studied here.

In the following two sections, describing the design and
application of optimal bumps, the problem of convergence
speed, knob range, and mover step size will be discussed in
more detail. An issue that is not considered during the
bump design is the limited resolution of the emittance
measurement station. Previous simulations indicated that
imperfections in the measurement station limit the per-
formance of the bumps. It was, however, also observed
that the effect can be reduced by modifying the optimiza-
tion method used, see [15].

III. DESIGN OF TUNING BUMPS

The bump design described in this section takes its
starting point in the macroparticle beam model used in
many tracking codes, e.g., PLACET [19]. In this model, a
beam is represented by a number of so-called macropar-
ticles. Macroparticle k is described by its energy and
longitudinal position, horizontal position and angle, verti-
cal position (yk) and angle (y0k), its second momenta
��yy;k; �yy0;k; �y0y0;k�, and finally its weight (wk).

The tuning bumps are assumed to be linear, i.e., the
macroparticle positions and angles at the end of the ma-
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FIG. 4. Average emittance growth for 100 CLIC main linacs.
The emittance growth is seen to decrease for each optimization
step. Such an optimization step corresponds to the tuning of a
single knob. In total ten knobs, each controlling the vertical
displacement of an accelerating structure in the CLIC main
linac, were used. Three or more iterations of the ten knobs
seem to be needed for convergence.
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FIG. 5. Root-mean-square and maximum vertical displace-
ment of ten accelerating structures used for CLIC emittance
tuning. The results for 100 random machines are presented. The
displacements should not be larger than a few tens of �m.
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chine are linear with respect to the knob settings, and the
second momenta are constant. Such bumps can be effi-
ciently used to reduce emittance growth caused by e.g.
dispersion and wakefield effects but may not be used to
reduce emittance growth due to e.g. x-y coupling.

Only vertical emittance will be considered and the beam
at the end of the linac will be represented by a column
vector

 

~y � �y1; y2; . . . ; yp; y
0
1; y
0
2; . . . ; y0p�

T; (2)

where yi and y0i are the position and angle of macroparticle
i. A machine (seed), which has to be corrected using
emittance tuning bumps, can similarly be represented by
the macroparticle coordinates at the end of the machine:

 

~s i � �y1;i; y2;i; . . . ; yp;i; y01;i; y
0
2;i; . . . ; y0p;i�

T: (3)

Here the index i is used to distinguish between different
seeds. Knob j may in a similar fashion be described by the
coordinate changes caused by a unit change of the knob:

 

~k j � ��y1;j; . . . ;�yp;j;�y
0
1;j; . . . ;�y0p;j�

T: (4)

In other words, ~si contains the p macroparticle positions
and p macroparticle angles at the end of machine i, while
~kj contains the changes in macroparticle positions and
angles for a unit change of knob j. A typical seed vector
is visualized in Fig. 6, and two examples of knob vectors
are depicted in Fig. 7. In both figures, the angle coordinates
y0i have been scaled by the Twiss parameter � to obtain
similar magnitudes for positions and angles.

The matrices ~S and ~K will be used to denote the collec-
tion of seeds and knobs, respectively, i.e.

 

~S � �~s1;~s2; . . . ;~sn�; (5)

 

~K � �~k1; ~k2; . . . ; ~km�: (6)

If the seed vector ~si is in the range of the knob matrix ~K,
knob settings xi exist such that

 

~y � ~si � ~Kxi � 0: (7)

These knob settings turn the seed vector, if depicted as in
Fig. 6, into a straight line and the emittance is consequently
minimized (leaving only the emittance �N0 associated with
the second momenta of the macroparticles). Observe, how-
ever, that if no exact solution exists and a least-square
solution is calculated instead, the emittance is not neces-
sarily minimized. One of the reasons for this is that there is
no direct correlation between minimized j~yj2 and mini-
mized emittance. The other reason is that Eq. (7) is not the
only equation corresponding to minimized emittance. Any
knob settings solving yk � A, y0k � B for all k (A and B
being arbitrary constants) minimize emittance. If only
Eq. (7) is studied, the optimal solution may consequently
not be found. Both problems will be solved by a change of
coordinates, see below.

In a control room, Eq. (7) is of no use since the coor-
dinates of individual particles cannot be determined, and
all information is instead obtained from the emittance
measurement station. The equation will, however, be of
great importance for the design of tuning bumps.

A. Emittance function and coordinate normalization

Given the macroparticle representation of the beam, the
projected normalized emittance in the vertical plane at the
end of the machine can be written
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FIG. 6. Typical seed vector for a beam consisting of 147
macroparticles. Vector indices 1–147 represent macroparticle
positions yi and indices 148–294 represent scaled macroparticle
angles �y0i. For positions and angles, respectively, indices are
ordered according to longitudinal position.
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�N � �r

��X
k

wk�yk� �y�2� ��yy

��X
k

wk�y
0
k� �y0�2� ��y0y0

�

�

�X
k

wk�yk� �y��y0k� �y0� � ��yy0
�

2
�

1=2
; (8)

where �r is the Lorentz factor, and �y and �y0 are the
weighted average position and angle, respectively. For
simplicity it has been assumed that the macroparticle
weights are normalized such that their total weight is
one. From the emittance definition it is clear that a ‘‘uni-
form’’ change of positions and/or angles does not affect the
emittance. In other words, only the distribution of the
macroparticles around the average in phase space (yy0)
matters for the emittance. The ��’s are the weighted aver-
ages of the second momenta for all macroparticles. For an
ideal beam their values are

 �� yy � �
�N0

�r
; ��yy0 � �

�N0

�r
; ��y0y0 � �

�N0

�r
;

(9)

where the Twiss parameters �, �, and � are determined by
the optics of the machine. The minimum emittance

 �N0 � �r
��������������������������������
��yy ��y0y0 � ��2

yy0

q
(10)

is, as already mentioned, achieved whenever yk � A, y0k �
B for all k with A and B being arbitrary constants.

