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We study the impedance of a tapered transition at small frequencies for an arbitrary shape of the
transition cross section. Our approach does not require a symmetry axis in the system (unlike round
geometry). We show that the calculation of the impedance reduces to finding a few auxiliary potential
functions that satisfy two-dimensional Poisson equations with Dirichlet boundary conditions. In simple
cases such solutions can be obtained analytically; for more complicated geometries they can easily be
found numerically. We apply our method to axisymmetric geometry and reproduce results known from the
literature. We then calculate the impedance of a taper with rectangular cross section in which the vertical
dimension of the cross section is a slowly changing function of the longitudinal coordinate. Finally, we
find a transverse kick experienced by a beam passing near a conducting wall with a variable distance from
the beam to the wall.
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I. INTRODUCTION

The calculation of the impedance for the elements of a
vacuum chamber system and the associated calculation of
beam dynamics effects, such as beam instabilities or wake-
field induced emittance growth, are important elements in
the design of a modern accelerator. Various discontinuities
between segments of the vacuum chamber are common in
practice. To avoid abrupt transitions small-angle tapers are
often used to minimize the impedance of such discontinu-
ities. For example, collimators with such tapers will be
used in the postlinac collimation section of the ILC.

Computer simulations of tapers are not always easy to
carry out, especially in cases when the taper cross section is
strongly elongated in one direction. Several analytical
approaches have been developed in the past to treat gradual
tapers. Yokoya derived both the longitudinal and transverse
impedance of a smooth axisymmetric transition in the low-
frequency approximation [1]. His result for the dipolar
impedance of a transition that connects identical pipes is
given by the following equation:

 Zround � �
iZ0

2�

Z
dz
�
a0

a

�
2
; (1)

where Z0 � 377 Ohm, a is the radius of the pipe, and the
prime denotes derivative with respect to z. Yokoya’s
method was later simplified and extended to the case of
rectangular geometry [2,3]. It was also found in Ref. [3]
that, in the limit of small frequencies, the impedance of a
rectangular transition increases linearly with the width of
the taper if the ratio of the width of the transition to the gap
becomes large. The vertical impedance for a taper with
rectangular cross section (after correction of an erroneous
numerical factor 2 in [3], see Sec. V), is

 Zrect
y � �

iwZ0

4

Z
dz
�g0�2

g3 ; (2)

where w is the (constant) width in the x direction, and g is
the (varying) gap of the taper in the y direction; it is
assumed that g� w� l, where l is the characteristic
length of the collimator. Recently, Podobedov and
Krinsky found the impedance of a taper with an elliptical
cross section and confirmed the same linear dependence of
the transverse impedance on the ellipse elongation g=w in
the limit g� w [4]. The limit of very wide transitions,
w! 1, of a flat collimator was studied in Ref. [5]. Note
that a much more detailed theory of impedance was devel-
oped by Warnock for a shallow taper in an axisymmetric
geometry, when the variation of the pipe radius �a is
small, �a� a, [6].

As was mentioned above, Eqs. (1) and (2) are valid at
low frequencies. For the round taper, the requirement of
low frequencies reads !a2=c� l [2]. For highly elon-
gated rectangular cross section taper, the applicability
condition of low frequencies is more complicated, see [7].

The goal of this paper is twofold. First, we generalize the
previous approaches to the problem of impedance calcu-
lation at small frequencies for an arbitrary shape of the
transition cross section. An illustration of such a transition
is schematically shown in Fig. 1: it does not require a
symmetry axis in the system (unlike round, rectangular,
or elliptic geometries studied before). It requires however,
that the characteristic length of the transition l is much
larger than the typical transverse size a:

 l� a: (3)

Our second goal is to reproduce here the result of the
unpublished paper [2] for the rectangular shape of the
transition (and, as was mentioned above, to correct a wrong
numerical factor in the impedance).

