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The study of beam dynamics and the localization of potential sources of instabilities are important tasks
in the design of modern, high-intensity particle accelerators. In the case of synchrotrons and storage rings,
coupling impedance data are needed to characterize the parasitic interaction of critical components with
the beam. In this article we demonstrate the application of numerical field simulations to the computation
of transverse kicker coupling impedances. Based on the 3D simulation results, a parametrized model is
developed to incorporate the impedance of an arbitrary pulse-forming network attached to the kicker.
Detailed comparisons of numerical results with twin-wire and direct measurements are discussed at the
example of the Spallation Neutron Source extraction kicker.
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I. INTRODUCTION

The electromagnetic interaction of an intense charged
particle beam with its vacuum chamber surroundings in an
accelerator plays an important role for the study of beam
dynamics and collective beam instabilities [1]. The so-
called wakefields generated by particles moving through
an accelerator component such as kickers affect the motion
of the following particles in the beam, and may cause the
loss of particles, beam energy spread, and instabilities. In
order to avoid collective beam instabilities that limit the
accelerator performance, an accurate numerical descrip-
tion of the effect of wakefields on the beam is necessary.

Obviously, the description of the full physical prob-
lem—the self-consistent motion of a large number of
classical, charged particles interacting with the accelerator
and with each other—is rather complex. For very dilute
beams, the direct electromagnetic interaction between par-
ticles can be neglected against the steering external fields
imposed by the accelerator, implying that a single-particle
picture is sufficient for computing trajectories. Upon going
to higher intensities, direct (so-called space-charge) inter-
actions and wakefield effects become relevant. Models for
the former are usually built directly into the beam-
dynamics simulations. The characterization of wakefield
effects is most easily achieved in a two-particle picture: A
first, source particle excites electromagnetic fields in an
accelerator component. A second, test particle interacts
with the fields and thus suffers a certain momentum change
which depends on the distance to the first particle and
further parameters, like axis offsets. Instead of solving
the equations of motion for these particles, fixed, straight
trajectories are assumed as a further simplification (the
rigid-beam approximation).

In the case of synchrotrons and storage rings, wakefield
effects are most conveniently described in the frequency
domain, leading to the concept of coupling impedances
(see Sec. II). As coupling impedances are given by the

complex electromagnetic interaction of beam particles
with the accelerator components, beam-dynamics simula-
tions do normally not incorporate the respective models,
but require the coupling impedance data from a separate
source. Having in mind that analytical calculations are not
able to cope with the geometrical complexity of a typical
accelerator component like a kicker, and that measure-
ments have the drawback of needing prototypes, we will
demonstrate in this work that numerical field calculations
offer a convenient alternative to obtain coupling imped-
ance data.

In this paper, for brevity, we consider only transverse
coupling impedances. In Sec. II, we will review their
definition and discuss the twin-wire approximation that is
used in the simulations. In Sec. III, the essential features of
our numerical approach will be discussed, including the
procedure used to incorporate into the simulations the
external pulse-forming network (PFN) of a kicker. In
Sec. IV, we will introduce a parametrized model for the
PFN influence on transverse kicker impedances. One mod-
ule of a kicker used in the Spallation Neutron Source (SNS)
accumulator ring [2], will be treated as an example in
Sec. V. In particular, we will compare our numerical results
with the detailed measurements performed by Davino and
Hahn on a prototype [3–6]. In Sec. VI, we will give a
summary and conclusions.

II. TRANSVERSE COUPLING IMPEDANCE

A. Definition

We follow the notation of Refs. [1,7]. The vertical
coupling impedance in the Cartesian coordinate system is
defined by

 Zy�!� �
i

q�

Z 1
�1

dz�Ey � �cBx�eikz; (1)

where z is the beam direction, and x and y are the hori-
zontal and vertical directions, respectively. In Eq. (1) the
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particles move in the z-direction with velocity �c, and k �
!=�c. Ey and Bx are the y-component of the electrical
field [E�x; y; z;!�] and x-component of the magnetic field
[B�x; y; z;!�], respectively. The fields are in turn generated
by the beam which is modeled as the current density
j�x; y; z;!�, whose components are jx � jy � 0 and

 jz�x; y; z;!� � q��x���y� ��e�ikz: (2)

Notice that Eq. (2) describes in the frequency domain
a point charge q traveling along the z-axis with velocity
�c and vertical offset y � �, i.e. jz�x; z; y; t� �
q�c��x���y�����z� �ct�. Here, the offset � is essen-
tial to the definition of Zy, as well as the fact that fields in
Eq. (1) are evaluated at x � y � 0. Analogous expressions
can be written down for the horizontal coupling
impedance.

