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The spin response function is used to analyze the spin-flip resonance widths of stored polarized
deuteron beams. It is found, using simple model assumptions, that the contribution of the vertical betatron
oscillations (for an rf radial dipole field spin-flipper) reduces the resonance width by an amount in good
agreement with recent measurements. It is also noted that, for spin-flip measurements with an rf-solenoid
spin flipper, the spin response formalism also yields an answer consistent with experimental data.
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The spin flip of stored particle beams in situ is a valuable
experimental tool. The spin flip is typically accomplished
by sweeping the frequency of an rf dipole or rf solenoid (a
‘‘spin flipper’’) across the frequency of a depolarizing
resonance. (In practice, the spin flipper frequency is aliased
with a harmonic of the beam circulation frequency.)
Theoretically, the process can be analyzed using the
Froissart-Stora formula [1]. The formula was originally
derived for use in synchrotrons where the beam energy is
swept across the (fixed) frequency of a depolarizing reso-
nance. However, some care must be exercised when using
the Froissart-Stora formula to analyze the action of a spin
flipper; if the device is an rf dipole, then the ‘‘spin’’ flipper
can also excite vertical betatron oscillations, these oscil-
lations in turn can couple to the spins and decohere them
(i.e. depolarize the beam). This was noted, for example, at
LEP [2], where the (inadvertent) excitation of vertical
betatron oscillations during resonant depolarization mea-
surements was observed and caused the direction of the
backscattered photons to jump around, distorting the polar-
imeter readings. In this paper, I shall analyze a simple
model of the spin flip of a stored polarized beam, including
the coupling of the rf-dipole field to the vertical betatron
oscillations, to derive a simple expression for the ‘‘effec-
tive’’ resonance strength. I shall employ the ‘‘spin response
function’’ formalism developed by Kondratenko [3].
Kondratenko actually solved for the perturbation to the
n-axis, where he assumed that n0 (the unperturbed
closed-orbit solution) was vertical. However, the core of
Kondratenko’s formalism is applicable to the analysis of
the spin-orbit coupling induced by the coherent vertical
betatron oscillations driven by a radial field rf dipole. The
computer code ASPIRRIN [4] contains functionality to cal-
culate the spin response function.

Spin-flipping studies of stored polarized beams have
been performed at several storage rings, e.g., at the
IUCF Cooler using polarized proton beams [5–8] and
polarized deuterons [9], and at SHR at MIT-Bates using
polarized electrons [10]. Some of the studies employed rf
solenoids and others used radial field rf dipoles. In some
cases the spins were flipped in the presence of a nearly full-

strength Siberian snake (a solenoid snake in all cases)
[7,8,10].

More recently, the SPIN@COSY collaboration has per-
formed numerous spin-flip studies at the COSY Cooler
synchrotron, with beams of polarized protons [11,12] and
polarized deuterons [13]. A compilation of the data, and
theoretical calculations, for spin-flip resonance widths was
reported in [11]; large discrepancies between theory and
the measurements were noted. More recently, in [14], it
was reported that many of the differences for the polarized
proton data were due to interference with a nearby intrinsic
resonance. The data for the deuterons remains unex-
plained, and new spin-flip measurements of stored polar-
ized deuteron beams [15] also report experimental
measurements of the spin resonance widths which are
smaller (by a factor of about 7) than a naive theoretical
calculation which does not take into account the contribu-
tion of the vertical betatron oscillations. I shall apply the
spin response function to the reported data for polarized
deuterons, and demonstrate that Kondratenko’s formalism
can indeed account for the reduction in the observed spin-
flip resonance widths.

Note that there was some confusion in [11] of a factor of
2 in the definition of the theoretical expression for the
resonance strength. This was clarified by Bai, MacKay,
and Roser [16], and the statements in [15] indicate that the
matter seems fortunately to be resolved.