In order to facilitate the design of emittance tuning
bumps, the average position �y and average angle �y0 are
subtracted from yk and y0k, respectively. In this way, only
the deviation of positions and angles from the averages will
be considered and a single optimum (yk � 0, y0k � 0) will
exist. By Taylor expanding Eq. (8) around this optimum
and dropping all terms of order three and higher, a second-
order approximation of the emittance is obtained:
 

�N � �N0 � �2
r

��y0y0

2�N0

X
k;k0
��kk0 � wk0 �wkykyk0

� �2
r

��yy0

�N0

X
k;k0
��kk0 � wk0 �wkyky0k0

� �2
r

��yy
2�N0

X
k;k0
��kk0 � wk0 �wky

0
ky
0
k0 : (11)

Using the vector notation introduced above, this can be
written on matrix form as

 ��N � �N � �N0 �
1
2
~yTH~y; (12)

which is a good approximation of the emittance growth
��N for small ~y. The Hessian matrix H contains the
second-order partial derivatives of the emittance function
�N�~y� and is explicitly

 H � �r
�H0 ��H0

��H0 �H0

� �
; (13)

where the matrix H0 is

 H 0 �

w1 0 . . . 0
0 w2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . wp

0
BBBB@

1
CCCCA

�

w2
1 w1w2 . . . w1wp

w2w1 w2
2 . . . w2wp

..

. ..
. . .

. ..
.

wpw1 wpw2 . . . w2
p

0
BBBB@

1
CCCCA (14)

for a beam represented by p macroparticles.
Observe that H0 and consequently H are both symmetric

matrices. Since the Hessian H is calculated at a minimum
point, it must be positive semidefinite; if not, there would
be a direction along which further minimization could be
achieved. As shown in [20], a symmetric positive semi-
definite matrix has real non-negative eigenvalues and can
be Schur decomposed:

 H � QDQT: (15)

Here Q is an orthogonal matrix containing the eigenvectors
of H, while D is a diagonal matrix with the eigenvalues of
H in increasing order in the diagonal. To further simplify
the emittance growth expression of Eq. (12), a coordinate
transformation, which normalizes the coordinates with
respect to their effect on emittance growth, can be per-
formed:
 

��N �
1

2
~yTQDQT~y �

�
1���
2
p D1=2QT~y

�
T
�

1���
2
p D1=2QT~y

�

� �M~y�TM~y � yTy � jyj2: (16)

In this equation, D1=2 is the diagonal matrix whose diago-
nal elements are the square roots of the eigenvalues of H.
In this way

 M �
1���
2
p D1=2QT (17)

defines the desired coordinate transformation. It should be
pointed out that this transformation does not have an
inverse. The reason is that the two first eigenvalues of H
are zero and consequently the top two rows of M contain
only zeros. From Eqs. (8) and (12), it is clear that the two
eigenvectors of H with eigenvalue zero are related to the 2
degrees of freedom of uniform changes of positions and/or
angles. If the Hessian matrix is explicitly determined, these
two eigenvectors indeed turn out to be two ‘‘step func-
tions,’’ see Fig. 8. Along these two ‘‘dummy directions’’
emittance is constant.

When M has been calculated, it can be used to transform
all seed and knob vectors to normalized space:

 S �M~S; (18)
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 K �M ~K: (19)

This coordinate normalization has a few very useful con-
sequences related to the fact that ��N � yTy � jyj2, and
all calculations are from this point onwards carried out in
the normalized coordinate space. One important conse-
quence is that only one single point (y � 0) corresponds
to minimized emittance. Another effect of the normaliza-
tion is that minimization of the norm of

 y � si �Kxi (20)

automatically minimizes emittance (to second order).
These facts will be exploited in Sec. III C.

B. Conjugate directions

A third advantage of the normalized space becomes
apparent when the important concept of conjugate direc-
tions [20,21] is introduced. As described in Sec. II B, a
potential problem of the emittance tuning bumps is the
convergence speed. Two knobs are noninterfering if the
corresponding knob vectors are conjugate. Two vectors a
and b are H-conjugate if

 a THb � 0: (21)

If a general second-order function

 f�y� � f�0� � rfj0y � 1
2y
THj0y (22)

is minimized by a line search along one of the directions a
or b followed by a line search along the other direction, it
will not be necessary to redo the minimization along the
first direction if a and b are H-conjugate [21]. In the
normalized space, the Hessian of the emittance growth
function ��N � yTy is simply 2I and two directions are
conjugate if

 a TIb � aTb � 0; (23)

i.e. conjugate directions are orthogonal and vice versa. The
equivalence of orthogonality and conjugacy is a major
advantage of the normalized coordinates compared to the
non-normalized ones. As will be seen below, it greatly
simplifies the design of noninterfering knobs.

