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A critical process in high-brightness photoinjectors is emittance compensation, which brings under
control the correlated transverse emittance growth due to the linear space-charge force. Although
emittance compensation has been used and studied for almost two decades, the exact criteria to achieve
emittance compensation is not as clear as it should be. In this paper, a perturbative analysis of slice
envelopes and emittance evolution close to any reference envelope is developed, via which space-charge
and chromatic effects are investigated. A new criterion for emittance compensation is found, which is
complementary to the well-known matching condition for the invariant envelope and agrees very well
with simulations.
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I. INTRODUCTION

Under conditions that yield high-quality, well-behaved
beams, the transverse dynamics in photoinjectors is domi-
nated by the reduced envelope equation [1],
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�̂3 � 0: (1)

Here we consider axisymmetric systems and use the re-
duced coordinates �̂ �

�������
��
p

�, where �� is the dimen-
sionless momentum of the reference particle and � is the
rms beam size. � is the external focusing strength due to
solenoid as well as (ponderomotive) rf focusing, �s is beam
perveance, and �n is the normalized rms emittance. For a
space-charge-dominated beam, the emittance term is much
smaller than the space-charge term and thus can be omitted
in most cases.

Since the external focusing, and especially the space-
charge defocusing, depend on the longitudinal positions,
each longitudinal slice follows its own envelope evolution,
which may be quite different from the central reference
slice. Thanks to the longitudinal laminarity, the envelope
equations of all slices are independent of each other and
coupled only through the evolution of slice parameters
such as the perveance. While the emittance of an individual
slice can be considered constant, the total projected emit-
tance

 �tot �
����������������������������������������
h�̂2ih�̂02i � h�̂�̂0i2

q
(2)

can vary dramatically, where h� � �i indicates averaging over
slices. A main task in photoinjector design is to control the
projected emittance growth—a process known as emit-
tance compensation [2]. Simulations based on envelope
equations of a large number of slices have successfully
captured emittance evolution in photoinjectors [3] and
compared well with particle-by-particle tracking and ex-
periments [4].

On the theoretical front, the special equilibrium solution
(the invariant envelope) [5,6]

 �̂ inv �

�����
�s
�

r
; �̂0inv � 0 (3)

of Eq. (1) was found over a decade ago for a space-charge
dominated constant channel, where � and �s are constant
and the emittance term can be dropped. Emittance oscil-
lation close to this quasiequilibrium in a booster represents
the current model of emittance compensation and Eq. (3)
provides matching conditions of practical importance.
Nonetheless, this model is inadequate for describing the
emittance-compensation process from the cathode to the
booster entrance (the original compensation process of
Carlsten [2]) because the slices could be far away from
equilibrium and furthermore there is no equilibrium at all
in the drift space. As a result of this deficiency, the criteria
to achieve emittance compensation (especially the condi-
tion to minimize the unavoidable mismatches for achieving
small emittance) is not as clear as it should be in theory,
and simulation is the only option for design in practice.

To overcome this deficiency, we developed a perturba-
tive framework for investigating envelope evolutions close
to any reference envelope instead of the special invariant
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envelope ��inv. Through detailed analysis, we identified the
major driving terms for the nearby envelopes and estab-
lished simple perturbative solutions that can capture the
basic dynamics of envelope and emittance evolution from
the cathode to the booster and beyond. Assuming the slice
dependence of the driving terms dominate and smooth out
their s-dependence, an additional criterion for emittance
compensation is found, which complements the well-
known matching condition in Eq. (3) by providing a con-
dition for minimizing the unavoidable mismatches to the
invariant envelope. The new criterion agrees very well with
simulations.

To assist our analysis and illustrate the results, we use
the optimized design of the SPARC photoinjector [7],
which is a typical high-brightness photoinjector. Slice
envelopes, as well as other design information, are ex-
tracted from HOMDYN [8] simulation, which has been
benchmarked with particle-tracking programs [9] such as
PARMELA. In this paper, we focus more on the emittance
compensation from the cathode to the booster entrance,
where invariant envelope theory does not apply.

