
Time evolution of coupled-bunch modes from beta function variation in storage rings

Kai Meng Hock* and Andrzej Wolski
Department of Physics, The University of Liverpool, Liverpool, L69 7ZE, United Kingdom

and The Cockcroft Institute, Daresbury, Warrington, WA4 4AD, United Kingdom
(Received 18 May 2007; published 30 August 2007)

We present an analytical and numerical study of the equations of motion for bunches coupled by
transverse wakefields. We base our study on a recent lattice design for the damping rings in the baseline
configuration of the International Linear Collider. Using the macroparticle model, and assuming resistive
wall wakefield coupling, we present numerical results on the time evolution of the multibunch modes.
Decay modes display growth after initial decay, and mode amplitudes exhibit high-frequency oscillations.
These phenomena are not expected if the beta function is assumed to have a constant, averaged value. We
show analytically that they can come from coupling between modes caused by variation of the beta
function in a real lattice. The effect is shown to be comparable to the effect of a nonuniform fill pattern and
significantly larger than that of the higher-order mode wakefield localized in the rf cavities. Turning to the
case of constant beta function, we develop a more complete treatment of the equations of motion. We
derive general formulas for the bunch trajectories, and show that such formulas can only be valid in the
limit of small wakefield coupling.
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I. INTRODUCTION

Wakefield coupling between bunches is an important
cause of instability in accelerators [1–3]. This is a widely
studied area and many numerical studies have been carried
out [4–6]. The electromagnetic fields induced by relativ-
istic charged particles traveling through an accelerator
beam pipe affect the motion of the following particles. In
a synchrotron storage ring under certain conditions, the
wakefields acting from one bunch to another can lead to
beam instability, manifested as motion with large synchro-
tron or betatron amplitude, decoherence, and beam loss.
Feedback systems are commonly installed in modern, high
intensity storage rings to maintain bunches on the design
trajectory by providing precisely timed kicks [7,8]. In the
case of the damping rings of a linear collider, strong wake
forces can occur during the injection process because of the
large offsets of these bunches from the design trajectory
[4,6], and there are concerns that these forces could induce
jitter in the damped bunches ready for extraction.

A good understanding of the behavior of wakefield
coupled bunches is therefore important for storage rings,
and models have been developed to describe the observed
dynamics. Various analytical results based on the macro-
particle model are available for the equations of motion of
wakefield coupled bunches. For example, there exist ana-
lytic formulas for the growth rates that describe the in-
crease in the amplitudes of the normal modes resulting
from wakefield coupling [5]. Another example is analytic
formulas to describe the time evolution of each bunch [4].
These results are important for the design of feedback
systems needed to suppress any instabilities. The results

may also be useful for predicting the transient effects that
can arise from injection and extraction of bunches.

The concept of normal modes is convenient for charac-
terizing the coherent motion of bunches in a storage ring.
The mode amplitudes can be obtained by performing a
discrete Fourier transform (DFT) of the transverse or lon-
gitudinal bunch positions at any instant. The resulting
snapshot, repeated over time, provides a useful description
of the evolution of the beam in a real accelerator [3], and is
an important means of characterizing the effectiveness of
the feedback control system.

The derivation of the analytic formulas referred to
above, and the use of the normal modes, are based on the
assumption that any effects from variations of the beta
function around the ring average out, so that the beta
function can be assumed to be constant. The agreement
with experimental results and the successful design of
feedback systems show that this has indeed been a reason-
able approximation in machines built and operated to date.
However, the demand for very high levels of stability in
machines with intense beams, such as linear collider damp-
ing rings [9], make it worthwhile to study this issue in
greater detail, both to investigate the effects of variations in
the beta function, and to examine numerical accuracy of
the analytic results.

The baseline configuration for the International Linear
Collider (ILC) [9] specifies damping rings with a circum-
ference of over 6 km, storing between 3000 and 6000
bunches with 400 mA average current [10]. Initial esti-
mates suggest that growth rates from resistive wall wake-
fields alone could drive coupled-bunch instabilities with
growth times of the order of a few tens of turns; only just
within the capabilities of modern digital feedback systems.
Long-range wakefields from other sources, such as higher-*k.meng_hock@dl.ac.uk
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order modes in the rf cavities, could increase the growth
rates further. Furthermore, large variations in beam current
(of up to 10% of the nominal stored current) will occur in
the positron damping ring during the process of extraction
and reinjection. Freshly injected bunches can be expected
to have significant longitudinal and transverse jitter, which
may couple to damped bunches awaiting extraction. A
thorough understanding of the dynamics resulting from
wakefield coupling between bunches is necessary if
bunches meeting the stability specifications are to be ex-
tracted from the damping rings. To address these issues, we
base our present study on the macroparticle model, which
has been widely used and shown to produce reasonable
agreement with experiments. We carry out detailed track-
ing simulations to include the effects of variations in the
beta function through a realistic lattice, based on the
present ILC baseline design, and reexamine the assump-
tions of previous analytic results (e.g. Ref. [3]). To under-
stand all the features observed in the tracking simulations,
some extension to the existing theory is needed.