We remark that we have adopted a convention where the
fieldsE andB carry the units of Vs=m and Ts, respectively,
as they constitute spectral densities. Similarly, �j� �
As=m2, so that Zy has the unit of �=m. The reason for
the occurrence of 1=m is that Zx represents an impedance
per transverse displacement, �: For a small enough �, Zy
becomes independent of �.

B. Two-wire approximation

Upon using Faraday’s law we can rewrite Eq. (1):

 Zy�!� �
�1

kq�

Z 1
�1

dz�@yE
�
z �j�0;0;z;!�e

ikz; (3)

where the ‘‘�’’ superscript reminds us that the excitation
current is located at offset y � ��. Because of the line-
arity of Maxwell’s equations, we obtain the same expres-
sion from a negative source term at y � ��, leading to the
following average:

 Zy�!� �
�1

2kq�

Z 1
�1

dz@y�E
�
z � E

�
z �j�0;0;z;!�e

ikz: (4)

Here, the two minus signs in the superscript indicate that
the corresponding current is at offset y � �� and has
changed sign. For numerical purposes it is convenient to
rewrite Eq. (4) as
 

Zy�!� 	
�1

4kq�2

Z 1
�1

dz�Ez�0;�; z� � Ez�0;��; z��eikz

�
�1

4kq2�2

Z
V
dVE�2� 
 �j�2��?; (5)

where V denotes volume. In order to obtain Eq. (5), the
definition of central differences for the term @yEz was used
[7]. In Eq. (5) the field E�2� � E� �E� arises from the
excitation of the dipolar current j�2�, with components
j�2�x � j�2�y � 0 and

 j�2�z � q��x����y� �� � ��y� ���e�ikz: (6)

Equations (5) and (6) are the two-wire representation of the
transverse, vertical coupling impedance. Equation (5)
shows why calling Zy an impedance is plausible, as it is
given by an integral over a power density, divided by the
current squared [leaving alone the factor 1=�4k�2�]. The
minus sign ensures that ReZy > 0 because Re

R
dVE�2� 


j�2� must always be negative in a passive device—the
beam can only lose energy.

Notice also that Eq. (6) represents the twin-wire line
inserted in the kicker in the experimental measuring pro-
cedure. An example of this setup is given in Sec. V, Fig. 3.

III. NUMERICAL APPROACH

The main task in computing Zx or Zy is to solve
Maxwell’s equations in the frequency domain with the
excitation density current j�2�. Combining Faraday’s and
Ampere’s laws, one obtains the second-order wave equa-
tion for the electric field:

 @ ���1@�E�!2�E � �i!j�2�: (7)

Here, � and � are the permittivity and permeability, re-
spectively, which are functions of both frequency and
position. Notice that for ! � 0 the solution of Eq. (7)
under given boundary conditions is unique.

Although Eq. (7) can be solved analytically in some
special cases, complex model geometries necessitate the
application of numerical field calculations. In the follow-
ing we will describe the aspects of our computational
approach that are essential to our application. The inter-
ested reader is referred to Refs. [8–12] for further details.

A. Equations and discretization

We solve Eq. (7) within the framework of the finite
integration technique (FIT) [8,9]. This scheme allows the
approximation of Eq. (7) by a system of linear algebraic
equations,

 C TM�Ce
_
�!2M�e

_
� �i!j

J
ext; (8)

where the elements e
_
i of the vector e

_
are the line integrals

of the electric field along the edges of a structured, hex-
agonal grid [13]. The matrix C can be interpreted as a
discretized version of the continuous curl operator,
whereas the matrices M� and M� reflect the permeability
and permittivity, respectively, plus mesh metrics.