II. PERTURBATIVE ENVELOPE SOLUTIONS

Using ��, ��s, and �� for the reference slice, and using
�� � �� ��, ��s � �s � ��s, and �� � �̂� �� for the
small derivations of a nearby slice, we can rewrite the
envelope equation, Eq. (1), in a form suitable for perturba-
tive treatment as
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where � � ����n=
�����
��s
p

���2 is the ratio of the emittance
term to the space-charge term in Eq. (1). Note that the
coefficient of �̂ is the linearized focusing around the
reference envelope. We have used, in the second step,
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and expanded to the second order in small deviations in the
last step. The left-hand side of Eq. (4) is the linear focusing
part of the envelope equations for all slices in the neighbor-
hood of the reference envelope. The right-hand side is the

inhomogeneous as well as nonlinear parts. Given the in-
formation of the reference slice, the neighboring slices can
be solved perturbatively.

To the linear order in small deviations, we have an
inhomogeneous first-order ordinary differential equation
(ODE) for the envelope deviations,
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where the linear focusing strength
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the space-charge force
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; (7)

and
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is the perturbations to the inhomogeneous driving term.
The general solution of Eq. (5) reads
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(9)

where R�s� is the transfer matrix from the cathode to
location s for the homogeneous solution.

The nonlinear ODE for the reference slice can also be
written formally in a form similar to Eq. (9) as
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where we have introduced
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Therefore, to the first order in small deviations, the general
solutions for the slices in the neighborhood of a given
reference slice can be written as
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The first term is an ‘‘orbit offset’’ of the reference envelope
due to the nonlinear space-charge term in the envelope
equation. The second term is the linear propagation of the
initial envelopes. The last term is the envelope deviations
driven by variations in both external focusing and space-
charge defocusing among slices. Since the linear system is
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symplectic with jRj � 1, the first two terms by themselves
preserve the emittance relative to the reference envelope.
On the other hand, without proper control, the last term can
cause significant emittance growth.

The second-order correction ��2 can be worked out by
inserting the first-order corrections of Eq. (9) into the
second-order driving terms, which gives

 d2 � �1� 6��
��2

1

��2 �
��s

��s

��1

��
�

��
��s

����1 (13)

and the second-order corrections as

 

��2

��02

� �
� R�s�

Z s

0
d�FscR

�1���
0
d2

� �
: (14)

III. EMITTANCE CALCULATION FORMULA

To obtain bunch emittance from the envelope solutions
above, we have to compute Eq. (2). Although easy to
calculate numerically, the emittance expression is very
difficult to manipulate analytically in a straightforward
manner. Here we derive a useful formula for handling the
rms emittance.

Let us start with a general linear expansion,
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Here X and P are some phase-space variables, e.g., �̂ and
�̂0. X
�s� and P
�s� are the linear response function of X
and P to certain (stochastic) quantity q
, which may vary
and result in a distribution in phase-space. q
’s in general
contain small fluctuations in some variables such as initial
conditions, parameters, and so on. Let us assume that q
’s
fluctuations are uncorrelated, i.e.,

 q
q� � �q
 �q� � �q2

�
�; (16)

where the overhead bar indicates phase-space average,
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q
is the standard deviation of q
, and �
�

is the Kronecker delta. Then the emittance can be calcu-
lated as
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where X stands for the vector � �X;X1 �q1; X2 �q2; . . .�, and so
does P. A pair of vertical bars stands for the determinant.
The W functions are defined as
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P
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In the second-to-last step we have used the Lagrange’s
Identity. With P � X0, the function W is the Wronskian of
the two functions involved. To verify and appreciate the
power of the formula in Eq. (17), one may try to work out a
simple case in brute force. This formula improves upon the
result used in [10] for explaining emittance oscillation in
drift space. It is more involved to take into account the
correlations among fluctuating quantities.