We use the Gaussian system of units throughout this
paper; to convert impedances to MKS units, one multiplies
them by the factor Z0c=4�.
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II. MAIN EQUATIONS AND APPROXIMATIONS

The geometry of the transition under study is schemati-
cally shown in Fig. 1. The transition connects two cylin-
drical pipes with different cross sections, with the z axis
going parallel to the walls of these pipes. Mathematically
this means that in the limits z! �1 the cross sections
z � const tend to some limiting curves in the x-y plane
(which are cross sections of the incoming and outgoing
pipes). Note that the z axis is not required to go through the
center of the pipes. We consider the characteristic length l
of the transition as a large parameter; in addition, the
frequency ! is considered as a small parameter. We also
assume metallic boundaries with perfect conductivity.

For calculation of the impedance we consider a beam of
infinitesimally small transverse size shifted from the axis
of the system to a position given by coordinates x1 and y1.
The beam propagates along the z axis with the speed of
light c. We will use the Fourier transform with respect to
time and assume the harmonic time dependence of all
quantities with the frequency !. The charge and current
densities of the beam are given by the following equations:

 � � ~�e�i!t; ~� � ��r� r1�e
ikz; j � ẑc�; (4)

where k � !=c, ẑ is the unit vector in the direction of the z
axis, and we use the notation r for the two-dimensional
vector �x; y� in the plane transverse to the direction of
propagation of the beam. The vector r1 � �x1; y1� specifies
the transverse offset of the beam. We will also use a slightly
different terminology, related to the calculation of the
wakefields, associating vector r1 with the position of the
leading particle, and associating vector r with the position
of the trailing one.

It follows from Maxwell’s equations that the electric
field E satisfies the following equation:

 �r2 � @zz � c�2@tt�E � 4�r��
4�

c2 @tj; (5)

where we use the notation @t, @tt, @zz, etc., to denote partial
derivatives with respect to the variables indicated by the
subscripts.

We now introduce a formal small parameter � of the
order of the ratio a=l with a being a characteristic trans-
verse size of the transition. The electric field is represented
as

 E � 	e�r; z� � �ẑE�r; z�
e�i!t; (6)

with e the transverse part of the field, e � ẑ � 0, and E the
longitudinal part. In Eq. (6) we indicate that the longitudi-
nal part of the field in a long transition is small compared to
the transverse one (it would be exactly equal to zero in a
pipe with constant cross section in the limit v � c). The
longitudinal impedance Zk of the transition is given by the
integral

 Zk�r; r1� � �
1

c

Z 1
�1

e�ikzE�r; z�dz; (7)

where in the arguments of Zk we indicated both the offset
of the integration path given by the vector r, and the offset
r1 of the beam (to simplify notation we drop r1 from the
arguments of E, however).

Knowledge of the longitudinal impedance allows one to
compute the transverse impedance using the Panofsky-
Wenzel theorem [8]. In the general case, the transverse
impedance is represented by vector Z? perpendicular to
the beam orbit, and is given by

 Z? �
c
!
r?Zk; (8)

wherer? is the transverse operator that differentiates with
respect to the coordinates r,r? � x̂@x � ŷ@y, with x̂ and ŷ
being the unit vectors in x and y directions.

In many applications it is assumed that there is a sym-
metry axis in the system and the beam has a small offset
relative to this axis compared to the transverse size of the
pipe. In this case, one can expand the impedance in Taylor
series. The leading terms in the transverse impedance in
this case are linear in offsets of the leading and trailing
particles.1

As we will see from the result, for a transition that
connects pipes of equal cross sections, the lowest order
terms in the longitudinal impedance are proportional to !
(if the cross sections are different, Zk might have a term
that does not depend on frequency). Since we assume that
the frequency is small, it allows us to neglect terms O�!2�

FIG. 1. (Color) A smooth transition of a beam pipe (a cutaway
drawing shows the interior part of the pipe).

1As is well known, for axisymmetric systems the transverse
impedance does not depend on the offset of the trailing particle.
This however is not true for systems which are not axisymmetric
(see, e.g., [9]).
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throughout this paper, and, in particular, to neglect the term
c�2@tt � �c

�2!2 in Eq. (5).
To account for a slow variation of fields along the z axis,

we will replace in this equation @zz ! �2@zz, because the
second derivative along the axis of the transition scales as
the inverse square of the large parameter l (similarly, we
will replace @z ! �@z in equations that have the first
derivative along z). With these modifications, the trans-
verse and longitudinal components of Eq. (5) are

 �r2
? � �

2@zz�e � 4�r? ~�; (9)

 �r2
? � �

2@zz�E � 0; (10)

where we used Eqs. (4). These two equations have to be
complemented by the equation r �E � 4��, which, in
our notation, takes the form

 r? � e� �2@zE � 4�~�; (11)

where the second order term on the left-hand side is the
result of applying the first order derivative �@z to the
longitudinal field �E.