C. SVD and principal directions

The great advantages of the normalized coordinate space
become clearly visible when singular value decomposition
(SVD) [21] is used to decompose the seed matrix S and
knob matrix K. The SVD algorithm decomposes an arbi-
trary matrix A into the product

 A � UWVT: (24)

Here U is a matrix whose orthogonal columns span the
range of A. The diagonal matrix W contains the real non-
negative singular values �i of A in a decreasing order in
the diagonal. VT is a square orthogonal, hence norm-
preserving, matrix. If necessary, the SVD algorithm of,
for example, OCTAVE [22] extends U such that a complete
orthonormal basis is created. The corresponding rows
added to W contain zeros only, thereby leaving the product
UW unchanged.

Observe that the columns of U are eigenvectors of AAT :

 AATU � UWVT�UWVT�TU � UWVTVWTUTU

� UWWT; (25)

where the third equality was obtained using the orthogo-
nality of U and V. WWT is a square diagonal matrix with
the eigenvalues of AAT in the diagonal. Similarly, the
columns of V are the eigenvectors of ATA.

If the seed matrix S for a set of 100 random CLIC
machines is decomposed with the SVD algorithm,

 S � USWSVT
S ; (26)

and its singular values are plotted, it becomes evident that
they decrease very rapidly, see Fig. 9. The columns of US
that are in the range of S (consequently having nonzero
singular values) will from now on be referred to as the
principal seed directions. The singular values can be in-
terpreted as the importance of the corresponding columns
of U with the first columns (with the highest singular
values) being the most important. According to Eq. (24)
the matrix VT specifies the columns of A as linear combi-
nations of the columns of UW. A column of U multiplied
by a relatively low singular value will have little signifi-
cance for the linear combination compared to a column
multiplied by a large singular value. By truncating W, i.e.,
by replacing negligible singular values by zero, the number
of degrees of freedom can be reduced without modifying
the original problem considerably. An approximation of
matrix A is thus given by
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 A 0 � UW0VT; (27)

where W0 is the matrix W with elements �i such that �i <
��1, for some small �, replaced by zero.

The rapid decrease in magnitude of the singular values
indicates that the number of degrees of freedom is very
limited even for a large set of random seeds. This suggests
that it is sufficient to minimize emittance along a few
important principal seed directions to reduce the average
emittance growth of this particular set of seeds to an
acceptable level. To quantify this statement, the seed vec-
tors are transformed to the US-basis:

 S 0 � UT
SS: (28)

The transformation obviously preserves the norm of each
seed vector, and consequently emittance growth still equals
js0j2 to second order. For this particular set of seeds, the
importance of an arbitrary direction â can be determined
by studying how well the average emittance growth of all
seeds can be minimized along it. By minimizing the norm
of

 y � s0i � âxi (29)

for seed i, the unique emittance growth minimum is found.
The least-square solution for each seed is given by

 xi � ��âT â��1âTs0i � �âTs0i; (30)

where it has been assumed that â is of unit length. The set
of seed vectors obtained after correction along direction â
is in matrix form

 S 0 � ââTS0 � �1� ââT�S0 � �1� ââT�WSVT
S ; (31)

where Eqs. (26) and (28) have been used. The squared
norm of column i of this matrix is the emittance growth of
seed i after correction. Consequently, the average emit-
tance growth of N corrected seeds is

 

��N �
1

N
Trf��1� ââT�WSVT

S 	
T��1� ââT�WSVT

S 	g

�
1

N
�Tr�WT

SWS� � Tr�WT
S ââTWS�	

�
1

N

X
i

�1� a2
i ��

2
i ; (32)

where ai are the components of â in the US-basis. The
second equality of Eq. (32) was obtained by using the
orthogonality of VS, the unit norm of â, and the fact that
Tr�AAT� � Tr�ATA� for any matrix A. Under the assump-
tion that the singular values �i are sorted in decreasing
order, average emittance growth is obviously minimized
for a1 � 1 and ai � 0, i > 1. The optimal choice of â is
therefore in the direction of the first column u1 of U, i.e.,
along the most important principal seed direction. In a
similar fashion, it can be argued that, when minimization
along u1 has been performed, the optimal direction is u2

and so on. By optimizing along the n most important
directions, the average emittance growth can be reduced to

 ��N �
1

N

XN
i�n�1

�2
i : (33)

The minimum achievable emittance growth as a function
of n is plotted for both CLIC and ILC in Fig. 10. This plot
shows that, by using the most important principal direc-
tions, as few as four directions is sufficient to achieve an
emittance growth of less than 0.04 nm for ILC. For CLIC,
optimization along ten directions is sufficient for reducing
emittance growth to less than 0.16 nm. For such low
emittances, effects of noise in the emittance measurement
and other dynamic imperfections will be the dominating
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source of emittance growth, and at a certain point it is
meaningless to try to achieve an even lower theoretical
minimum by optimizing along additional directions.

At first sight, it might seem that the principal directions
would be strongly dependent on the particular set of seeds
being studied. To show that this is not the case and indicate
that the principal directions of a large set of seeds are rather
a property of the ideal machine optics and the beam-based
alignment scheme used, two different studies were carried
out.