The structure of the paper is as follows. In Sec. II, we
describe the tracking simulations, discussing the model on
which it is based and significant features in the results
when applied to the ILC damping rings. In Sec. III, we
consider in more detail the mode coupling and the high-
frequency oscillation of the mode amplitudes that are
observed in the simulation results, and show that these
effects may be the result of variations in the beta function
around the ring. In Sec. IV, we revisit the analytical solu-
tion to the equation of motion for wakefield coupled
bunches in a storage ring, considering in some detail two
aspects that have not previously been fully discussed: the
significance of the ‘‘initial history’’ of the system; and the
existence of a family of solutions to the equations of
motion, beyond the single solution usually identified with
the instability growth rate. Finally, in Sec. V, we derive a
solution to the equations of motion that is more general
than the one usually written for wakefield coupled
bunches. Partly for convenience and partly to clarify our
general approach, some standard material is summarized in
two appendices. Appendix A briefly reviews the model
leading to the familiar formula for the growth rates of
coupled-bunch modes. Appendix B rederives the kick
method used in the tracking simulation by direct integra-
tion of the equations and clarify the assumptions made.
Comparisons between the beta function variation and some
other effects that can impact the growth rates are given in
two further appendices. Appendix C reexpresses the for-
malism in terms of matrices for linear systems, and com-
pares the effect of varying beta function with the effect of
an uneven fill pattern. Appendix D calculates the effect of
the transverse higher-order mode (HOM) from the rf cav-
ities and shows that, with the kind of cavity expected for
the ILC damping rings, the effect is small. Finally,
Appendix E repeats the simulation for a simple lattice to

show that the effects of beta function variation is not
limited to large rings.

II. TRACKING SIMULATION

In earlier papers on coupled-bunch instabilities, the beta
function has sometimes been assumed to vary only slightly
from its average value [11]. Even when it is known to vary
strongly, it has been hoped that the rapid oscillations of the
beta function can be averaged out when assessing their
effect on the beam [4]. In Ref. [6], for instance, although a
tracking simulation has been carried out on a lattice with
large variations in the beta function, the results have been
compared with analytical results obtained from a model
that assumes a constant beta function. The fact that there
appears to be a good agreement between the simulation and
analytical results justifies the averaging of the beta func-
tion in the analytical model.

Various methods are available for numerical integration
of the equations of motion, given by

 �x m�t� �!2
�xm�t� � �

Nr0c
�T0

fW1��c��xm�1�t� ��

�W1��2c��xm�2�t� 2�� � � � �g

(1)

and explained further in Appendix A. In this paper, we
assume a form of the resistive wall wakefield given by
Eq. (A3). More refined treatments are available—see [12]
and references therein. The qualitative features of the
results presented in this paper are likely to remain un-
changed because the wakefield model only determines
the constant numerical values of the coefficients of x in
Eq. (1), and does not affect the form of the differential
equation. We hope to repeat the calculation with improved
wakefield models in the future.

If the wake force on the right of Eq. (1) is set to zero and
the beta function is averaged around the ring, we have the
equation of motion for a simple harmonic oscillator, which
has the simple solution

 xm�t� � Ae�i!�t � Be�i!�t: (2)

Constants A and B are obtained from initial conditions at
t � 0, where the values xm�0� and _xm�0� are specified.
Reference [4] shows that, for small wake forces, it is
sufficient to compute an instantaneous change in momen-
tum, or ‘‘kick,’’ from the wake forces once every turn
around the damping ring. The kick is computed by taking
the product of the wake force at a fixed point on the ring
and the time of revolution, T0. The kick causes a change in
_xm�t� but not xm�t�. The new value of _xm�t� is then used to
define the starting point for the computation of the trajec-
tory xm�t� over the next turn. This process is then repeated
over many turns.

In Ref. [6], action-angle variables are used. The kick is
applied to M points around the ring, where M is equal to

KAI MENG HOCK AND ANDRZEJ WOLSKI Phys. Rev. ST Accel. Beams 10, 084401 (2007)

084401-2



the number of bunches. Each point is called a time slice. At
each time slice, the bunch is given a kick. The Cartesian
coordinates xm�t� and _xm�t� are converted into action-angle
variables. The wake force is assumed not to act between
slices. The action remains constant up to the next slice,
while the angle increases by an amount equal to the phase
advance. At the next slice, the Cartesian coordinates of the
bunch are calculated from the action-angle variables, and
the next kick is applied. Here the kick is the product of the
wake force and the time taken for the bunch to travel the
distance between the slices. The process is repeated for
each subsequent slice. This method has the advantage that,
if the Twiss parameters are known over the lattice, the
effect of the varying beta function can easily be included
through the phase advance, and through the conversion
between Cartesian coordinates and action-angle variables.

The methods of delay differential equations (DDEs)
[13–16] offer some possibilities for a more careful ap-
proach. DDEs are equations which involve the history of
the variables, which is the case for the equation of motion
we consider here, describing the motion of bunches in a
storage ring in the presence of long-range wakefields. The
general approach is to integrate a DDE numerically or
analytically in the way that would normally be done for
ordinary differential equations. For example, Eq. (1) would
first be integrated over one time step, �. In order to do so,
the value of xm�t� must be known over the time interval. In
the case of numerical integration, however, this is normally
known over discrete points on the interval. Except for the
simple Euler method, this is not sufficient, either for a
Runge-Kutta integration or an analytical integration. It is
therefore necessary to interpolate xm�t� over the time in-
terval: the quality of this interpolation is crucial to the
accuracy of the integration [15]. Many DDE algorithms
have been developed to address this issue.