Strategies for the efficient solution of (the complex-
valued) Eq. (8) are not within the scope of this article;
see [10,11].

B. Boundary conditions

In our simulations, the walls of the vacuum vessel con-
taining the kicker module are assumed to be perfectly
conducting (i.e. tangential electrical fields vanish on the
wall). At the beam-entry and -exit planes, however, special
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boundary conditions are needed, which we discuss in the
following. Generally, the transitions from the module to the
adjacent beam pipe have to be included into the computa-
tion, since jumps in pipe cross sections are known to
contribute to the coupling impedance. For frequencies
below beam-pipe cutoff, the additional field excited within
the module decays exponentially into the beam pipe. Thus,
at some distance along the beam pipe, the perturbation
resulting from the module can be neglected and fields
can be considered stationary, i.e. �E;B�pipe / exp��ikz�.
Using this property, we set up boundary conditions for the
3D problem by solving for �E;B�pipe in a 2D cross section
of the beam pipe (see Sec. V, Fig. 3 for an illustration). A
complete discussion of beam-adapted boundary conditions
can be found in [14].

C. Modeling of the PFN

So far our code can compute transversal impedances of
accelerator components. In the particular case of a ferrite
kicker magnet (see Sec. V for details), it is well known that
the transverse impedance is strongly influenced by the
inductive coupling to the external pulse-forming, network
(PFN) [3,4]. We have modeled the PFN in the field simu-
lations as a variable impedance Zg. This variable imped-
ance is inserted in the FIT mesh of the system [10–12] as
follows. We first localize one of the FIT grid edges that
joins the two ends of the magnet winding. We then modify
the material matrix M� at the respective component j:

 �M��jj ! �M��jj �
1

i!Zg�!�
: (9)

Note that, for simplicity, this assumes that the winding
ends are separated by exactly one grid edge, posing some
restriction on possible meshes. An illustration is given in
Sec. V, Fig. 3.

D. Implementation

The CAD construction of the kicker model and FIT
mesh creation is done using the commercial software CST

MICROWAVE STUDIO® [15]. Therein, ferrite parts are mod-
eled with constant, real permeability (to be corrected in the
equation setup). The FIT mesh is generated in such a way
that two longitudinal mesh lines are present at offsets
�0;�� and �0;��� from the beam axis, facilitating the
discretization of the twin-wire excitation, Eq. (6).

The subsequent field computations are performed with a
self-implemented electromagnetic solver, along the fol-
lowing steps. (For details of how to carry out this procedure
in the FIT framework, the reader is referred to the FIT
literature cited in Sec. III A). (i) Mesh information and
material data are read from CST MICROWAVE STUDIO®.
(ii) The FIT material matrices M� and M� are set up
incorporating, first, the frequency-dependent, complex per-
meability of ferrite parts (different from the original

model), second, the modification equation (9) accounting
for the lumped PFN impedance. (iii) The curl operators, C
and CT , are constructed from the mesh incidence informa-
tion. (iv) The matrix operator of the discrete wave equation
(8), i.e. CTM�C�!2M�, is assembled for the given fre-
quency !=2�. Degrees of freedom within perfectly con-
ducting materials are eliminated from the operator. (v) The
right-hand side of Eq. (8) is set up as a complex column

vector j
J

ext representing the discrete approximation of the
twin-wire excitation given in Eq. (6). (vi) The beam-
adapted boundary conditions (Sec. III B) are enforced by
adding their equivalent current densities to the right-hand
side of Eq. (8). (vii) Equation (8) is solved for the electrical
field e

_
by an appropriate linear equation solver. This is the

most time-consuming step. (viii) The vertical coupling
impedance is computed from e

_
via the FIT-discretized

version of Eq. (5):

 Zy�!� 	 Zsim
y �!� �

�1

4kq2�2 e
_

 �j

J
ext�
�: (10)

We have chosen a hybrid-language implementation for
our code, using a combination of PYTHON and C��.
Linear-algebra computations are carried out with the help
of the Trilinos library [16]. Further details on the simula-
tions are given in [10–12] and references therein.