The first study was carried out to determine how many
principal seed directions are useful for emittance reduction
as a function of the number of seeds. The minimum num-
ber of directions required to reduce emittance growth to
less than 0.2 nm was therefore determined, and as shown in
Fig. 11 this number converges fast as the number of seeds
increase, both for CLIC and ILC. If an infinite number of
seeds can be corrected to an acceptable average emittance
along a small number of principal directions, these direc-
tions must be a property of the machine optics and the
initial alignment procedures. Consequently, they could be
obtained by simulations prior to machine start-up. Another
way of showing this is to divide 100 ILC seeds into two
groups S1 and S2 of 50 vectors each. When the principal
seed directions of these two groups are calculated sepa-
rately, clear similarities are found. More importantly, if the
first group of seeds is corrected along either of the sets of
directions, very similar performance is obtained, see
Fig. 12. If these directions can be constructed as linear
combinations of a given set of knob vectors K, a new set of
optimal knobs can be created. Observe that, since normal-
ized coordinates are used, the principal directions are not
only orthogonal but also conjugate cf. Sec. III B.
Consequently, the new knobs will be nearly noninterfering

in the regime where the second-order emittance approxi-
mation is accurate, and the convergence will be almost
instant.

Just as for the seed matrix, SVD of the knob matrix is
very useful for the design of emittance bumps. The decom-
position gives

 K � UKWKVT
K; (34)

where the order of the columns of UK is such that the first
columns correspond to the directions that can most easily
be generated with the given set of knobs. In case of knobs
controlling element displacements, this means that the first
column is the one which is produced by the smallest rms
element displacement. This is seen by noting that a unit
step along each direction is achieved by a linear combina-
tion

 U K � KVKW�1
K (35)

of the given knobs. The required rms knob adjustment for a
certain direction is thus seen to be the square root of the
corresponding diagonal element of the matrix

 �VKW�1
K �

TVKW�1
K � �W

�1
K �

TW�1
K : (36)

Consequently, the inverse singular value gives a measure of
how much a knob has to be adjusted to generate a unit step
along the corresponding column of UK. For an aligned
machine such a unit step corresponds to a unit change of
emittance, and the first columns therefore produce maxi-
mum emittance change per unit of knob adjustment. The
directions with the highest singular values will from now
on be referred to as the strongest directions. Below will be
shown that the strongest directions are not always useful
for emittance reduction.

In analogy with the notation above, the columns of UK
that are in the range of K specify what will be referred to as
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principal knob directions. All principal knob directions
have nonzero singular values.

D. Construction of optimal knobs

As mentioned earlier, UK forms a complete orthonormal
basis. Transformation of the seed vectors to the UK-basis
gives

 S 0 � UT
KS: (37)

It can be seen that the largest possible average emittance
reduction along ui (column i of UK) is equal to the squared
norm of row i of S0 divided by the total number of seeds. In
this way the achievable emittance reduction along each
column of UK may be calculated for the two previously
mentioned groups of ILC seeds, see Fig. 13. Observe that,
if the singular value corresponding to ui is zero, i.e., if ui is
not a principal knob direction, the given set of knobs
cannot be used to correct emittance along it.

For a completely general set of knobs, there is no
particular correlation between the strength of a principal
direction and its usefulness for emittance reduction. In this
case, however, the knobs are based on quadrupole displace-
ments, and since undesired displacements of quadrupoles
is also one of the main sources of emittance growth for the
initial seeds, there is a visible correlation.

The two curves in Fig. 13 are very similar. In both cases,
the same knob directions have to be used to achieve
effective emittance reduction, once again showing the
fundamentality of the principal seed directions. In order
to reach as low emittances as achievable along the four
most important principal seed directions (cf. Fig. 10), the
ten strongest principal knob directions have to be used.

For CLIC and a set of knobs based on accelerating
structure displacements, a plot like Fig. 13 shows an even
stronger correlation between the strength of a knob direc-
tion and its usefulness for emittance reduction. This may
indicate that most of the emittance growth in the CLIC
main linac is caused by displacements of accelerating
structures. The strongest principal knob directions are in
this case almost as efficient as the principal seed directions.
New knobs that optimize emittance along these knob di-
rections are simply constructed as linear combinations of
the old knobs according to Eq. (35). The number of prin-
cipal knob directions to use is a balance between the
desired emittance reduction and the acceptable element
displacements.

As described above, the principal seed directions are the
optimal directions for emittance reduction. To construct
new knobs that optimize emittance along these most effi-
cient directions, suitable linear combinations of the avail-
able knobs have to be determined. An exact construction is
often not possible, in particular, if the knob range is lim-
ited. An approximate solution may, however, be obtained
by solving

 U S � KN (38)

for N. By using the SVD of K [Eq. (34)], the equation may
be solved in the least-square sense, giving the linear com-
binations that most closely resemble the desired principal
seed directions. If all principal seed directions are in the
range of K, an exact solution can be found, and the optimal
knobs can be constructed. The solution may, however,
require very large knob adjustments. This problem may
be avoided by truncating small values of WK, and the
solution becomes

 N � VK�W0
K�
�1UT

KUS; (39)

where �W0
K�
�1 is obtained by inverting the nonzero ele-

ments of the truncated matrix W0
K. If W0

K is not square, it
must also be transposed.