Let us now apply this approach to Eq. (1). In our case,
the distance between time slices is small compared with
the wavelength of the betatron oscillation: the horizontal
tune �x is about 52.4, whereas the number of time slices we
use is M � 3649. This gives M=�x � 69:6 time slices per
oscillation. If we imagine dividing one wavelength of a
sine curve into this number of intervals, we see that a linear
interpolation should be quite sufficient. If we apply this to
the wake force term, we can replace it completely by a
single linear term pt� q fitted over each time interval. As
it turns out, this form is amenable to a direct analytic
integration. The surprising outcome is that the solution
resulting from this first-order interpolation of the wake
force is exactly equivalent to the kick method using a
zeroth-order interpolation of the wake force described
above. The full derivation is given in Appendix B. This
approach puts the heuristic kick method on firm mathe-
matical grounds, where the underlying assumption is now
properly clarified: the assumption is simply that a linear
interpolation on the history has been used. This allows us
to keep track of the order of accuracy involved. For in-

stance, we can imagine improving the accuracy by using a
more accurate interpolation. Furthermore, provided that
the linear interpolation on the history is sufficiently accu-
rate, the requirement that the wake force be small is no
longer necessary.

We now apply the kick method to the ILC damping ring,
for the horizontal motion. Neglecting effects resulting from
energy variations due to changes in path length, the hori-
zontal and vertical dynamics are essentially the same. The
parameters used are as follows:

Circumference of ring 6695.057 m
Particle energy 5.0 GeV
Horizontal tune 52.397
Number of particles per bunch 2� 1010

Number of bunches 3649
Beam pipe (aluminum) conductivity 3:2� 1017 s�1

Beam pipe radius 10 mm

We first carry out the simulation for the case when the
beta function is constant, and compare the growth rates
with the analytical result. This provides a reference for the
case that includes variations in the beta function. The
simulation in this section follows closely the method in
[6] : (i) The bunches are regularly spaced, and travel very
close to the speed of light. (ii) The initial xm�t� and _xm�t� at
t � 0 are given random values. (iii) The history, or wake-
field sum on the right of Eq. (1), is truncated at N � 100
bunches. (iv) The initial history, i.e., the values of xm�t� and
_xm�t� over the time interval ��N�; 0�, are set to zero.
(v) The distance between time slices is taken to be the
distance between bunches. (vi) At each time step, the
action-angle variables, Jm and �m, are obtained by trans-
forming from xm�t� and _xm�t� for each bunch. (vii) The
mode is obtained by a discrete Fourier transform over the
normalized action,

��������
2Jm
p

ei�m , with respect to m.
The original idea behind using the normalized action in

[6] is to include the velocity information in the mode
calculation. This turns out to have interesting consequen-
ces which will be discussed in Sec. IV. Here we just note
that the mode, defined in Appendix A as a form of DFT
over xm�t�, is not exactly the same as a DFT over��������

2Jm
p

ei�m .
In [6], the growth rate is obtained for each mode by

plotting the mode amplitude against time, and fitting the
graph with an exponential function. There, it is observed
that some of the modes are not simple exponentials. We
shall later demonstrate a few situations where such non-
exponential behavior may appear; but for the moment we
simply assume that the modes evolve exponentially, as
suggested by the analytical procedure leading to the growth
rate formula [5]. Then, if a mode � has frequency �� 	

!� � i=��, the evolution of the mode has the simple
exponential form e�i��t 	 et=��e�i!�t. The derivative of
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the mode amplitude et=�� at t � 0 is 1=��, which is just the
growth rate. We therefore obtain the growth rate by com-
puting the initial gradient of the mode amplitude—over
the first turn. Figure 1 shows the simulated growth rates
plotted against mode number, for the case of constant beta
function. The growth rates calculated from the analytical
formula in Appendix A are plotted on the same graph. The
agreement is good, which seems to justify our assumptions
so far. In Sec. IV, we shall show that the ‘‘oscillations’’ in
the simulation result for the growth rate as a function of
mode number are due to truncation of the wakefield sum in
Eq. (1). Note that radiation damping is not considered in
this paper. The way to include this is explained in
Appendix A.

We now apply the simulation to the varying beta func-
tion, with N � 100. Since the output positions from MAD

[17] are not regular, we need to interpolate to obtain the
values at equally spaced intervals, corresponding to the
distance between adjacent bunches. The interpolation
method we use is to fit a cubic equation to the beta function
between every two adjacent time slices, with the constraint
that the gradient of the fitted cubic matches the gradient of
the beta function (obtained from the alpha function output)
at each time slice.