Equations (9)–(11) are to be solved with the boundary
condition of zero tangential electric field on the surface of
the metal

 E � njS � 0; (12)

where n is the unit vector normal to the surface, and the
subscript S indicates a position on the metallic surface. It is
convenient to split this boundary condition into two com-
ponents by introducing a transverse vector m perpendicu-
lar to the z axis, and the longitudinal component nz of the
vector n such that

 n � m� �ẑnz; (13)

with m � ẑ � 0 and m2 � 1� �2n2
z 
 1. Note that the

smallness of the longitudinal component of vector n is
reflected in the parameter � in the second term of
Eq. (13). It is easy to check that, in terms of the fields e
and E, the boundary condition (12) is now split into two:

 e �mjS � 0; (14)

 E jS �
nz
m2m � e

��������S
: (15)

III. PERTURBATION THEORY OF APPROXIMATE
SOLUTION OF FIELD EQUATIONS

We seek a solution of Eqs. (9)–(11) with the boundary
conditions (14) and (15) as a series in the small parameter
�:
 

e�r; z� � e0�r; z� � �
2e2�r; z� � � � � ;

E�r; z� � E1�r; z� � �2E3�r; z� � � � � ;
(16)

where the subscripts indicate the smallness of the corre-
sponding quantity [note that we start the expansion of E
from the first order term because the physical longitudinal
field is introduced in Eq. (6) as �E].

Substituting Eqs. (16) into Eqs. (9) and (11), in the
lowest order, we find

 r2
?e0 � 4�r? ~�; (17)

 r? � e0 � 4�~�; (18)

with the boundary condition (14) applied to the zeroth
order vector e0:

 e 0 �mjS � 0: (19)

The differential operators in these equations act in the
transverse direction, and the variable z comes in as a
parameter. We seek a solution to these equations in the
form of the transverse potential field �0�r; z�:

 e 0 � �e
ikzr?�0�r; z�: (20)

Substituting this expression into Eq. (18) yields

 r2
?�0 � �4���r� r1�: (21)

It is easy to see that, if this equation is satisfied, then
Eq. (17) is satisfied too. The boundary condition for the
potential �0 follows from Eq. (19):

 �0jS � 0: (22)

We see that �0 is the Green function for the two-
dimensional Poisson equation with the Dirichlet boundary
condition in a given cross section of the transition at
coordinate z. A general expression for such Green’s func-
tions is known for several typical geometries, e.g., round,
rectangular, elliptical, etc. It can also be relatively easily
computed numerically for a given shape of the cross
section.

We now use Eq. (10) to the lowest order:

 r2
?E1 � 0: (23)

The boundary condition for this equation follows from
Eqs. (15) and (20):

 E 1jS � �e
ikz nz
m2m � r?�0

��������S
: (24)

We will now show that the solution to Eq. (23) with the
above boundary condition is given by

 E 1 � �eikz@z�0: (25)

Indeed, because �0 satisfies Eq. (21), we have @zr2
?�0 �

0 which means that E1 given by Eq. (25) satisfies Eq. (23).
Also, since�0 � 0 at the boundary, the gradient of�0 on S
directed along the normal vector n

 r�0jS � nR�r; z�; (26)
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where R is a scalar function. Projecting this equation onto
the vectors m and ẑ, it is easy to show that

 

@�0

@z

��������S
�
nz
m2m � r?�0jS; (27)

which is equivalent to the boundary condition Eq. (24).
The solution given by Eqs. (20) and (25) shows that the

combination of the zeroth order transverse and the first
order longitudinal fields is represented by the potential
function �0. The contribution to the impedance of the
longitudinal component of the electric field given by (25) is
 

Z�1�
k
�r; r1� � �

1

c

Z 1
�1

e�ikzE1�r; z�dz �
1

c

Z 1
�1

@z�0

�
1

c
	�0�z! 1� ��0�z! �1�
: (28)

This contribution vanishes if the incoming and outgoing
pipes connected to the transition are identical. In what
follows, we calculate the next order of the perturbation
theory which gives a nonzero result for the case of identical
pipes.