By truncating more singular values, i.e. by excluding
more of the weak principal knob directions, the required
knob settings become smaller. At the same time, however,
the components of the principal seed directions along the
excluded principal knob directions can no longer be repro-
duced and the construction of the former becomes less
precise. Each knob created using Eq. (39) will therefore
only reproduce the projection of a principal seed direction
on the subset of the strongest (not excluded) principal knob
directions. These knobs may not be optimal in terms of
emittance reduction capability. Furthermore, they may not
be orthogonal which could lead to slower convergence. In
order to obtain the optimal (in terms of emittance reduction
performance) orthogonal set of knobs which can be con-
structed using only the strongest principal knob directions,
it is necessary to use Eq. (32) once more. From this
equation it is clear that the optimal unit length direction
â, with components ai in the US-basis, is found by max-
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imizing the total emittance reduction

 

X
i

a2
i �

2
i � �W

T
Sa�TWT

Sa; (40)

where the matrix formulation is obtained by using that the
�i are the singular values of S (diagonal elements of WS).
The direction â should, in this case, be limited to a linear
combination of a subset U0K consisting of the strongest
principal knob directions:

 â � U0Kz; (41)

with jzj � 1. By using that â � USa and that US is ortho-
normal, it is possible to express a in terms of z:

 a � UT
SU0Kz: (42)

The maximization problem may now be written

 max
jaj�1

�X
i

a2
i �

2
i

�
� max
jzj�1

�
zT�z

�
; (43)

where � is obtained using Eqs. (40) and (42):

 � � �U0K�
TUSWSWT

SUT
SU0K � �U

0
K�
TSSTU0K: (44)

According to [20], the maximum of a quadratic form as in
the right-hand side of Eq. (43) is equal to the highest
eigenvalue of the symmetric matrix �. The maximum is
obtained for the corresponding eigenvector z � e, and the
optimal knob that can be constructed as a linear combina-
tion of the principal knob directions in U0K is, consequently,
â � U0Ke. When optimization along this direction has been
performed, the best remaining direction is obtained by
using the second eigenvector (with second highest eigen-
value) of �. Since � is symmetric, the eigenvectors can be
obtained by SVD as the columns of U� and the eigenval-
ues, which in this case are equal to the singular values, as
the diagonal elements of W� [20]. The eigenvalue of an
eigenvector e can be interpreted as the total achievable
emittance reduction for all seeds along the direction â �
U0Ke. Using Eq. (35), the whole set of optimal directions
can be written

 R � U0KU� � KVK�W0
K�
�1U�; (45)

where W0
K are the rows of WK corresponding to the

columns (principal directions) of U0K.
In analogy with the truncation of singular values men-

tioned above, the number of principal knob directions in
U0K is chosen as a balance between emittance reduction
performance and acceptable knob adjustments. Under the
assumption that the constructed knobs converge fast, their
emittance reduction performance may be estimated by the
theoretically achievable reduction along the subset of prin-
cipal directions. From the discussion above, the maximum
total emittance reduction for all seeds is seen to be the sum
of the eigenvalues of �. The ideal settings of the new
optimal knobs for all seeds are obtained by finding the
matrix X which minimizes the norms of the columns of

 S �RX: (46)

Since the columns of R are orthonormal, the least-square
solution is

 X � ��RTR��1RTS � �RTS; (47)

and the optimal settings of the original knobs K (corre-
sponding to, e.g., accelerating structure displacements) are
obtained from Eqs. (45) and (47) as

 V K�W0
K�
�1U�X � �VK�W0

K�
�1U�RTS: (48)

Based on theoretical estimates of emittance reduction per-
formance (sum of eigenvalues of �) and required knob
adjustments [Eq. (48)], a reasonable number of principal
knob directions may be chosen. Using these directions, an
equal number of orthogonal knobs may be constructed as
described above. Observe, however, that these knobs are
not all necessarily efficient. While the first columns of R
are efficient directions (high eigenvalues of �), the last
columns may be nearly useless (low eigenvalues). As
shown in Fig. 13, a strong principal knob direction is not
always useful for emittance reduction and may constitute a
nearly useless degree of freedom. In addition, the required
corrections along different directions may be correlated
such that nearly the same ratio appears between these
corrections for all seeds. Consequently, one knob may be
used to correct along several directions simultaneously,
independent of the seed. The number of efficient knobs
will therefore be smaller than the number of strong prin-
cipal knob directions. The most efficient knobs are auto-
matically identified by the method described above.

To construct optimal knobs, it is apparently first neces-
sary to choose a reasonable number of strong principal
knob directions. Using these, an equal number of knobs
can then be constructed. As explained above, some of these
knobs may not be very efficient, and in order to determine
how many to use, their individual emittance reduction
performance, determined by the corresponding eigenval-
ues of �, can be studied. As will be seen in the next
section, the number of principal knob directions and the
number of useful knobs are not equal for ILC knobs based
on quadrupole displacements. This was expected since
Fig. 12 showed that as few as four principal directions
are sufficient for emittance reduction, while Fig. 13
showed that the ten strongest principal knob directions
have to be used. For CLIC, all knobs (based on structure
displacements) created as linear combinations of the stron-
gest principal knob directions are useful. Instead of simply
testing what the optimal numbers are, some more elaborate
ways of finding the most efficient knobs were also studied.
These used a penalty function based on the strength of each
principal knob direction instead of completely removing
all but the strongest directions. This method could only
improve knobs marginally.
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IV. APPLICATIONS TO FUTURE LINEAR
COLLIDERS

The usefulness of the above described method can be
shown by a few applications to CLIC and ILC. As initially
described, emittance tuning bumps will be very important
for CLIC and may also be useful for ILC. Because of the
differences between the machines, e.g., in terms of con-
straints on how elements can be moved, the optimal knob
design is completely different in the two cases. Under the
assumption that emittance measurements are exact, the
construction of very efficient knobs is however possible
for both machines.