The beta function clearly has large oscillations. In the
absence of any wakefield, the position of a bunch is given
by

 xm�t� �
���������������
2Jm�m

p
cos��m�: (3)

In our case, the wake force is weak compared to the
focusing force. If we consider the wake force to be a
perturbation to the betatron motion, the mode amplitude
should follow closely the trends of the beta function, and
oscillate strongly. Figure 2 shows the mode amplitude of
mode number 100 plotted against time. As expected, it
oscillates strongly. This immediately presents a problem
when we want to determine the growth rate, since the
initial gradient is no longer equal to the growth rate be-
cause of these oscillations. If we suppose that the long
term, averaged behavior is still exponential, we may try to
extract a growth rate by smoothing out the oscillations
before taking the initial gradient. We do so by taking the
average of the amplitude from turn 0 to 0.1, and the average
over turn 1 to 1.1. These averaged amplitudes are used to
determine the gradient over one turn, which is taken as the
growth rate. The result is shown in Fig. 3. There is a
significant increase in scatter compared with Fig. 1, but
the results still follow the trends of the analytic result fairly
closely. This appears to support the idea that the effect of
strong oscillations in the beta function can be averaged out.

However, there are a number of modes that show radi-
cally different behavior between the case in which we use
an averaged beta function, and the case in which we use the
real variation of the beta function around the lattice. For
example, if we look at mode 3600, its growth rate in the
case of an averaged beta function (Fig. 3) is negative, so it
should decay exponentially. However, when using the real
beta function, the growth rate appears to be positive
(Fig. 3). Does this mean that mode 100 would grow? To
answer this question, we simulate the long-term behavior
of the mode amplitude. Figure 4 shows the results. The
amplitudes are displayed every 10 turns, for 0.1 turn. The
amplitude in the first 0.1 turn has been expanded in Fig. 2.
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FIG. 1. (Color) The simulation and analytic results for the
transverse growth rates in the ILC damping ring using an
averaged beta function. The simulated growth rates are obtained
from the gradient of each mode amplitude over the first turn.
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FIG. 2. (Color) Simulation results for mode 100 using the actual,
varying beta function of the ILC damping ring. The graph shows
the normalized action constructed from the data.
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Mode 100 decays initially, but starts to grow after 40 turns.
This is surprising, because a mode that evolves with simple
exponential behavior should either always decay, or always
grow. An inspection of the other ‘‘decaying modes’’—
those with negative growth rates as shown in Fig. 3—
shows that all of them grow after about 100 turns.
For comparison, we have included the result for nonuni-

form charge distribution (uneven fill) in the case of
constant beta function, as well as for the transverse HOM
in the rf cavities. These are discussed in more detail in
Appendices C and D.

Let us turn our attention to another feature in this
simulation. Figure 5 shows three samples of mode ampli-
tudes, taken at turn numbers 0, 60, and 90. Superimposed
upon the variation of the mode amplitude is a small oscil-
lation with a much higher frequency compared to the
oscillation that results from variation in the beta function.

FIG. 4. (Color) Simulation results for mode 100 using the actual,
varying beta function of the ILC damping ring. The graph shows
the amplitude of the normalized action constructed from the
data.
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FIG. 5. (Color) Time evolution of mode 1000 in the ILC damp-
ing rings. The amplitudes at different turn numbers are plotted
together.
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FIG. 3. (Color) The simulation and analytic results for the
transverse growth rates in the ILC damping ring for the actual
beta function.
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FIG. 6. (Color) The mode frequency spectrum for turn num-
ber 90 in the ILC damping rings simulation. The color scale is 0
for blue, 0.5 for green, and 1 for red. For each mode, the peak
frequency has been normalized to 1.

TIME EVOLUTION OF COUPLED-BUNCH MODES FROM . . . Phys. Rev. ST Accel. Beams 10, 084401 (2007)

084401-5



This oscillation becomes increasingly obvious as the turn
number increases. To search for the cause of this oscilla-
tion, we compute the frequency spectrum of each mode at
turn number 90, where the oscillation is most prominent.
Specifically, we perform a fast-Fourier-transform of the
normalized action from turn 90 to 90.1. This contains
365 time slices or data points. The result is displayed as
a color scale plot in Fig. 6. The maximum height of the
spectrum for each mode has been normalized to 1. The
betatron oscillation shows up as a horizontal line near the
top. The high-frequency oscillation falls exactly on the
diagonal through the origin. In the following section, we
shall seek an explanation for the two unexpected features
observed in the simulation results: the long-term growth of
modes that are expected to decay, and the high-frequency
oscillation in the mode amplitudes.

III. DYNAMICAL EFFECTS OF VARIATIONS IN
THE BETA FUNCTION

In this section, we consider the growth of ‘‘decay’’
modes and the high-frequency oscillations that are ob-
served in the tracking simulations of the ILC damping
ring in the previous section. These features are not ex-
pected from the standard analytical theory, and in order to
explain them, we need to make some development of the
theory. We shall focus our attention on the effects of the
strong oscillation in the beta function. The original equa-
tion of motion (1) can be written in the following form:

 �x m�t� �!
2
�xm�t� �

X
n�1

bnxm�n�t� n�� (4)

for bunchesm � 0 toM� 1, where the constant factor and
wakefield coefficients have been absorbed into the con-
stants bn. We multiply this by exp��i2�m�=M�, and sum
overm. After some manipulations, we get the following set
of M equations:

 

�~x ��t� �!2
�~x��t� �

X
n�1

bnei��2�n��=M
~x��t� n��: (5)

This is the equation for mode �, which is defined by

 ~x ��t� �
XM�1

m�0

xm�t�e
�i��2�m��=M
: (6)

These equations are completely decoupled from one an-
other. This derivation is exact as long as the beta function,
and hence the betatron frequency !�, is constant.