IV. EMITTANCE-COMPENSATION CRITERIA

We have seen various driving terms that may cause
emittance growth and oscillation. Their effects are difficult
to compute analytically. Nonetheless, we estimate it as, via
Eq. (11),
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where �d is the average part of the driving terms and reflects
their overall magnitudes. As we shall see later, the driving
terms have large amplitude variations among slices in
addition to s-dependence. Let us assume that, because of
the large variation in driving-term amplitudes from center
to edge slices, the first term dominates at least the corre-
lated variations and the second term can be ignored (note
that the residual driving-term average to zero for space-
charge dominated beam with � � 0), then the beam enve-
lope of Eq. (12) can be approximated as
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Insert this envelope expansion into the emittance formula
and ignore any correlations, and we obtain the bunch
emittance as
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where
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and var�x� stands for the variance of x. In the Wronskians,
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the �� should be the average envelope but its difference
from the center reference envelope should be minor. �0 is
from the var��̂0� var��̂00� term whose Wronskian is jRj �
1. There are two more high-order terms dropped from
Eq. (21). One is �R11	0 � R21	�2 var� �d� var��̂0�, the other
is �R12	0 � R22	�2 var� �d� var��̂00�.

The emittance expression Eq. (21) suggests that, in order
to minimize the detrimental effects of various driving
terms and accomplish emittance compensation, it is neces-
sary to set

 Wd � 0 (23)

at the location of interest. Particularly, at the entrance of
the booster, the beam should be well compensated
and matched onto the invariant envelope in the booster
with the condition ��0 � 0. Therefore, the emittance-
compensation criteria at the entrance of the booster sb

can be summarized as

 Wd�sb� � 0 and ��0�sb� � 0: (24)

Let ��R represent the linear part of the reference envelope
propagated by the matrix R, i.e.,
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then, Wd can be rewritten via Eq. (10) as
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Thus Eq. (24) implies ��0�sb� � ��0R�sb� � 	0�sb� � 0.
The criteria 	0�sb� � 0 can also be viewed as the result

of minimizing deviations from the matching condition
�̂0 � 0 for all slices. Since the angle deviations due to
various driving terms are given by Eq. (19), a reasonable
way to eliminate the effect of such perturbations on �̂0 is to
get rid of the first term by setting 	0�sb� � 0, assuming
little could be done for the second term due to uncorre-
lated/incoherent variations among slices.

The Wronskian in Eq. (26) has an interesting integral
expression. Since both �� and 	 satisfy the same envelope
equation of Eq. (4), we have

 W0d � 	 ��00 � 	00 �� � ��2� 4��Fsc ��R; (27)

where the second derivatives are replaced using the enve-
lope equation. By definition we have the initial conditions
	�0� � 	0�0� � 0 and thus Wd�0� � 0. Therefore,

 Wd�s� � �
Z s

0
d��2� 4��Fsc ��R ’ �2

Z s

0
d�Fsc ��R:

(28)

The second expression holds for a space-charge dominated
beam. It shows that emittance compensation requires

 

Z sb

0
d�Fsc ��R � 0: (29)

This indicates that ��R must change sign (and sufficiently
soon, before the space-charge force drop too much) during
the process to achieve emittance compensation. Note that
the quantity ��R, defined in Eq. (25), is not the beam
envelope �� (which is ��R � 	 and must be positive) and
can be negative.

It is also interesting to note that Fsc ��R represents the
work done by the linear space-charge force to displace the
envelope by ��R, the linear part of the envelope evolution.
Thus, the criteria might be viewed as: The total work done
by the space-charge force (on small virtual displacements
proportional to the reference envelope) amounts to zero.

V. SPACE-CHARGE AND CHROMATIC EFFECTS

In this and the following sections, we apply our frame-
work to the optimized SPARC photoinjector design.
Figure 1 shows the relativistic factor ��, the external
focusing strength ��, and the perveance ��s for the central
slice. These quantities are extracted from HOMDYN simu-
lation outputs. In addition, the initial conditions as well as
perveance and energy deviations of all slices are extracted
from HOMDYN. Using these, the envelope equation can be
numerically integrated to obtain �̂ and �̂0 for all slices,
from which rms emittance is computed (these computa-
tions were done with MATHEMATICA). Various effects are
studied by changing the driving terms in the envelope
equation. Our main concern is emittance compensation
from the cathode to the booster entrance at about 1.5 m,
during which the beam is space-charge dominated with
� � 0.