I first derive the well-known expression for the reso-
nance strength induced by the direct coupling of a radial
field rf dipole to the spin. This will confirm the expression
in [16]. I shall perform my calculation by solving for the
Fourier harmonics of the perturbing term in the spin-orbit
Hamiltonian. I shall then also derive an expression for the
coherent vertical orbital oscillation induced by a radial
field rf dipole, and its contribution to the spin-orbit cou-
pling. The resulting overall expression for the effective
resonance strength will involve not only the spin tune
and the rf-dipole parameters, but also the vertical betatron
tune.

I treat a simple model of a planar circular ring with
smooth focusing. Kondratenko [3] treated a general ma-
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chine lattice, and derived the relevant one-turn spin-orbit
integrals. He also evaluated his expressions for the simple
case of smooth focussing. The expression I shall obtain
below is very similar to the unnumbered displayed equa-
tion between Kondratenko’s Eqs. (7.13) and (7.14) in [3].

I treat a positively charged particle, of charge e and mass
m, with velocity �c. The Lorentz factor is � �
�1� �2��1=2. The particle momentum is p � mc��.
The particle spin will be denoted by s. The externally
prescribed electric and magnetic fields of the accelerator
will be denoted byE andB, respectively, with subscripts to
indicate an oscillating rf field, etc. I employ cgs units, so
the Lorentz force is e�E� �� B�. I treat a planar circular
ring of radius R. The independent variable is � � s=R,
where s denotes the arclength around the ring circumfer-
ence. The positive sense of circulation is counterclockwise
around the ring. The coordinate basis is fe1; e2; e3g, a right-
handed orthonormal triad, where e1 is radial, e2 is longi-
tudinal, and e3 is vertical. The radial and vertical particle
coordinates are denoted by x and y, respectively. The
unperturbed spin tune is �0 � G�. Here G � �g� 2�=2
is the particle’s magnetic moment anomaly. I neglect the
beam momentum spread (and/or synchrotron oscillations)
below; this is acceptable for the proposed comparison to
the COSY Cooler studies. As is standard, I model the radial
field rf dipole by a �-function (this was also done by
Kondratenko [3] and by Bai, MacKay, and Roser [16]).
This is an excellent approximation in practice.

The spin precession equation, for motion in external
transverse ( ? ) and longitudinal ( k ) magnetic fields, is
[17,18]

 

ds
dt
� �

e
mc

��
G�

1

�

�
B? �

G� 1

�
Bk

�
� s: (1)

Here the independent variable is the time t. In accelerator
coordinates, using � as the independent variable, the spin
precession equation is

 

ds
d�
� W � s; (2)

where, for a planar ring,

 W � �R
�
�G�� 1�

eB?
pc
� �G� 1�

eBk
pc

�
� e3: (3)

For the model of interest below, there is no longitudinal
magnetic field, and so

 W � �R�G�� 1�
eBy
pc
e3 � R�G�� 1�

eBx
pc
e1 � e3:

(4)

The terms along e3 describe spin precession around the
vertical axis. The radial field Bx comprises the contribu-
tions from radial field rf dipole and the ring quadrupoles
(vertical orbital oscillations). Now

 � R
I eBy
pc

d�0 � 2� (5)

and in fact I have already assumed that By is uniform
around the circumference. I shall decompose the term in
Bx into terms wosc (for the rf dipole) and wcoh (for the
vertical oscillation). Then

 W � �0e3 � wosce1 � wcohe1: (6)

Representing the spin operator by 1
2�, i.e., employing a

spinor representation, the spin-orbit Hamiltonian is

 H � 1
2W � � �

1
2��0�3 � wosc�1 � wcoh�1�: (7)

I shall need at some stage to transform to a frame rotating
around the vertical. Say the rotation tune is ��, then the
transformed Hamiltonian is

 

�H � 1
2	��0 � ����3 � ei ���3=2�wosc � wcoh��1e�i ���3=2


� 1
2	��0 � ����3 � ei ���3�wosc � wcoh��1
: (8)