To include the effects of variations in the beta function,
!� is treated as a function of time. First, define

 K�t� � �!��t�

2: (7)

So that the equation of motion can be written:

 �x m�t� � K�t�m��xm�t� �
X
n�1

bnxm�n�t� n��: (8)

Notice that the index m enters into the argument of K�t�
because each bunch sees a different beta function. Let �K be
the average of K�t� over time, and define the deviation of
K�t� from �K:

 k�t� � K�t� � �K: (9)

Then move the oscillating part of K�t� to the right-hand
side in Eq. (16):

 �x m�t� � �Kxm�t� �
X
n�1

bnxm�n�t� n�� � k�t�m��xm�t�:

(10)

Now transform to modes. Multiplying by
exp��i2�m�=M� and summing over m, we obtain

 

�~x ��t� � �K~x��t� �
X
n�1

bnei��2�n��=M
~x��t� n��

�
XM�1

m�0

e�i��2�m��=M
k�t�m��xm�t�:

(11)

Compared with Eq. (5), a new term has appeared in the
equation for the mode ~x��t�. This expresses the oscillating
part of K�t� as a driving force. Another form for this term
can be obtained by defining the following:

 

~k ��t� �
XM�1

m�0

k�t�m��e�i��2�m��=M
: (12)

This is essentially a discrete Fourier transform. Applying
the convolution theorem, we get
 

�~x��t� � �K~x��t� �
X
n�1

bnei��2�n��=M
~x��t� n��

�
1

M

XM�1

�0�0

~k���0 �t�~x�0 �t�: (13)

The new term now expresses the coupling between differ-
ent modes.

The driving force term that we derived above,
�
PM�1
m�0 e

�i��2�m��=M
k�t�m��xm�t�, arises as a result of
variations in the parameter K. For convenience, we shall
call it the parametric driving force, after the concept of
parametric resonance [18]. If the parametric driving force
is responsible for the high-frequency oscillations observed
in the tracking simulations, then this driving force should
oscillate at the same frequency. We can show that this is
indeed the case, by the following argument. Consider a
hypothetical situation in which all bunches are at a constant
unit displacement, i.e. xm�t� � 1 for all m. The parametric
driving force is then �

PM�1
m�0 e

�i��2�m��=M
k�t�m��,
which is just �~k��t�. This is essentially the spectrum of
k�t�. From the property of Fourier transforms, we know
that a shift in time corresponds to a shift in phase in the
frequency domain. We can therefore express ~k��t� in terms
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of ~k��0�. For our purpose, it is sufficient to sample the time
t at the time slices defined around the damping ring. So let
t � p�, where p is an integer. Substituting into the para-
metric force term,
 

�~k��p�� � �
XM�1

m�0

e�i��2�m��=M
k�p��m��

� �ei��2�p��=M

XM�1

m�0

e�if�2��p�m��
=Mg

� k�p��m��: (14)

Since k�m�� repeats itself around the damping ring, it is
periodic in m with period M. Therefore,

 � ~k��p�� � �ei��2�p��=M

XM�1

m�0

e�i��2�m��=M
k�m��

� �ei��2�p��=M
~k��0�: (15)

Since t � p�, we can also write

 � ~k��t� � �e
i��2��t�=�M��
~k��0�: (16)

Thus the parametric force has an oscillation frequency of
f � �

M� . This is the same frequency as that of the high-
frequency oscillation observed in the simulations: if we
were to plot f against the mode number �, we would see
exactly the same diagonal line that we see in Fig. 6.

We thus have a plausible explanation for the high-
frequency oscillation. As the bunches travel round the
ring, they are perturbed by the oscillating part of K�t�.
Each mode has a characteristic frequency. This is also
given by f � �

M� , because � is the number of wavelengths
present in that mode, and M� is the period of revolution
around the ring. Each mode would therefore resonate with
the corresponding frequency component of K�t�, which is
~k��0�. For convenience, we shall call this oscillation the
parametric oscillation.

We now turn to the mode coupling term in Eq. (13) and
consider the possibility that this may lead to exponential
growth of decaying modes. Consider two modes, a growing
mode ~x�00 and a decaying mode ~x�. As a result of the mode
coupling term, the growing mode would make a contribu-
tion 1

M
~k���00~x�00 to the equation for the decaying mode ~x�.