It is well known that space-charge plays a key role in
emittance compensation. The perveance deviations among

2 4 6 8
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perveance drops while debunching in drift

rf and solenoid focusing
driftdrift

solenoid focusing for emittance compensation

κ
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FIG. 1. (Color) ��, � [1=m2], and �s of the central slice in
green, red, and blue, respectively.
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slices, ��s in d of Eq. (8) and (12), yield the slice-
dependent space-charge effects. Another key player is the
chromatic focusing that varies among slices, arising from
the time-dependent rf and solenoid focusing, as suggested
in [2,11]. It contributes to the �� in d and is given by the
expression [6]

 ��c � �

�
�02

4
� �2

�
qBs
2mc

�
2
� �2 ��s

��2

�
�z ’ � ��tot�z;

(30)

where �z is the relative deviation of longitudinal kinematic
momentum, Bs is the solenoid field strength, and ��tot is the
total focusing strength for the reference slice. The familiar
form of chromatic focusing � ��tot�z applies when �
 1.
In addition to its chromatic effect, the time-dependent rf
focusing may contribute a geometric aberration as well

(the wg term in [6]). However, it appears to be small. In
the following, we show that space-charge and chromatic
effects account for most of the emittance evolution, at least
in the case of the SPARC photoinjector.

To examine the magnitudes of the last four driving terms
in the square bracket of Eq. (4) before the last-step ap-
proximation, we computed each driving term and plotted
them in Fig. 2 for the 3rd and 10th slices in the head and in
the tail of a 55-slice bunch, respectively. The space-charge
and chromatic driving terms are large before the booster
entrance, and quite small afterwards. On the other hand,
the nonlinear driving terms become large in the booster.
These driving terms become quite large (compared to the
constant 2) for slices in the head and tail of a bunch. Note
that for both space-charge and chromatic driving terms,
despite large variations in amplitudes, the shapes are simi-
lar among slices. In fact, to a fair approximation, it is
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0.5 1 1.5 2 2.5 3
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FIG. 2. (Color) Magnitudes of the four dimensionless driving terms in Eq. (4) as a function of s. The curves are, respectively, the
space-charge term ��s

��s
��
�̂ in red, the chromatic term ��

��s
�� �̂ in blue, and nonlinear terms ��2

�� �̂ in green and �� ��3

�̂3 � 3 �̂
��� in magenta.

Plots (a) and (b) are for the 3rd and 10th slices from the bunch head. Plots (c) and (d) are for the 3rd and 10th slices from the tail.
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FIG. 3. (Color) Decomposition of space-charge (red) and chromatic (blue) driving terms ��s
��s

��
�̂ and ��

��s
�� �̂ into (a) common

s-dependent variation and (b) slice-dependent normalized amplitudes.
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possible to decompose the driving term in the form u �
f�s�, where u is a slice-dependent amplitude and f is a
s-dependent function common to all slices. Such a decom-
position can significantly simplify the computation of the
integrals in the envelope solution by taking the slice de-
pendence of driving terms out of the integral. Figure 3
shows the u and f for space-charge as well as chromatic
driving terms for the 53 slices used in our computation.
(The first and last slices were excluded to avoid potential
complications due to discontinuity associated with the
beer-can bunch model.) Note that the space-charge term
is always negative while the chromatic term changes signs
from head to tail.

To examine the effects of these driving terms on the
emittance, we numerically solved the envelope equations
Eq. (4) for all slices, using the original � and �s of each
slice, including only selected driving terms. The results are
shown in Fig. 4, which contains six emittance curves: the
black one is the HOMDYN result; the other five include from
none to all of the four terms shown in Fig. 2. Clearly, the
space-charge and chromatic effects account for most of the
emittance evolution. The residual difference from HOMDYN

could be due to unaccounted effects in our current analysis,
such as image charge from the cathode as well as other
nonlinear effects.