We note that there exist other possibilities for calculat-
ing transversal impedances in particle accelerator compo-
nents. For instance, they can be calculated by Fourier
transformation of wake potentials which in turn can be
calculated from wakefield simulations in the time domain
[17]. As kicker impedances are of interest down to fre-
quencies below 1 MHz, the time-domain approach would
lead to extremely long simulation times. Moreover, the
inclusion of complex permeability with frequency depen-
dence would be more cumbersome.

IV. PARAMETRIZATION IN TERMS OF THE PFN
IMPEDANCE

The transverse impedance is of prior interest for beam-
dynamics investigations. If a kicker was found to cause a
serious beam instability, one would be forced to reduce its
coupling impedance to a less harmful value. The well-
known, strong dependence of Zy on the PFN impedance
suggests that a PFN modification can reduce this imped-
ance to acceptable values [3–6].

It is therefore of interest to parametrize the transverse
kicker impedance in terms of an arbitrary PFN impedance.
An approach to achieve this was first proposed by
Nassibian and Sacherer [18]. Interpreting the beam current
and the kicker-magnet winding as the primary and second-
ary winding of a transformer, respectively, they developed
a simple model for the inductive coupling of the beam to
the PFN. Here we follow a very similar route, slightly
generalizing their argument.
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The starting point is to treat the kicker module as a black
box, having plugs for the PFN, see Fig. 1. The influence of
the PFN is modeled by an attached lumped impedance, as
described in Sec. III C. We note that, in using the lumped
PFN representation, well-defined voltage, U2, and current,
I2, between plugs are assumed, implying the absence of
wave effects or a TEM-like field distribution between
plugs. Furthermore, consider the twin-wire excitation cur-
rent as being constituted by a large number of infinitesi-
mally short current segments, and take an arbitrary one of
those as the excitation depicted in Fig. 1. As the segment is
infinitesimal, its local electrical field and current density
are equivalent to the local voltage (U1 � Ezdz) and current
(I1 � qe�ikz), respectively, (note our convention on units,
Sec. II A).

Under these assumptions, the interrelation between the
current segment and the lumped PFN is given by a two-by-
two impedance matrix, capturing the complexity of the
kicker device (black box), i.e.,

 U1 � Z11I1 � Z12I2 (11)

 U2 � Z21I1 � Z22I2: (12)

From U2 � ZgI2 and Eq. (12), we find

 I2 �
Z21

Zg � Z22
I1; (13)

which, in conjunction with Eq. (11), leads to

 U1 �

�
Z11 �

Z12Z21

Zg � Z22

�
I1:

Using the definitions for U1 and I1, this expression can be
rewritten as

 

1

q
dzEze

ikz � U1I
�1
1 � Z11 �

Z12Z21

Zg � Z22
: (14)

Please note that all matrix coefficients but Z22 depend on
the actual choice of current segment, I1. Comparing
Eq. (14), left-hand side, with Eq. (5), we see that the
vertical coupling impedance Zy can be written as a linear
superposition of the terms appearing in Eq. (14), right-hand
side, resulting in the parametrization,

 Zy�!; Zg� � a�!� �
b�!�

Zg�!� � c�!�
: (15)

Here, the unknown coefficients a�!�, b�!�, and c�!� �
�Z22 have been introduced as an abbreviation for the result
of the superposition. Below, we will discuss how to deter-
mine them from the simulations. We would like to stress
that the value of Eq. (15) is that, knowing a�!�, b�!�, and
c�!�, one is able to specify Zy for arbitrary PFN impedance
Zg. In turn, field simulations can in principle be carried out
for a kicker device before the actually used PFN is known.
For later usage, we denote the Zy from the parametrized
model Zmodel

y �!� in contrast to Zsim
y �!� from Eq. (10).