We first select terms of the second order in Eqs. (9) and
(11):

 r2
?e2 � @zze0 � 0; (29)

 r? � e2 � @zE1 � 0: (30)

The boundary condition is obtained by taking the second
order terms in Eq. (14):

 e 2 �mjS � 0: (31)

We now seek a solution as a sum of potential and solenoi-
dal transverse fields represented, respectively, by the func-
tions �2 and k 2:

 e 2 � ��r?�2 � kẑ�r? 2�e
ikz; (32)

with the boundary conditions that follow from Eq. (31),

 �2jS � 0; m � r? 2jS � 0: (33)

Upon substitution of Eqs. (25) and (32) into Eq. (30) we
obtain the following equation for �2:

 r2
?�2 � �ik@z�0 � @zz�0: (34)

We then substitute Eqs. (20) and (32) into Eq. (29) and
obtain the equation for  2:

 r2
?�ẑ�r? 2� � ir?@z�0; (35)

where we neglected the second order terms in frequency on
the right-hand side.

Note that if one can find a function  0 such that

 r? 0 � ẑ � r?�0; (36)

then Eq. (35) for  2 can be written as

 r2
? 2 � �i@z 0: (37)

Note that, as it follows from Eqs. (21) and (36), the curl of
the two-dimensional vector field r? 0 has a delta-
function singularity at r1. In some cases,  0 can be found
if one considers the sum�0 � i 0 as a complex function of
the complex variable � � x� iy. The function�0 � i 0 is
analytical in the region bounded by S everywhere except
for the point �1 � x1 � iy1. Given �0, finding  0 is
equivalent to the finding of the imaginary part of an ana-
lytical function with a given real part.

We now come back to Eq. (34) and split �2 into the sum
��1�2 � k�

�2�
2 of two terms one of which does not depend on

frequency, and the other one is linear in k,

 r2
?�

�1�
2 � �@zz�0; (38)

 r2
?�

�2�
2 � �i@z�0; (39)

with the boundary conditions ��1�2 jS � ��2�2 jS � 0. Again,
finding �2 and  2 reduces to the two-dimensional Poisson
equation with the Dirichlet boundary conditions, and we
assume that this problem can be solved, either analytically
or numerically.

The last step in the derivation is to substitute Eqs. (16)
into Eq. (10) and to select the third order terms,

 r2
?E3 � �@zzE1 
 eikz@zzz�0 � 2ikeikz@zz�0; (40)

with the boundary condition that follows from Eq. (15) in
the third order:

 E 3jS 
 nzm � e2jS

� nz��m � r?�2 � k�m� ẑ� � r? 2�eikz: (41)

The equation for E3 can be simplified by introducing a new
function ~E related to E3 through the following equation:

 E 3 � eikz��@z�
�1�
2 � 2k@z�

�2�
2 � k~E�: (42)

Using Eq. (39), one can show that ~E satisfies the Laplace
equation,

 r?~E � 0; (43)

with the boundary condition that follows from Eq. (41):

 

~EjS � nz��m � r?�
�2�
2 � �m� ẑ� � r? 2�: (44)

Substituting Eq. (42) into Eq. (7) we find that the imped-
ance is

 Zk � Z�1�
k
� Z�3�

k
; (45)

with Z�1�
k

given by Eq. (28) and

 Z�3�
k
�r; r1� � �

k
c

Z 1
�1

~E�r; z�dz: (46)
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Summarizing this section, we emphasize that our final
result, Eqs. (28) and (46) for the impedance, is formulated
in terms of a few linked solutions of the two-dimensional
Poisson equations. The third order contribution, Z�3�

k
, is

explicitly proportional to the frequency !. In the next
section we will apply the technique developed above to
the case of the round geometry to show that it reproduces
Yokoya’s results. In Sec. V we apply this technique to the
case of rectangular geometry.