A. CLIC

1. Orthogonalization of emittance tuning bumps

As a first example of how to design knobs for CLIC with
the method described above, the use of ten equidistant
accelerating structures is investigated. In this context equi-
distant refers to the number of betatron oscillations (the
number of quadrupoles). The most straightforward way to
use the structures is to control the vertical displacement of
each of them with a knob. For the simulations described
here, it was assumed that each knob adjustment was fol-
lowed by one-to-one steering in order to resteer the beam to
the BPM centers. In reality, a faster method will have to be
used to keep the beam close to the reference trajectory.
Already this trivial use of the structures is very efficient for
reducing emittance. The convergence speed and final emit-
tance can, however, be significantly improved by con-
structing new orthogonal knobs, see Fig. 14. The
construction of optimal knobs was carried out using the
method of Sec. III, i.e., by SVD of the normalized knob
matrix, followed by calculation of � [cf. Eq. (44)] and its
SVD. All ten principal knob directions were used, as were
all ten constructed orthogonal knobs. In this case, the same
100 seeds were used for determination of principal seed
directions as the ones that were then corrected. By dividing
the set of seeds into two groups, as was done for ILC in
Sec. III C, it was seen that the first group of seeds could be
corrected equally well using principal seed directions from
either of the groups.

In Fig. 14 a concave edge can be seen just between the
first and the second iteration (after ten optimization steps).
This indicates that convergence could become slightly
faster if a few less knobs were used. Fewer knobs would,
however, lead to a slightly higher theoretical minimum
emittance. In order to improve convergence speed and
keep emittance performance unchanged, the order of the
knobs could instead be modified. This kind of fine-tuning
of the knobs is not analyzed further since statistical fluc-
tuations (in a study of 100 seeds) may affect the outcome.
Furthermore, a small increase in emittance may be negli-
gible compared to additional emittance growth caused by
imperfections such as noise in the emittance measurement.

It is important to notice that, even though convergence
speed and emittance reduction is very good, these knobs
will not work because of the large accelerating structure
displacements they require. In Fig. 5 the rms displacements
for each seed using these particular knobs were shown. The
displacements exceed what is acceptable by 2 orders of
magnitude. For the basic knobs, the displacements are
approximately half of the displacements for the orthogo-
nalized knobs.

2. Reduction of accelerating structure displacements

As described in Sec. III C, the required knob adjustments
grow with the index of the principal knob directions. By
limiting the number of such directions, it is therefore
possible to reduce the large displacements mentioned
above. With only ten accelerating structures, this will,
however, not be sufficient to obtain acceptable displace-
ments and emittance simultaneously. Another way to solve
the problem is by letting each knob control the displace-
ment of a group of structures instead of only one. All
structures should be positioned at the same, or nearly the
same, betatron phase such that they have an equivalent
effect on the beam at the end of the linac. This will reduce
the required displacements by a factor roughly equal to the
number of structures per group, while emittance reduction
performance will be nearly unaffected. Finding big groups
of ‘‘equivalent’’ accelerating structures may, due to varia-
tions in betatron frequency within each bunch of the beam,
be difficult. Instead any large set of accelerating structures
is chosen, and the procedure described in the previous
section is used to create optimal knobs.
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In this case, all structures positioned next to (in the
downstream direction) a focusing quadrupole were chosen.
In total, this makes 662 accelerating structures. The nor-
malized knob vectors were calculated, and SVD was car-
ried out. The matrix � was determined for different
numbers of principal knob directions (numbers of non-
truncated elements of WK), and the remaining emittance
growth and structure displacements were calculated under
the assumption that all constructed knobs were used, see
Fig. 15. The plot shows that a reasonable number of knobs
and principal knob directions is ten, giving an rms structure
displacement of 5:0 �m and a remaining emittance growth
of 0.32 nm. Independent variation of the number of prin-
cipal knob directions and the number of constructed knobs

was tested without significant improvements. As an ex-
ample, the rms displacement was estimated to 4:7 �m and
the emittance growth to 0.44 nm for the eight most efficient
knobs constructed using the ten strongest principal knob
directions.

The knob coefficients (accelerating structure displace-
ments) obtained using ten principal knob directions and ten
knobs seem to vary approximately with the betatron fre-
quency of the linac but with an additional amplitude
modulation, see Fig. 16. Intuitively, this appears to be an
efficient way of assembling a large number of structure
displacements into one knob, thus illustrating how the
design strategy identifies equivalent structures and con-
structs efficient knobs.