The first-order space-charge and chromatic effects can
be calculated with the simple expression in Eq. (12), which
is the solution of Eq. (4) up to first-order perturbations. To
examine the validity of this approximate solution, we
numerically computed the envelope for each slice with
its ��s and ��c extracted from the HOMDYN output. The
results are plotted in Fig. 5. Again, we see that both space-
charge and chromatic effects are significant and together
they account for most of the emittance oscillation. It is
encouraging to see that first-order perturbation theory
works fairly well. The difference between the green and

black curves increases in the boosters because the non-
linear driving terms in Eq. (12) become large with increas-
ing � and envelope derivation ��. It appears that the
emittance oscillation is more coherent in these first-order
results than the results containing higher-order/nonlinear
terms as shown in the previous figure. In other words,
nonlinearity suppresses the coherent emittance oscillation
and tends to spoil associated emittance compensation. In
fact, the emittance minimum close to the entrance of the
second booster is apparently wiped out. The green curve
ends up above the black one because it is going through a
maximum in emittance oscillation.

VI. EMITTANCE COMPENSATION IN SPARC
PHOTOINJECTOR

To examine the new criteria for emittance compensation
with HOMDYN simulation, Fig. 6 plots the three quantities
��0, ��0R, and 	0 along the injector axis. Clearly they go

2 4 6 8
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no slice-dependent driving terms
with 1st-order space-charge term
with 1st-order s.c. and chromatic
HOMDYN simulation

FIG. 5. (Color) Effects of first-order driving terms on the emit-
tance via Eq. (12). The black and magenta curves are the same as
in Fig. 4. The blue curve includes only space-charge and the
green curve includes both space-charge and chromatic driving
terms in Eq. (8).

1 2 3 4 5 6

-0.01

-0.005

0.005

0.01

0.015

0.02

0.025

s [m]

FIG. 6. (Color) ��0�s� in red, ��0R�s� in black, and 	0�s� in blue.
Emittance compensation requires ��0 � ��0R � 	0 � 0 at the
booster entrance at about 1.5 m.
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FIG. 4. (Color) Effects of various driving terms on the emit-
tance. The black curve is from HOMDYN. The magenta, blue,
green, cyan, and red curves include, respectively, from 0 in-
creasingly up to all 4 driving terms in Eq. (4) in the order that
they appear in the equation.
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through zero together at the booster entrance as required
for emittance compensation. Note that the optimized
HOMDYN simulation was done before the starting of this
work, following the criteria of Eq. (3) and scanning in
parameter space for minimum emittance. Thus, this is an
independent check and strong support of our finding.
Emittance compensation also shows up further down the
beam line as expected. The Wronskian Wd�s� and its
derivative are shown in Fig. 7. Again we see that Wd � 0
at the booster entrance as demanded by the emittance-
compensation criteria. The area above the axis and under
the black W0d curve is compensated by the area below the
axis up until the booster entrance. Note that most of the
growth in Wd occurs very close to the cathode when the
electrons are still nonrelativistic.

The criteria we obtained agree very well with simula-
tions. In fact, it holds better than we would expect from
perturbative treatment and the approximations lead to
Eq. (21), which makes us wonder if there might be other
explanations. It would be interesting to see if such criteria
hold for other optimized photoinjectors, especially those
resulting from automated multiobjective optimization [12].
We must mention that, although the W2

d var� �d� term in
Eq. (21) may have captured the essence of correlated
contribution to the emittance and thus leads to the
emittance-compensation criteria as was demonstrated in
Figs. 6 and 7, it may not be suitable for calculating the total
emittance in details, for which information presented in
Fig. 3 can be used to compute slice envelopes, and corre-
lations need to be considered in emittance computation. It
turns out that, after emittance compensation, the W� term
shown in Fig. 8 dominates the emittance oscillation (espe-
cially the two minima) shown in Fig. 5.
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FIG. 8. (Color) W� and jW�j of Eq. (21). Note that the two
minimum locations agree with those in Fig. 5.

FIG. 7. (Color) Wd�s� in red and W0d�s� in black. Emittance
compensation requires Wd � 0 at the booster entrance around
1.5 m.

CRITERIA FOR EMITTANCE COMPENSATION IN HIGH- . . . Phys. Rev. ST Accel. Beams 10, 104201 (2007)

104201-7