IV. AXISYMMETRIC TRANSITIONS

We now apply the above derived equations for a special
case of an axisymmetric transition shown in Fig. 2. The
transition is characterized by the pipe radius a�z� varying
along the z axis.

It is known from the complex analysis, that in this case
both functions �0 and  0 are given by the real and imagi-
nary parts of the following expression:

 �0 � i 0 � �2 ln
a�� � �1�

a2 � ��1

; (47)

where � � x� iy and �1 � x1 � iy1. In what follows we
will use the cylindrical coordinates r � j�j and � �
arg���.

We first derive the longitudinal impedance for the case
when the leading particle is moving along the z axis, �1 �
0. We have

 �0 � �2 ln
r
a
;  0 � �2 arg��� � �2�: (48)

The function ��2�2 depends only on radius r, and Eq. (39)
for ��2�2 reads

 r2��2�2 � �i@z�0 � �2i
a0

a
; (49)

where the prime denotes the derivative with respect to z.
From this equation and the boundary condition ��2�2 jr�a �
0, we find

 ��2�2 � �
1

2
i
a0

a
�r2 � a2�: (50)

For the function  2 we have from Eq. (37)r2
? 2 � 0, and,

with the boundary condition in Eq. (33), it follows that
 2 � 0.

We now need to solve the equation for ~E�r�:

 

1

r

@
@r
r
@~E

@r
� 0; (51)

with the boundary condition

 

~Ejr�a � �a
0 @�

�2�
2

@r
� i�a0�2: (52)

The solution is a constant value ~E � i�a0�2.
Using Eqs. (28) and (46), we find the well-known result

for the longitudinal impedance,

 Z �
2

c
ln
a1

a2
� i

k
c

Z
dz�a0�2; (53)

where a1 � a�z! 1� and a2 � a�z! �1�. In the case
of identical pipes, a1 � a2, the first term in this equation
vanishes, and the impedance becomes purely inductive.

We will now calculate the transverse impedance in the
axisymmetric case, assuming a small offset of the leading
particle in the direction of the x axis,2 �1 � x1 � a, and
linearizing equations in the small parameter x1. As it
follows from Eq. (47), the linear in x1 parts of �0 and  0

are

 

�0 � �2x1 cos�
�
r

a2 �
1

r

�
;

 0 � �2x1 sin�
�
r

a2 �
1

r

�
:

(54)

This gives the following equation for ��2�2 (for brevity of
notation, we drop the superscript d in subsequent functions
� and  ):

 

1

r

@
@r
r
@��2�2

@r
�

1

r2

@2��2�2

@r2 � �4i
ra0

a3 cos�: (55)

With the boundary condition ��2�2 jr�a � 0, the solution is

FIG. 2. (Color) Geometry of a round transition.

2An offset in the arbitrary direction can always be oriented
along the x axis by a rotation of the coordinates.
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 ��2�2 � �x1
ia0

2a3 �r
3 � ra2� cos�: (56)

Analogously, the equation for  2 reads

 

1

r

@
@r
r
@ 2

@r
�

1

r2

@2 2

@r2 � �4i
ra0

a3 sin�; (57)

and with the boundary condition @r 2jr�a � 0 the solution
is

  2 � �
1

2
x1i

a0

a3 �r
3 � 3ra2� sin�: (58)

With the given functions ��2�2 and  2, we can formulate the
boundary condition Eq. (44) for ~E:

 

~Ejr�a � 2ix1
�a0�2

a
cos�; (59)

and solving Eq. (43) we find

 

~E � 2ix1
r�a0�2

a
cos� � 2ix1x

�a0�2

a
: (60)

The total dipole longitudinal impedance (45) can now be
calculated (where the superscript d stands for the ‘‘dipole’’
component):

 Zd
k
�

2x1x
c

�
1

a2
1

�
1

a2
2

�
� 2

ik
c
xx1

Z
dz
�a0�2

a2 : (61)

Using the Panofsky-Wenzel relation (8), we now find the
transverse impedance of an axisymmetric transition:

 Zd? �
1

k

@Zd
k

@x
�

2x1

!