The second summand of Eq. (15) is similar to the
expression originally given by Nassibian and Sacherer
with the substitutions

 b�!� !
�c

4!�2 !
2M2; c�!� ! i!L2; (16)

L2 and M representing the self-inductance of the kicker
winding, and the mutual inductance (twin-wire-beam)-
(kicker-winding), respectively. Notice that 2� is the spac-
ing of the two wires. The first summand of Eq. (15), a�!�,
is not present in the original work of Nassibian and
Sacherer. In their transformer picture of a kicker, a�!�
would correspond to the self-inductance, L1, of the twin-
wire line, i.e.

 a�!� !
�c

4!�2 i!L1: (17)

The equivalent circuit of Nassibian and Sacherer’s deriva-
tion is shown in Fig. 2 for completeness. Losses inside the

FIG. 1. Black box picture of the kicker module: U1 � Ezdz is
the local voltage between the extremes of an infinitesimal
current segment of the twin-wire excitation, with current I1 �
qe�ikz. U2 is the voltage between the PFN kicker plugs. With the
lumped PFN impedance Zg, we have I2 � U2=Zg as the respec-
tive current value.

FIG. 2. Equivalent circuit for the Nassibian and Sacherer
transformer picture, indicating the mutual inductance, M, be-
tween twin-wire line and the kicker winding. L1 and L2 denote
the self-inductance of the twin-wire line (representing the beam)
and the kicker winding, respectively.
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ferrite parts would be accounted for by the imaginary part
of L1.

We would like to point out that, while Nassibian and
Sacherer’s transformer picture, as well as the model advo-
cated in [3], are tied to a certain equivalent circuit, multiple
equivalent circuits can be given for the parametrization
equation (15) derived here. For instance, the capacitance
of the kicker winding and the PFN feedthroughs (which
has to be imagined in parallel to Zg) is covered by Eq. (15).
This is obvious from the fact that we used a black-box
description of the kicker interior.

Finally, let us address the question of how to compute
the coefficients a�!�, b�!�, and c�!� in the simulations.
The approach chosen in this work determines the three
complex numbers for each considered frequency point by
using three different kicker terminations, i.e.

 Zg 2 f0;1; 50 �g:

From the respective numerical field calculations one ob-
tains Zy�!; 0 ��, Zy�!; 50 ��, and Zy�!;1�, which, in
turn, determine the coefficients a�!�, b�!�, and c�!�.
Thus, three frequency sweeps are needed within this ap-
proach. The application of Eq. (15) is shown below.

V. EXAMPLE: THE SNS KICKER

Among the component devices making a big contribu-
tion to the impedance budget of the SNS storage ring, the
ferrite kicker magnet [3] represents the most critical one.
This device is a window-frame magnet used to deflect the
beam vertically by means of a pulsed magnetic field.

In the particular case of the SNS kicker, vertical-
impedance measurements were reported by Hahn and
Davino using the two-wire technique [3–6] as well as
direct impedance measurements [4]. Since details of the
measurements as well as dimensions of the kicker have
been reported, the SNS kicker is an ideal model for bench-
marking the numerical computation of coupling imped-
ances [19]. We further ensured the identity of our kicker
model with that used in the measurements by clarifying
some details directly with Hahn and Davino.

The schematic view of the SNS kicker in Fig. 3 shows a
metallic busbar, i.e., two metallic sheets, inserted in a
ferrite frame, which in turn is hitched by a stainless steel
frame and a base. The busbar has two end plates in a
vertical position, which acts as a capacitor. Figure 3 also
shows the vacuum vessel containing the kicker module.
The dimensions of this vacuum vessel have been chosen
such that possible undesirable effects of the vessel bounda-
ries (vessel walls) on the impedances are negligible.
Typical dimensions of the kicker and vacuum vessel are
given in Fig. 3.

While the kicker magnet finally built into the SNS
electrically connects to the PFN by a feedthrough, leading
out of the vacuum vessel, Hahn and Davino have per-
formed impedance measurements on a kicker prototype

where the feedthrough has been neglected. Instead, they
have applied different load impedances between the busbar
plates directly (short, open, 25 �, 50 �, 200 �). It is this
situation that is analyzed in our simulations. As we men-
tioned in Sec. III C, we simulate the effect of the PFN load
by adding an equivalent, lumped impedance at the magnet
terminations. In the present case, this amounts to modify-
ing the FIT edge seen in the inset of Fig. 3 (upper panel),
according to Eq. (9). The dimensions of the SNS kicker
[3,20] can be found in the caption of Fig. 3.