In the long term, this could cause the decaying mode to
grow. To demonstrate this mode mixing, we carry out a
simulation for the case where only one single mode, �, is
present. The purpose is to see if the other modes would in
fact appear after some time. In order to do so, we must
construct the bunch displacements for a single mode, and
use this as the initial condition at t � 0. This is given by [5]

 xm�t� � e��2�m��=M
e�i��t: (17)

The time derivative is then given by

 _x m�t� � �i��e��2�m��=M
e
�i��t: (18)

Setting t � 0 and taking the real parts, we obtain the
required initial conditions:

 xm�0� � cos
�
2�m�
M

�
and _xm�0� � �!� sin

�
2�m�
M

�
:

(19)

We carry out the simulation for mode � � 500. Figure 7
shows mode mixing that takes place when the actual ILC
damping ring beta function is used. Notice that all the other
modes start to appear after a fraction of a turn. We have
also carried out the simulation result whenK�t� (or the beta
function) is constant. As expected, there is only ever one
mode as time evolves—the spectrum of mode amplitudes
remain exactly the same as the top panel in Fig. 7 after 1
turn.

FIG. 7. Mode mixing for mode number 500 with the beta
function for the ILC damping ring lattice.
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From the results in this section, we conclude that, when
the beta function varies, the Fourier mode is no longer an
eigenmode. An eigenmode may vary in amplitude as time
passes, but the amplitude would scale by the same amount
at every point in space. As Fig. 7 shows, a Fourier mode
can change into something quite different if the beta func-
tion is not constant. We note here that other disturbances,
such as nonuniform charge distribution and localized
wakefields, can also have the same effect. We consider
these cases in Appendix C and D, respectively, and com-
pare their effects with the varying beta function. The above
effects are unexpected and have not previously been ob-
served. In order to confirm that they arise from a simple
variation in the beta function and are not due to the com-
plexity of the ILC damping ring, we repeat the simulation
for a simple lattice in Appendix E.

IV. THE INITIAL HISTORY

We now turn to the possibility of deriving an analytic
solution for the equation of motion, at least when the beta
function is constant. To do so, we must address the issue of
initial conditions, which has been overlooked up to now.
The initial conditions include both the values of xm�t� and
_xm�t� at t � 0, and the initial history. The initial history
refers to the values of xm�t� and _xm�t� before t � 0. In a
tracking simulation where the history is truncated at N
bunches, the initial history has to be specified over the
time interval ��N�; 0�. In fact, it has been completely
ignored so far—the initial history has been set to zero in
all of the simulation in the previous sections, as well as in
earlier publications [4,6]. The solution of the equation of
motion obviously depends on values of xm�t� and _xm�t�
over the whole time interval. Since there is no obvious
reason why all values should be neglected except those at
t � 0, it is perhaps surprising that we have good agreement
between simulation and analytical results, particularly
since we have observed that modes that are expected to
decay according to the analytical theory can, after a period
of time, start to grow exponentially. We suggest that good
agreement is usually observed because, for some reason,
xm�t� is very insensitive to the initial history. This hypothe-
sis will be checked numerically in Sec. V, where we also
derive an analytical formula for xm�t� for the case where
the beta function is constant. In the present section, we
prepare the necessary groundwork. We do so by character-
izing the behavior of the solution for the single mode
equation of motion, as a function of the initial conditions
at t � 0. The initial history will continue to be set to zero in
this section.

When the beta function is constant, the mode coupling
term is zero, and Eq. (13) simplifies to

 

�~x ��t� � �K~x��t� �
X
n�1

bne
i��2�n��=M
~x��t� n��: (20)

This equation contains a single mode, fully decoupled from

all other modes. This could offer a fast simulation method
if we just want to simulate one mode only. To carry out the
numerical integration of this equation, we are immediately
faced with the problem of initial conditions. It turns out
that, if we use random values for the initial conditions, as
we have done for the tracking simulation in Sec. II, we may
not find the expected behavior. For instance, if we integrate
the equation for mode number 100, which has a negative
growth rate according to Fig. 3, we would expect a decay
mode. However, if we use random initial conditions, the
decay mode may in some cases start to grow again, as we
shall show in this section. This is not because of mode
coupling, which is absent for constant beta function. We do
know that the normalized action gives the ‘‘correct’’ decay
mode behavior. This suggests that we try initial conditions
that match with the normalized action.

At this point, we must address a technical detail that we
have postponed up to now. In the algorithm for the tracking
simulation in this paper and in [6], the mode has been
obtained by performing a DFT on

��������
2Jm
p

ei�m , with the DFT
defined by

 

~f ��t� �
XM�1

m�0

fm�t�e�i��2�m��=M
: (21)

The mode, however, is defined by Eq. (6), which really
corresponds to the inverse DFT. This is the form that has
been used in our analysis, as well as in Ref. [5]. A DFT on��������

2Jm
p

ei�m would give results with the same amplitude as
an inverse DFT on

��������
2Jm
p

e�i�m (with a negative imaginary
exponent). This has not made any difference to the growth
rates simulation because only the amplitudes have been
computed. However, to use Eqs. (5) and (6) to analyze the
effect of using the normalized action, we should look at��������

2Jm
p

e�i�m . We drop the
��������
2Jm
p

initial amplitude, which
can be inserted into the solution later if desired, because
the equation is linear. When the beta function is constant,
�m � !�t. It turns out that we must choose the initial
conditions to be the same as those of the normalized action
before we can get a mode that decays all the time. To do so,
we can take the initial ~x� to be e�i�m � e�i!�t. _~x� would
then be �i!�e�i!�t. This places a constraint on the initial
conditions. Initial conditions that satisfy this constraint are
said to be properly ‘‘matched.’’ To understand the signifi-
cance of matching the initial conditions, we shall integrate
the equation both for the case when the initial conditions
are properly matched, and when they are not.