�
1

a2
1

�
1

a2
2

�
� 2

ix1

c

Z
dz
�a0�2

a2 : (62)

In the limit of equal radii a1 � a2, only the second term on
the right side of this equation survives. Normalized by the
offset x1 it agrees with Yokoya’s result Eq. (1).

V. RECTANGULAR TRANSITIONS

We will now turn our attention to the case of a rectan-
gular transition. The geometry is shown in Fig. 3; the width
of the rectangular area along x is equal to w, and the height
in the y direction is equal to g. We assume that g�z� varies
along z; w however is constant. It is convenient to choose
the local coordinate system for a given z as shown in Fig. 3
where the origin is located at the center of the rectangle.

The beam, traveling in the z direction, has an offset r1 �
�x1; y1�.

The first step in calculation is to find the Green function
�0 for a rectangular domain that satisfies Eq. (21) with the
boundary condition (22). There exist several representa-
tions of such Green function in the literature. We found that
the most convenient one for the purposes of this study is
given by the following expression3 [10]:
 

�0 � 8
X1
n�1

1

n sinhn�gw
sinh

n��g=2� y1�

w
sinh

n��y� g=2�

w

� sin
n��x1 � w=2�

w
sin
n��x� w=2�

w
; y < y1;

�0 � 8
X1
n�1

1

n sinhn�gw
sinh

n��g=2� y�
w

sinh
n��y1 � g=2�

w

� sin
n��x1 � w=2�

w
sin
n��x� w=2�

w
; y > y1:

(63)

Using this expression for �0, one can consecutively find
��2�2 ,  2, and ~E solving the corresponding equations by
Fourier expansion in x. These calculations can be simpli-
fied if one notices that it is only the derivative @x 2, and not
the function  2 itself, that is required to find ~E. Indeed, in
the boundary condition (44), vector nz is equal to�g0=2 at
the upper and lower walls, y � �g=2, and is equal to zero
at the lateral walls, x � �w=2. Vector m is approximately
equal to (0, 1) at y � g=2, and m � �0;�1� at y � �g=2.
This casts the boundary condition (44) into
 

~Ejy��g=2 �
1

2
g0
�
@��2�2

@y
�
@ 2

@x

���������y��g=2
;

~Ejy�g=2 � �
1

2
g0
�
@��2�2

@y
�
@ 2

@x

���������y�g=2
;

(64)

and we see that only @x 2 is involved. One can try to find
this derivative without finding the function  2 itself.
Differentiating Eq. (37) with respect to x, we obtain

 r2
?@x 2 � �i@z@x 0 � i@z@y�0; (65)

where in the last transformation on the right side we used
the equality @x 0 � �@y�0 that follows from Eq. (36).
The boundary conditions for the function @x 2 follow from
Eq. (33):

 @x 2 � 0 at x � �w=2;

@y�@x 2� � 0 at y � �g=2:
(66)

Skipping the lengthy calculations we present here the
final result for ~E:

3Equation (5.4) in Ref. [10] has a typographical error that is
corrected in Eq. (63).
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~E � i�g0�2
X1
n�1

1

nsinh3 n�g
w

sin
n��x1 � w=2�

w
sin
n��x� w=2�

w

�

�
sinh

n��g=2� y�
w

�
sinh

n��3g=2� y1�

w
� 3 sinh

n��y1 � g=2�

w

�

� sinh
n��y� g=2�

w

�
sinh

n��3g=2� y1�

w
� 3 sinh

n��g=2� y1�

w

��
: (67)

Equations (63) and (67) allow one to calculate the imped-
ance for arbitrary offsets of the leading and trailing parti-
cles by computing the integrals (28) and (46). In what
follows we will focus on the case when the height of the
incoming and outgoing pipes far from the transition region
are equal, and the first order impedance Z�1�

k
vanishes.