The ferrite type is CMD5005 [21], which is a nickel zinc
(NiZn) ferrite with the initial permeability of 1300. In
general, the permeability of ferrites is complex and con-
tributes to the formation of eddy currents and hysteresis
losses. In order to reduce the loss of beam energy due to
these effects (i.e. to reduce longitudinal coupling imped-
ance), eddy current stripes are inserted into the ferrite loop
[3] as shown in Fig. 3. In the case of the ferrite CMD5005,
the log-log behavior of the real and imaginary part of the
permeability in the region between 1 and 100 MHz (taken
from the manufacturer’s data sheet) is rather smooth,
which facilitates its interpolation during simulations. On
the other hand, the ferrite permittivity in the model was
assumed to be �r � 12 [22] for the range of frequencies
considered here. Notice that the value of the permittivity
varies with the frequency [22], however, this variation is
not larger than 20% for the present range frequencies [22].

A. Comparison with twin-wire measurements

In Fig. 4 the experimentally measured data for Zy [3,23]
are compared with the results from our electromagnetic
field simulations, for different external impedances, Zg. A
first observation is that the agreement between measure-
ments and computations is different for different Zg’s.
Whereas in the open case (Zg � 1) the agreement is
good, decreasing Zg steadily leads to larger discrepancies.
Second, for given Zg, the largest deviations arise at high
frequencies.

The fact that for the open case, Fig. 4(a), we are able to
accurately reproduce the measured resonance (due to the
interplay between busbar-plate capacitance and magnet
inductance) suggests that our computational model is ac-
curate. We would like to stress that no model adaptation
has been done to obtain this agreement.

It is interesting to consider the increasing deviations
between simulation and measurement upon decreasing
Zg (Zg � 200 �, 50 �, short). In the extreme case, Zg �
0 �, the coupling between beam (i.e. twin-wire line) and
magnet is small as (in the case of a perfectly conducting
magnet winding) no magnetic flux may penetrate the loop
formed by the winding. Thus, at Zg � 0 �, Zy solely
reflects the self-inductance of the twin-wire line.
However, as can be seen from the publications on the
SNS kicker measurements (e.g. [4], Fig. 11), the calibra-
tion of the twin-wire line for measurement is not trivial. As
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shown in [4], different strategies for matching the charac-
teristic line impedance to the 50 � instrument impedance
may lead to different results for Zy, particularly for fre-
quencies above 20 MHz.

Note that each plot in Fig. 4 contains two data sets
obtained from simulations: (i) the directly computed im-
pedances [Zsim

y �!�, dots], arising from the solution of the
field equations at each frequency point shown,
(ii) Zmodel

y �!� data obtained through the parametrized
model of Eq. (15). Some comments on how Zmodel

y �!�
was determined are in order. After Sec. IV, three frequency
sweeps allow the construction of the PFN model. Here we
have used the data from Zsim

y �!� for Zg 2 f0 �; 50 �;1g,
see Fig. 5 for the resulting parameters a�!�, b�!�, and

c�!�. Thus, the perfect agreement of Zmodel
y �!� and

Zsim
y �!� seen in Figs. 4(a), 4(c), and 4(d) is to be expected.

For Fig. 4(b) (Zg � 200 �) and Fig. 6 (Zg � 25 �), how-
ever, the model predicts the correct Zy�!�, as Zsim

y �!� and
Zmodel
y �!� are indistinguishable in the plots.
As mentioned above, multiple equivalent circuits can be

given for this parametrized model. The most simple one is
shown in Fig. 2, where the unknowns L1, L2, andM can be
calculated from the coefficients given in Fig. 5 via
Eqs. (16) and (17). However, these unknowns turn out to
be dependent on frequency in a nontrivial form in the case
of the SNS kicker, so no further insight is gained by
calculating them. One obvious reason for the shortcoming
of the equivalent circuit of Fig. 2 is the presence of the