I shall set �� � �0 below.
I now calculate the resonance strength for the direct

coupling of the radial field rf dipole to the spin. I follow
the notation by Bai, MacKay, and Roser [16]. I model the
dipole by a �-function at the location �osc. I write

 RBx � BoscL cos�Qosc�� ���p��� �osc�: (9)

Here Bosc is the amplitude of the oscillating radial field,
Qosc is the rf oscillation tune, and � is an initial phase. The
periodic �-function is

 �p��� �osc� �
X1

m��1

���� �osc � 2�m�: (10)

Since �p is real, its Fourier decomposition can be written in
the equivalent forms

 �p��� �osc� �
1

2�

X1
k��1

eik����osc�

�
1

2�

X1
k��1

e�ik����osc�: (11)

Both versions will be used below. Then

 wosc � ��G�� 1�
eBoscL
pc

cos�Qosc�� ���p��� �osc�:

(12)

Its Fourier decomposition is
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 wosc � �
1

2
�G�� 1�

eBoscL
pc

	ei�Qosc����

� e�i�Qosc����
�p��� �osc�

� �
G�� 1

4�
eBoscL
pc

X1
k��1

	ei	�Qosc�k���k�osc��


� e�i	�Qosc�k���k�osc��



� �
G�� 1

2�
eBoscL
pc

X1
k��1

cos k: (13)

In the last line I introduced a symbol which will appear
frequently below:

  k � �Qosc � k��� k�osc � �: (14)

The next step is to transform to the rotating frame (setting
�� � �0) as follows:

 

�wosc � � � ei�0��3wosc�1

� �
G�� 1

4�
eBoscL
pc

ei�0��3

�
X1

k��1

	e�i k�3 � ei k�3
�1: (15)

This is the standard decomposition of a radial field into
counterrotating circular fields. Define �� � �1 � i�2.
The terms
 

e�i� k��0���3�1 � <fe
�i� k��0����g

� cos� k � �0���1 � sin� k � �0���2

(16a)

ei� k��0���3�1 � <fe
i� k��0����g

� cos� k � �0���1 � sin� k � �0���2

(16b)

describe, respectively, fields rotating counterclockwise and
clockwise around the vertical axis. Then

 

�w osc � � � �
G�� 1

4�
eBoscL
pc

�
X1

k��1

<fe�i	�Qosc��0�k���k�osc��
��

� ei	�Qosc��0�k���k�osc��
�3��g

�
X1

k��1

<f	�k e
�i�Qosc��0�k����

� 	�k e
i�Qosc��0�k����g: (17)

The next step is to make the approximation that the reso-
nances induced by the individual harmonics are well sepa-
rated. One then selects only the harmonic which is closest
to zero. This harmonic is slowly varying while the others
oscillate rapidly and average to zero (but see below).

Suppose that the slowest varying harmonic is one of the
	�k terms, and that Qosc � �0 � k is closest to zero when
k � j. Then

 

�w osc � � ’ <f	�j e
i�Qosc��0�j����g: (18)

A similar expression occurs if the slowly varying term is
	�j instead. The resonances driven by the 	�j terms are
Qosc � j� �0, respectively. The resonance strength is the
amplitude of the relevant harmonic:

 j	�j j �
��������G�� 1

4�
eBoscL
pc

��������: (19)

This agrees with the expression derived in [16].
I comment briefly on the validity of the averaging over

the ‘‘rapidly varying’’ Fourier harmonics. The terms in 	�k
drive the ‘‘mirror resonances’’ Qosc � k� �0. In general,
the spectra of resonances and mirrors do not coincide. This
is not so, however, if the value of the fractional spin tune
	�
 is either 0 or 1

2 . Then there will be two slowly varying
terms in the spin-orbit Hamiltonian, say 	�j and 	�j0 . The
magnitudes of the Fourier harmonics are equal: j	�j j �
j	�j0 j. Both resonances are driven simultaneously, but this
does not mean that the resonance strength is doubled.
Instead, it means that the averaging which was implicit
in the above derivation for the resonance strength is in-
valid. As the rf-dipole frequency is swept, the resonance
and its mirror are crossed in opposite directions, so what
really happens is that the adiabatic condition for spin
flipping cannot be achieved. This circumstance was noted
already by Koop and Shatunov [19], who worked out the
theory for spin flipping in a ring with Siberian snake(s).