We first calculate the longitudinal impedance when both
the leading and trailing particles are on the axis, x � x1 �
y � y1 � 0. We then have

 Z�3�
k
� �

ik
c

Z 1
�1

dz�g0�2F
�
g
w

�
; (68)

where

 F�x� �
X1
m�0

1

2m� 1
sech2

�
�2m� 1��x

2

�

� tanh
�
�2m� 1��x

2

�
: (69)

The plot of function F�x� is shown in Fig. 4. In the limit
g� w corresponding to x� 1, the summation in Eq. (69)
can be replaced by integration, and we have approximately
F�x� 
 7��3�=2�2 � 0:43, where ��3� is the Riemann zeta
function. In this limit the longitudinal impedance is

 Z�3�
k
� �

7��3�

2�2

ik
c

Z 1
�1

dz�g0�2: (70)

In the opposite limit, g� w, the function F becomes small
and the impedance tends to zero. In this limit the beam field
lines are closed to the vertical walls and do not ‘‘feel’’ the

variation of the gap g as the beam travels along the
transition.

We will now focus on the transverse impedance assum-
ing that all offsets are small, x, x1 � w and y, y1 � g.
Then the transverse vertical and the transverse horizontal
impedances (with respect to the reference trajectory) can
be written as

 Zy � y1Zy;d � yZy;q; Zx � x1Zx;d � xZx;q; (71)

where the subscript d and the subscript q denote the dipole
and the quadrupole contributions to the impedance, respec-
tively. From the Panofsky-Wenzel relation (8), we find that

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

x

F

FIG. 4. Plot of function F�x�.

FIG. 3. (Color) A smooth transition with rectangular cross section, (a); the origin of the coordinates �x; y� is located at the center of the
rectangle, (b).
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 Zy;d �
c
!

@2Zk
@y@y1

; Zy;q �
c
!
@2Zk
@y2 ;

Zx;d �
c
!

@2Zk
@x@x1

; Zx;q �
c
!
@2Zk
@x2 ;

(72)

where the derivatives on the right side are evaluated at the
origin of the coordinate system. Setting y1 � y2 � y0 and
x1 � x2 � x0, we can also define normalized total imped-
ances:

 Z?;y �
Zy
y0
� Zy;d � Zy;q; Z?;x �

Zx
x0
� Zx;d � Zx;q:

(73)

With the general expression for the longitudinal imped-
ance, all the derivatives in Eq. (72) can be easily calculated
and give the following result:

 Z�3�y;d � �
i�2w
c

Z 1
�1

dz
�g0�2

g3 G1

�
g
w

�

Z�3�y;q � �Z
�3�
x;q � �

i�2

c

Z 1
�1

dz
�g0�2

g2 G2

�
g
w

�

Z�3�x;d � �
i�2

c

Z 1
�1

dz
�g0�2

g2 G3

�
g
w

�
;

(74)

where

 G1�x� � x3
X1
m�0

�2m� 1�

� coth
�
�2m� 1��x

2

�
csch2

�
�2m� 1��x

2

�

G2�x� � x2
X1
m�0

�2m� 1�sech2

�
�2m� 1��x

2

�

� tanh
�
�2m� 1��x

2

�

G3�x� � x2
X1
m�1

2msech2�m�x� tanh�m�x�:

(75)

The plot of functions G1, G2, and G3 is shown in Fig. 5.
Again, in the limit of small ratio g=w we find

 Z�3�y;d � �
i�w
c

Z 1
�1

�g0�2

g3 dz

Z�3�x;d � Z�3�y;q � �Z
�3�
x;q � �

i
c

Z 1
�1

dz
�g0�2

g2 :

(76)

The proportionality of the vertical impedance to the width
of the transition in this limit was found in Ref. [2]; how-
ever, the numerical factor in the first of Eqs. (76) in that
paper was erroneously found to be 2 times larger.

Note that in the limit of a very wide transition, w! 1,
we have Z�3�x;d � �Z

�3�
x;q, and the total impedance in the

horizontal plane becomes Zx � Zx;d�x� x1�. This is an

expected result, because in this limit the vertical bounda-
ries are removed, and the system becomes translationally
invariant in the x direction.4

VI. BEAM PASSING NEAR A WALL

The two previous sections dealt with the cases when the
beam was located on or near the symmetry axis of the
system. In this section, to demonstrate the capabilities of
our method, we consider a system that does not have a
symmetry at all—a beam passing near a wall which is bent
in such a way that the distance from the beam to the wall is
varying in the longitudinal direction. More specifically, we
assume geometry shown in Fig. 6. The wall infinitely
extends in the x direction, and the distance from the
beam to the wall d�z� in the y direction varies along z
with d approaching limiting values d1 and d2 at z � �1.