FIG. 3. (Color) Upper panel: schematic view of the SNS kicker with the metallic busbar (1), the ferrite frame (2), the end plates of the
busbar (3), the strips (4), a metallic frame (5), and a metallic base (6). In the inset is shown schematically the FIT edge joining the two
ends of the end plates. Lower panel: vertical cutting plane yz at x � 0 of the kicker magnet. Kicker dimensions: w � 15:9 cm,
h1 � 24:8 cm, h2 � 12 cm, h3 � 2:54 cm, l1 � 36 cm, l2 � 46 cm, l3 � 13 cm, l4 � 4:5 cm, and l5 � l6 � 2:54 cm [3,20]. A
0.3 mm-thick vacuum layer between the ferrite frame (2) and the metallic frame (5) and base (6) simulating an insulate layer is taken
into account. Typical dimensions of the vacuum vessel: L � 76 cm, H1 � 53 cm, and H2 � 10 cm.
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capacitance between busbar plates, which appears in par-
allel to Zg. Moreover, due to the losses inside the ferrite
parts, L1, L2, andM contain a frequency-dependent imagi-
nary part. Given the simulation results of Fig. 5, it would be
possible to determine the parameters for a modified equiva-
lent circuit which includes these effects. If, however, the
details of the kicker interior (concrete values of L1, L2, M,
Cplates, ferrite losses, etc.) are of no direct interest to the
analysis, it is more convenient to work with the parame-
trized model. The latter is valid for any component, due to
the use of the black-box description.

Another motivation for working with the parametrized
model is that the curves a�!�, b�!�, and c�!� are rather
smooth. Thus, only a relatively sparse set of frequency
points f!ig needs to be considered for explicit simulation

[i.e. computation of Zsim
y �!; Zg� for ! 2 f!ig, Zg 2

f0 �; 50 �;1g]. In contrast, explicitly computing
Zsim
y �!� for an actual PFN impedance typically requires a

much denser frequency sampling; see the next section for
an illustration of this statement.

B. Comparison with direct measurements

In the case of low frequencies (< 10 MHz), the two-
wire method is not suitable for measuring transversal
coupling impedances due to its small signal-to-noise ratio
[4]. For this range of frequencies so-called direct coupling
impedance measurements [24] were performed at the SNS
kicker [4]. By probing the kicker terminations (here: the
end plates of the busbar) with a network analyzer, the

FIG. 4. (Color) Real and imaginary part of Zy vs frequency for the cases Zg � 1 (a), 200 � (b), 50 � (c), and 0 � (d). Experimental
measurements (dashed lines) [[3] (Fig. 5) and [23] (Fig. 4)] results from numerical field simulations [Zsim

y �!�, dots] and estimation
from the parametrization [Zmodel

y �!�, solid lines], Eq. (15), are plotted together for comparison.
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magnet inductance (L2) can be determined directly. For a
window-frame kicker, after the Nassibian and Sacherer
approach [18], one is able to express the beam-to-magnet
coupling (i.e. the mutual inductance M) by an approximate
analytical formula. Thus, after Eqs. (15) and (16), the
transverse kicker impedance can be computed if a�!� is
neglected. A similar approach has been used by Hahn [4],
leading to the expression

 Zdir
y �!� �

�c

4!�2 ZD�!�; (18)

where ZD�!� is the impedance seen at the kicker plugs.
One advantage of the direct measurement technique is

that the insertion and calibration of the twin-wire line are

not needed. Thus, direct measurements can also be per-
formed with devices already mounted in an accelerator
[24] as long as (i) the kicker plugs are accessible and
(ii) one is dealing with the transverse coupling impedance
along the kick direction (here, the vertical direction). The
disadvantage of the direct method is that the self-
inductance L1 of the twin-wire line (due to the so-called
‘‘uncoupled’’ flux [3]) is not accessible.