Simulations confirmed the estimates of Fig. 15 and
showed that the convergence is excellent. Apart from
converging fast, the new knobs require acceptable structure
displacements and reduce emittance growth to very low
levels, see Figs. 17–19.

During the simulations described above, the beam was
represented by 147 macroparticles. The initial distribution
of these macroparticles was obtained by dividing the in-
coming beam into 21 slices and representing the particles
of each slice by 7 macroparticles. In order to understand
whether 147 macroparticles is enough to represent the
beam and correctly construct optimal knobs, the knobs
constructed using the 147-macroparticle representation
were used to correct 100 seeds for a 341-macroparticle
and a 969-macroparticle representation of the beam. The
knobs were for both of these more accurate beam models
shown to perform in the exact same way as for the 147-
macroparticle beam representation that was used to con-
struct the knobs. The results shown in Fig. 17 were ob-
tained by correction of a set of seeds along principal knob
directions obtained from the set itself. The performance of
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knobs constructed using a separate set of seeds was, how-
ever, seen to be nearly identical. Figure 20 shows that 50
seeds in the 969-macroparticle representation could be
tuned either by optimal knobs obtained from the 50 seeds
themselves or, with nearly the same performance, by knobs
obtained from 50 other seeds in the 147-macroparticle
representation.

Tests were also carried out to show that the tolerance to
limitations in minimum mover step size is excellent.
Ideally, the mover step size is infinitesimally small, giving
an emittance growth of 0.335 nm. For a step size of 1 �m,
the emittance growth was 0.338 nm. Step sizes of 2 and
4 �m gave emittance growths of 0.344 and 0.371 nm,
respectively.

By using PLACET [19], a beam was tracked through the
linac for each of the 100 seeds, taking into account the
corrections obtained using the new emittance tuning

bumps. As can be seen in Fig. 21, the beam quality is
drastically improved when tuning bumps are used.

In contrast to local bumps (cf. Fig. 2), the global bumps
give a smooth variation of the emittance along the linac.
For both types of bumps, 20 optimization steps were used,
and the final emittance growth is a factor of 3 better in case
of the global bumps.

3. Tuning bumps based on quadrupole displacements

Even though the most intuitive way to reduce the mainly
wakefield induced emittance growth in CLIC is by dis-
placements of accelerating structures, there might be other
options. One possibility could, for example, be to use
quadrupole displacements. All 1324 quadrupoles of the
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CLIC main linac were used to construct ten knobs using
the same method as above. The performance of these knobs
was almost identical to the performance of the structure
knobs, see Fig. 22. The problem of using quadrupole dis-
placements is that the performance becomes very sensitive
to mover step size. Even for a step size as small as 0:1 �m,
the bumps do no longer reduce emittance growth. By
reducing the number of quadrupoles to 20 (cf. the strategy
used for ILC below), the sensitivity diminishes such that
ten knobs can reduce emittance growth to 6.6 nm for a
mover step size of 0:1 �m (compared to 0.55 nm for ideal
movers). By instead using only five knobs, the lowest
possible emittance growth for a 0:1 �m step size is re-
duced to 4.6 nm (2.0 nm for ideal movers). Further im-
provement of the step size tolerance is possible but this
depends on how large quadrupole displacements are ac-
ceptable. The number of quadrupoles may, for example,
not be optimal. The reason for choosing 20 quadrupoles
was in this case that it is the minimum number of quadru-
poles required to obtain a theoretically achievable emit-
tance growth of less than 0.5 nm.

Bumps based on simultaneous displacements of accel-
erating structures and quadrupoles seem to suffer from the
same sensitivity problem. A more detailed study of this
might, however, be needed.

The method could of course also be used for more
general knobs. Nothing prevents that additional parameters
are included in the knob/seed vectors. By extending these
vectors with the BPM readings at a few positions along the
linac, it could be possible to construct knobs that simulta-
neously reduce emittance and control the beam trajectory.
This would probably require using additional weights on
the different coordinates in order to have the right balance
between emittance reduction and trajectory control. The
direct connection between the squared norm of a vector
and emittance growth would, however, be lost.

B. ILC

There are a few important differences between CLIC
and ILC worth mentioning. First, the use of cavities for
wakefield canceling in the same fashion as for CLIC is not
possible for ILC since the cavities are not foreseen to be on
movers. Second, the emittance growth in ILC is mainly
caused by dispersion.

During the ILC simulations, a beam consisting of 550
macroparticles was used. A more accurate beam model
with a larger number of macroparticles gave identical
results. Most likely fewer macroparticles could have been
used without affecting the results, but even for a 550-
macroparticle beam the tracking through ILC is fast and
a model with fewer macroparticles was never tested.

As mentioned in Sec. I, the ILC emittance growth target
may be reached using beam-based alignment alone.
Simulations have, however, shown that emittance tuning
bumps are still useful [15]. During those earlier studies,
‘‘artificial’’ knobs were used without considering their
actual implementation. In this case, optimal knobs based
on quadrupole displacements were designed following the
procedure described in Sec. III. All ILC main linac quadru-
poles were used and knob vectors corresponding to the
vertical displacement of each of them was calculated. By
varying the number of principal knob directions and con-
structed knobs independently, it was found that ten princi-
pal knob directions and four knobs was a reasonable
choice. According to estimates (calculated as in
Sec. III D), this would give an rms displacement of
15 �m and an average remaining emittance growth of
0.05 nm, which is close to the theoretical minimum of
0.04 nm obtainable along the four most important principal
seed directions (cf. Fig. 10). Simulations of the knobs
confirmed the excellent performance and showed that con-
vergence is instant, see Fig. 23. While these results were
obtained by correction of the same seeds as the ones used
to construct the optimal knobs, very small differences were
obtained when a separate set of seeds was used to set up the
knobs. This was expected since the principal seed direc-
tions from two separate set of seeds had already been
shown to work equally well for emittance reduction
cf. Fig. 12.