The simplest way to approach this problem is to notice
that its solution can be obtained as a limit of the rectangular
transition considered in the previous section, when the
width w and the height g of the rectangle tend to infinity,
but the distance from the beam to the upper wall g�z�=2�
y1 and the distance from the observation point to the wall
g�z�=2� y remain finite. To discard the contribution (28)
from the first order terms, we assume that the incoming and
outgoing pipes have identical cross section so that this term
vanishes. This means that the distances to the wall d1 and
d2 at z � �1 (far from the transition) are equal.

To calculate the transverse impedance Zy for this prob-
lem we use the Panofsky-Wenzel relation (8) with the
definition Eq. (46),

 Zy � �
1

c

Z 1
�1

@~E

@y
dz; (77)

where ~E is given by Eq. (67). This transverse impedance
describes a kick to the beam in the y direction when the
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FIG. 5. Plot of functions G1 (1), G2 (2), and G3 (3).

4The importance for a solution to satisfy this requirement was
pointed out to the author by Krinsky.
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beam propagates close to the wall. To compute the imped-
ance on the beam trajectory, we calculate the derivative
@~E=@y and substitute y � y1 � g=2� d, x � x1 � 0, and
g0 � d0 into the equation:
 

@~E

@y
�

2�i�d0�2

w

X1
n�1

sin2�n�2 �

sinh3�gn�w �

�

�
cosh

�
dn�
w

��
3 sinh

�
�g� d�n�

w

�

� sinh
�
�d� g�n�

w

��

� cosh
�
�g� d�n�

w

�

�

�
sinh

�
�2g� d�n�

w

�
� 3 sinh

�
dn�
w

���
: (78)

Analysis shows that, when d=w! 0, the main contribution
to the sum comes from the terms with large values of n, and
one can approximate sinhx, coshx 
 ex=2 in Eq. (78).
Since the factor sin2�n�2 � filters only odd values of n,
summation over n can be approximately replaced by in-
tegration,

P
1
n�1 sin2�n�2 � !

1
2

R
1
0 dn. This gives the follow-

ing expression for @~E=@y:

 

@~E

@y



2�i�d0�2

w

Z 1
0
e�2d�n=wdn �

i�d0�2

d
: (79)

Using Eq. (77) for the y impedance we now find

 Zy � �
i
c

Z 1
�1

�d0�2

d
dz: (80)

We remind the reader that this result assumes that d�z �
�1� � d�z � 1�.

As it follows from the symmetry consideration, for x �
x1, the horizontal impedance near the wall, Zx, vanishes.

VII. DISCUSSION

In our solution for the rectangular transition we assumed
that the width w of the collimator is constant. This assump-
tion can be easily dropped. As a detailed analysis shows,
within the limits of the perturbation theory used in this
paper, the solution that takes into account both g�z� and
w�z� dependence is the sum of a solution that assumes g�z�
and a constant w with the solution that assumes w�z� and a
constant g. The former was obtained in Sec. V with ~E given
by Eq. (67); the latter is obtained from Eq. (67) by simul-
taneous replacements x$ y, x1 $ y1, and g$ w.

The applicability condition [Eq. (3)] can equivalently be
written as ja0j � 1 for the axisymmetric geometry and
jg0j � 1 for the rectangular one. Note also that, although
we talked about a smooth transition from one pipe to
another, it does not mean that the derivatives of the func-
tions a�z� and g�z� should be continuous—jumps in these
derivatives are allowed as long as the derivatives them-
selves are small. A typical situation in practice is when a
transition is only piecewise smooth but all the angles are
small. Our results are still applicable to this case, although
they are less accurate than when the derivatives are con-
tinuous. A detailed study of the effect of discontinuous
a0�z� with evaluation of correction terms is carried out in
Ref. [11].
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FIG. 6. (Color) A beam trajectory near a wall. Only half of the
wall extending into the region of negative values of x is shown.
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