We consider the direct measurement of the vertical
impedance for the case Zg � 25 � [4], see Fig. 6, compar-
ing it with the results from the twin-wire measurements.
Concerning ReZy below 30 MHz, we observe an agree-
ment of the two measurement methods within 30%,
whereas much larger deviations are found above
30 MHz. For ImZy, the twin-wire curve is offset by ap-
proximately �4:1 k�=m with respect to the twin-wire
curve, which, as explained above, can be attributed to the
missing uncoupled flux in the direct method. Additionally,
an oscillation in the twin-wire ImZy is observed at high
frequencies that is not present in the direct results.

Interestingly, our simulation results, also shown in
Fig. 6, agree very well with the direct measurements
over the complete frequency range considered. (For
ImZy, a nearly constant vertical offset of approximately
�4:1 k�=m is found between direct simulation and mea-
surement results.)

We note besides that in the ‘‘short’’ case [Fig. 4(d)]
ImZy�!! 0� exactly equals the observed offset between
curves.

A further comparison between direct measurements and
simulations is shown in Fig. 7. In this case, the SNS kicker
prototype has been connected to the actual PFN device via

FIG. 5. Real (solid line) and imaginary (dashed line) parts of
the parameters a�!�, b�!�, and c�!� vs frequency.

FIG. 6. (Color) Real and imaginary part of Zy vs frequency for
Zg � 25 �: direct measurements (dot-dashed line, computed
from ZD in [4], Fig. 15), two-wire measurements (dashed line)
[3], simulations [Zsim

y �!�, dots], and prediction from the parame-
trization [Zmodel

y �!�, solid line].
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a feedthrough and two 200 m long, 50 � coaxial cables
[4]. The cables are in parallel to match the nominal 25 �
output impedance of the PFN device. Thus, the value of Zg
as used throughout this paper is determined by the series
connection of the feedthrough, the transmission line
formed by the cables and the PFN device. Because of
small, frequency-dependent deviations of the PFN output
impedance from 25 �, oscillations of Zg�!� arise. The
footprint of these oscillations can be seen in the measure-
ment data of Zy, Fig. 7.

In order to compute Zy from the simulation results
condensed in the parametrized model [Eq. (15), data of
Fig. 5], Zg�!� needs to be known. First, for simplicity, we
have neglected the contribution of the feedthrough.
Second, the output impedance of the PFN device was taken
from the measurements of Hahn [4], Fig. 16. Third, Zg�!�
was computed via transmission line theory. Using Eq. (15),
we then computed Zy�!�, see Fig. 7 for the result. Again, a
good agreement between direct measurements and simu-
lations can be observed.

VI. SUMMARY AND CONCLUSIONS

We have reported on our numerical framework for com-
puting coupling impedances of fast kicker modules. In
addition to the advantage that no prototyping is required,
the presented simulation approach is able to readily de-
scribe the special kind of excitation current due to the beam
(including its boundaries). Since one goal of the work
presented here was to demonstrate the compatibility of
simulation results with those of measurements, we have
considered the case of vertical impedances of the SNS

extraction kicker, for which detailed experimental results
had been published.

After a brief review of the theoretical foundations of
coupling impedances and a description of our algorithm,
we have developed a parametrized model for the interac-
tion of the kicker with the pulse-forming network. Using
this model essentially offers two advantages: (i) after set-
ting up the parameters [a�!�, b�!�, and c�!�], one can
experiment with different PFN versions and determine
their footprint on the coupling impedance, (ii) computing
the model by three frequency sweeps (here Zg 2
f0 �; 50 �;1g) can be more efficient than directly con-
sidering the actual PFN impedance in the simulations
(compare Fig. 7). Despite the simplicity of the black-box
model, the parametrization fully captures the physics of the
beam-PFN coupling. It can thus serve as a cross-checking
tool for simulations or measurements, in case more than
three frequency sweeps are available [compare Figs. 4(d)
and 6].

As described in Sec. II B, the computations are based on
the twin-wire approximation equation (6) of the beam
current, which becomes more accurate the finer the nu-
merical mesh (� can be set to the size of a single trans-
versal mesh step).

Finally, a good agreement is observed between numeri-
cal and experimental results for frequencies below
60 MHz, supporting the viability of the work presented
here. For higher frequencies, a discrepancy is observed
which is still an object of further research.
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