A major problem of these ILC knobs is, however, that
they are extremely sensitive to the minimum achievable
mover step size. As mentioned in Sec. II B, this problem
may be cured by reducing the number of quadrupoles. The
20 most efficient quadrupoles were chosen stepwise. One
after the other, the most efficient quadrupole for emittance
reduction was determined. The emittance reduction capa-
bility of a group of quadrupoles is easily calculated by
SVD of the corresponding knob vectors and calculation of
the � matrix. The sum of the eigenvalues of this matrix
gives the total achievable emittance reduction, see
Sec. III D. As can be seen in Fig. 23, the performance of
four knobs based on 20 quadrupoles is nearly identical to
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that of four knobs using all quadrupoles. Simulations
showed that a final emittance growth of 0.054 nm could
be obtained using 20 quadrupoles (0.05 nm when all quad-
rupoles are used). Figure 24 shows that the sensitivity to
mover step size is efficiently reduced by using a smaller
number of quadrupoles. While the knobs based on all
quadrupoles become useless for a step size of 0.6–
0.7 nm or higher, the knobs using only 20 quadrupoles
reduce emittance growth to 0.30 nm even for a step size of
1 �m. This improvement, however, comes hand in hand
with an increase in the required quadrupole displacements.
The estimated rms displacement for the 20 quadrupoles is
189 �m, which is also confirmed by simulations.
Displacements of this order are acceptable for ILC.
However, in case the requirements were stricter, the num-

ber of quadrupoles could be chosen as a trade-off between
step size tolerance and acceptable displacements.

To show that the emittance target for ILC is reached, a
histogram can be constructed, see Fig. 25. This histogram
shows that, while beam-based alignment is barely enough
to reach the target of at least 90% of all machines below
��N � 10 nm, the additional use of emittance tuning
bumps reduces emittance to well below the target.

In terms of final emittance reduction, the optimal knobs
are only slightly better than dispersion and wakefield
knobs. The convergence speed of the optimal knobs is,
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however, clearly superior, see Fig. 26. The slow conver-
gence of the dispersion and wakefield knobs is due to the
fact that these knobs are not orthogonal. During these
simulations, the dispersion knobs were used to control
the particle coordinates directly in such a way to emulate
a change in dispersion in y and y0. The wakefield knobs
were based on cavity displacements even though no cavity
movers are foreseen. In total ten such artificial knobs were
used, four dispersion and six wakefield knobs. Note that
the methods described in Sec. III D not only offers a way to
construct optimal orthogonal knobs but also a way of
constructing knobs with any desired properties. In the
case of the artificial dispersion and wake field bumps
described above, a realistic implementation could be ob-
tained by replacing US in Eqs. (38) and (39) by the knob
vectors of the artificial knobs.

V. CONCLUSIONS

A general strategy for the design of emittance tuning
bumps has been developed. The strategy is based on sin-
gular value decomposition and can be used to diagnose
large sets of seeds and knobs in order to determine the
degrees of freedom that are useful for emittance reduction.
A new set of optimal knobs can then be constructed as a
linear combination of the old ones. These new knobs are
optimal in terms of emittance reduction performance, and
as a consequence of the construction method they are also
noninterfering in the vicinity of the emittance minimum. It
has been shown that the convergence of these noninterfer-
ing knobs is considerably better than for intuitively power-
ful knobs.

For CLIC, ten knobs based on displacements of 662
accelerating structures have been constructed. The fact
that the knobs are nearly noninterfering makes them con-
verge within two iterations, corresponding to 20 optimiza-
tion steps. During this tuning, emittance growth is reduced
from 23.8 to 0.34 nm, improving the final emittance growth
by a factor of 3 compared to using local emittance tuning
bumps. The new bumps are also clearly superior to pre-
vious designs of global tuning bumps, especially in terms
of convergence speed. The new bumps have been designed
such that the average rms displacement of the accelerating
structures does not exceed 5 �m. In addition, studies show
that they are not particularly sensitive to limitations in
minimum mover step size.

Simulations have also been carried out showing that
CLIC emittance tuning bumps based on quadrupole dis-
placements could work well. These bumps are very sensi-
tive to mover step size. For a step size of 0:1 �m,
emittance growth of less than 5 nm is, however, achievable.

For ILC, a set of four optimal knobs has been con-
structed. These knobs control the displacements of 20
quadrupoles, which had been identified as the 20 most
efficient for emittance reduction. For ideal movers, the
knobs converge in one single iteration (four optimization

steps) and reduce emittance growth from 3.8 to 0.05 nm,
thus outperforming ILC bumps tested previously. Excellent
emittance reduction is obtained even with a mover step size
of 1 �m with a final emittance growth of 0.3 nm.
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