I now treat the second contribution to the depolarization:
an oscillating radial dipole field can also drive a coherent
vertical orbital oscillation. One must solve Hill’s equation
with a driving term:

 

d2y

d�2
�Gyy � �R

2 eBx
pc

: (20)

Here Gy is the focusing function

 Gy � �R
2 e
pc

@By
@x

: (21)

I treat a smooth focusing model, so

 Gy � Q2: (22)

Naively, one expects thatQ is the vertical betatron tune, but
one should not be hasty on this point. Since the rf dipole is
being modeled as a point object, one should really solve for
the coherent oscillation ycoh using a one-turn map from �osc

to �osc � 2� followed by a kick to dy=d�, followed by
another one-turn map plus kick, etc. In this scenario, the
value of Q is aliased to the betatron tune plus an integer. I
proceed with the differential equation formalism. Then
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d2y

d�2
�Q2y � �R

eBoscL���
pc

�p��� �osc�

� �
R

4�
eBoscL
pc

X1
k��1

�e�i k � ei k�: (23)

This can be solved by linear superposition, by writing
ycoh � y� � y�, where

 y� �
X1

k��1

y�k (24)

and

 

d2y�k
d�2

�Q2y�k � �
R

4�
eBoscL
pc

e�i k : (25)

The solution is

 ycoh � �
R

4�
eBoscL
pc

X1
k��1

e�i k � ei k

Q2 � �Qosc � k�2
: (26)

The contribution of the coherent vertical orbital oscillation
to the spin precession occurs via the radial fields in the ring
quadrupoles:

 wcoh � �R�G�� 1�
e
pc
Bquad: (27)

In a smooth focusing model

 wcoh � ��G�� 1�
Q2

R
ycoh: (28)

Using the expression for the orbital oscillation derived
above,

 wcoh � Q2 G�� 1

4�
eBoscL
pc

X1
k��1

e�i k � ei k

Q2 � �Qosc � k�2
:

(29)

The total spin response is

 wresp � wosc � wcoh

� �
G�� 1

4�
eBoscL
pc

X1
k��1

�e�i k � ei k�

�Q2 G�� 1

4�
eBoscL
pc

X1
k��1

e�i k � ei k

Q2 � �Qosc � k�
2 :

(30)

This can be simplified to

 wresp � �
G�� 1

4�
eBoscL
pc

X1
k��1

�e�i k � ei k�

�
�Qosc � k�

2

�Qosc � k�2 �Q2 : (31)

One can now transform to the rotating frame, etc. It is clear
that the resonance strengths are similar to before, but
multiplied by a factor which depends on k and the vertical
betatron tune. The resonance coefficients are

 �w�k � 	�k
�Qosc � k�2

�Qosc � k�2 �Q2 : (32)

The technical definition of the resonance strength is ob-
tained by setting the rf-dipole frequency to the center of the
resonance. As before, suppose the slowly varying har-
monic corresponds to k � j, then set Qosc � j � ��0

(for an 	�j term, respectively). The effective resonance
strength is

 j �w�j j � j	
�
j j

�������� �2
0

�2
0 �Q

2

��������: (33)

I now compare the theoretical calculation to the mea-
surements reported in [13]. A summary of the comparison
is displayed in Table I. The deuteron beam was accelerated
to a desired final energy and the beam then coasted at
flattop (the rf cavities were shorted). Hence, there were
no synchrotron oscillations, which justifies the neglect of
synchrotron oscillations in the above theoretical calcula-
tions. From [13], the vertical betatron tune was Qy � 3:6
and the relative momentum spread was ��p=p�rms � 5�
10�4. I shall treat the deuteron beam as monoenergetic.
The flattop momentum was reported as 1:85 GeV=c, and
the spin tune was �0 � G� � �0:200 84, which is nega-
tive because for deuteronsGd ’ �0:142 987. The rf-dipole
field integral was �0:54� 0:03� T-mm (rms), so one can
calculate

 	th �
�0:200 84� 1

4�

���
2
p
� �0:54� 0:03� � 10�3

1:85� 3:3356

� �7:9� 0:4� � 10�6: (34)

The information in [13] gave the theoretical value (divided
by 2; see my statement above about a temporary confusion
concerning factors of 2) of

 	th � �8� 0:5� � 10�6 (35)

TABLE I. Comparison of experimental and theoretical resonance strengths (including the spin response function) for the spin
flipping of stored polarized deuteron beams.

Particle Resonance G� Q 	th (� 106) �wth (� 106) 	exp (� 106)

Deuteron 1� G� �0:20084 0.6 8� 0:5 1:0� 0:06 1:165� 0:014 (vector)
1:155� 0:027 (tensor)
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which is very close to Eq. (34). I use the value in Eq. (35)
below. The experimental studies for the spin flip of the
vector and tensor deuteron polarizations yielded the same
resonance strength, within the experimental precision.
(One expects this to be the case from angular momentum
theory, but experiments must check such details.) The
experimentally measured values of the resonance strengths
were [13]
 

	V � �1:165� 0:014� � 10�6 (36a)

	T � �1:155� 0:027� � 10�6: (36b)

The rf-dipole frequency was aliased to the resonance 1�
G�, so Qosc � 1� �0 ’ 0:8 so I alias Q � Qy � 3 � 0:6.
Then

 

�2
0

�2
0 �Q

2 ’
��0:200 84�2

��0:200 84�2 � �0:6�2
’ �0:126 (37)

and the effective resonance strength is

 �w th ’ �1:0� 0:06� � 10�6 (38)

which is remarkably close to the experimental value.
I make some further observations:
(i) More recent deuteron spin-flip studies reported in

[15], also at a vertical betatron tune of 3.6, also
yielded experimental widths about a factor of 7
smaller than the naive theoretical calculation (i.e.
without the inclusion of the spin response function).
This is consistent with the above finding of �0:126.

(ii) It is also stated in [15] that deuteron spin-flip mea-
surements made previously at the IUCF Cooler [9]
gave a data/theory ratio close to 1. However, it was
also stated that the IUCF Cooler spin-flip studies of
polarized deuterons employed an rf solenoid. A
solenoid (longitudinal magnetic field) does not ex-
cite vertical betatron oscillations, so the multiplier
from the spin response function is unity for an rf
solenoid. Hence, it is a pleasant confirmation of
Kondratenko’s spin response formalism [3] that
the IUCF Cooler studies reported a data/theory ratio
close to unity.

(iii) Additional studies reported in [15] measured the
data/theory ratio of resonance width as a function
of the vertical betatron tune (see Fig. 4 of [15]).
The experimenters fitted the data/theory ratio using
a functional form

 r � A�
B

�r � �y
; (39)

where �r ’ 3:798 [15] is the resonant tune and �y is
the vertical betatron tune. This is not too different
from the simple functional form I derived in
Eq. (33). The presence of a nondiverging term A

is quite natural, if one employs a more detailed
model than I have done.

To conclude, the polarized deuteron spin-flip data at
both the COSY Cooler [13,15] and the IUCF Cooler [9]
support the validity of Kondratenko’s spin response for-
malism [3] for resonance widths. In the case of the IUCF
Cooler measurements, the use of an rf solenoid indicates
that the naive theory is indeed satisfactory when vertical
betatron oscillations are not excited by the spin flipper. The
model I have developed above is very simple. A more
detailed treatment of the COSY Cooler machine lattice
should be able to explain the other data reported in [15]
(e.g. sweep of vertical betatron tune) which I have not
treated above.
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