A set of properly matched initial conditions can be
specified as follows:

 For � N� � t < 0; ~x��t� � _~x��t� � 0: (22)

 For t � 0; ~x��0� � 1 and _~x��0� 	 �i!�: (23)

With these conditions, we can start the integration. We
shall take N � 100 as we have done in Sec. II. Figure 8
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shows the result for mode number 500 over 600 turns. The
inset shows the result over the first 0.1 turn. Over this short
interval, as expected, the motion is very nearly simple
harmonic. As we have hoped, it gives a nicely decaying
mode. Next, we should check if this equation gives the
correct growth rate for all of the modes. We compute the
initial gradient of the amplitude of every ~y� over the first
turn, and the result is the same as Fig. 3. So the single mode
equation (20) works for simulation of a single mode.

Now we shall show that, if the initial conditions are even
slightly mismatched, then a mode that initially decays can
eventually start to grow. We introduce some error into the
initial condition used above and see what happens when we
integrate the equation. For simplicity, we shall add the
error to the velocity only. The initial conditions are now

 ~x ��0� � 1 and _~x��0� 	 �i�1� "�!�: (24)

The initial history over ��N�; 0� is again set to zero. The
integration results for mode 500 when " � 0:1 are shown
in the Fig. 9. Notice that the decay mode grows again after
some time. We have repeated the calculation for " � �0:1,
�0:01, �0:001, �0:001, �0:01, and �0:1. According to
the analytic result, the growth rate for mode 500 is nega-
tive, so we should expect to see a decaying mode. In all
cases except " � 0, the decay mode grows again after
some time. This result suggests that modes are only ob-
served to decay without later growth if the initial condi-
tions are properly matched. The question then naturally
arises as to whether this is indeed the case, and if so, why?

To begin to answer this question, consider the elemen-
tary solution

 ~x � � e�i��t: (25)

Substituting into the single mode equation (20), we get the
characteristic equation

 ��2
� � �K �

XN
n�1

bne
i��2�n��=M
ei���: (26)

Equations of this form have multiple roots [13–16]. To get
an idea of the distribution of the roots, we can move all
terms to one side and make a contour plot of the absolute
value of the resulting function. Figure 10 is a contour plot
of jf����j

2 when N � 100, where

FIG. 9. Single mode simulation result for the amplitude of
mode 500 when an error is introduced into the normalized action
initial conditions. The amplitudes are displayed every 10 turns,
for 0.1 turn.

-0.2

-0.1

0

0.1

0.2

-0.2 -0.1 0 0.1 0.2

Ω  τ

(b) (a)

(-3) (-2) (-1) (0)
(+1) (+2)

µ

FIG. 10. Contour plot on the complex plane of ��� from the
characteristic equation for mode 500, showing the distribution of
roots—located at the centers of the concentric contours.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600
Turn Number

A
m

p
li

tu
d

e 
(a

rb
. 

u
n

it
s)

-1.5

0

1.5

0 0.01 0.02

real

imaginary
amplitude

FIG. 8. (Color) Single mode simulation result for mode 500
using the normalized action initial conditions. The inset shows
the real and imaginary parts over 0.02 of a turn.

TIME EVOLUTION OF COUPLED-BUNCH MODES FROM . . . Phys. Rev. ST Accel. Beams 10, 084401 (2007)

084401-9



 f���� � �2
� � �K �

XN
n�1

bne
i��2�n��=M
ei���: (27)

In the contour plot, we have transformed the time variable
according to

 t! t0 � t=� (28)

so that the time interval between adjacent slices is now 1.
This makes the scale easier to read. From such a snapshot,
we can learn a few things about the roots: (i) The root
familiar from the analytic growth rate formula is the one
that is close to!�. This is labeled (a). (ii) There is a root in
an apparently symmetric position, labeled (b). (iii) There
exists a series of roots with much larger and negative
imaginary parts, and that appear to run along the direction
of the real axis. These are labeled (n), where n is an integer.

We have plotted the contour over a much larger area, and
the pattern appears to be the same. There could well be
other roots, but we shall start with these.

Based on this knowledge of the roots, a plausible form of
the general solution is

 ~x � � Ae�i�
�a�
� t � Be�i�

�b�
� t �

X1
n��1

Cne
�i��n�� t: (29)

In principle, the coefficients A, B, and Cn are obtained by
fitting this equation to the initial conditions. An infinite
number ofCn are required because the initial history can be
any function over the time interval �N� � t < 0. Thus,
the infinite sum on the right-hand side of Eq. (3) is similar
to a Fourier sum. We shall not touch on the issue of
completeness of the elementary solutions, an area of active
research in the field of delay differential equations [19].
Since ��n�� has large, negative imaginary parts, they will be
damped out rapidly. A quick calculation for mode 500
shows that, for the roots visible in Fig. 10, the time constant
is about 0.01 turn. However, we do not know if they can be
completely ignored because when we repeated the calcu-
lation for N � 1000 and 10 000, we find that ��n�� move
closer to the real axis, so that the damping time increases.
In the next section, we shall use numerical means to
determine the errors that result from ignoring these roots.
For now, we shall assume that the dominant terms on the
right-hand side of Eq. (30) are just the first two:

 

~x � 	 Ae�i�
�a�
� t � Be�i�

�b�
� t: (30)

Roots (a) and (b) are expected if the wakefield is small.
They are close to �!�, which are the roots of the simple
harmonic equation obtained when the wakefield sum on the
right-hand side of Eq. (1) is set to zero. In particular, root
(a) is the one that is used in the derivation of the analytical
formula for growth rates given in Appendix A. For mode
500, we know that the first term is decaying. When we
magnify the contour plot above around root (b), we can see
that it has a positive imaginary part. So the second term is

growing. Drawing on the similarity with the simple har-
monic equation, we can see that both terms should be
important. Yet, only the first term has been considered so
far in this paper, as well as in Refs. [4–6].

We shall show that it is the second term that caused the
mode amplitude to grow when mismatched initial condi-
tions were used in the integration of Eq. (20). In order to
show this, we shall derive the analytic solution with mis-
matched initial conditions. First, note that root (a) is very
close to !�, and root (b) is very close to�!�. For small t,
the modes evolve as given by Eq. (30):

 ~x ��t� 	 Ae�i!�t � Be�i!�t: (31)

We consider mismatched initial conditions ~y��0� � 1 and
_~y��0� 	 �i�1� "�!�. Solving for A and B at t � 0, we
get

 ~x ��t� 	
�
1�

"
2

�
e�i!�t �

"
2
e�i!�t: (32)

For large t, this evolves into

 

~x � 	
�
1�

"
2

�
e�i�

�a�
� t �

"
2
e�i�

�b�
� t: (33)

It is possible to obtain accurate values for roots (a) and (b)
from the contour plot using a minimum search algorithm.
However, the known analytic formula for root (a)—in
Appendix A—is sufficiently accurate for small wakefields
as we shall show, and a corresponding formula will be
derived for root (b) later in this section.

Using this analytic solution, it is easy to plot the modes
for the ‘‘matching error’’ used above. Figure 11 compares
the simulation result for " � 0:1, with the analytical result
from Eq. (33). The agreement is excellent, with an error of
about 0.3% at 490 turns. This means that we now under-
stand why we cannot choose random initial conditions if
we want to see the decay mode for mode number 500:
(i) The matched initial conditions give the expected results
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FIG. 11. (Color) Comparison of the single mode simulation
result for mode 500 and the analytic solution.
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because in that case, the solution is overwhelmingly domi-
nated by root (a), the same one that is used in the analytic
formula for growth rates. (ii) There is another root, (b) that
is equally important, if we want to determine the correct
trajectory for each bunch.

We now have an explanation as to why using matched
initial conditions gives the expected damping or growth,
and why more general initial conditions (including, for
example, an initial history) leads to growth in modes that
are expected to be damped. However, this does not mean
that the earlier results on the growth rates are wrong. It just
means that, for each mode, we have extracted only the
contribution from root (a) from the tracking simulation.
This has taken place through the use of the normalized
action in Sec. II. The actual results of the tracking simula-
tion must necessarily contain contributions from root (b)
also, which we have not considered up to now.

We shall complete this section by deriving the analytical
formula for root (b). The steps are nearly the same as those
that have led to root (a). To make contact eventually with
the growth rate formula in Appendix A, we shall make the
resistive wakefield more explicit. From the wakefield for-
mula also in Appendix A, the wake coefficients in the
equation of motion are proportional to 1��

z
p . Substituting

the elementary solution e�i�t into the single mode equa-
tion of motion, Eq. (5), we obtain the characteristic equa-
tion

 

��2 �!2
� � b0

�
ei��2���=N
ei�� �

1���
2
p ei��2�2��=N
ei2��

�
1���
3
p ei��2�3��=N
ei3�� � � � �

�
; (34)

where

 b0 �
Nr0c
�T0

2

�b3

���������
c
�c�

r
C: (35)

Factorizing,

 ����!�����!�� � b0

�
ei��2���=N
ei��

�
1���
2
p ei��2�2��=N
ei2��

�
1���
3
p ei��2�3��=N
ei3�� � � � �

�
:

(36)

For small wakefields, � 	 !�, so

 ����!���!� �!�� 	 b0

�
ei��2���=N
ei!��

�
1���
2
p ei��2�2��=N
ei2!��

�
1���
3
p ei��2�3��=N
ei3!��

� � � �

�
: (37)

This gives the formula for ��a�� [5]:
 

� 	 !� �
b0

2!�

�
ei��2���=N
ei!�� �

1���
2
p ei��2�2��=N
ei2!��

�
1���
3
p ei��2�3��=N
ei3!�� � � � �

�
: (38)

However, there is also another root when � 	 �!�.
Starting again from

 ����!�����!�� � b0

�
ei��2���=N
ei��

�
1���
2
p ei��2�2��=N
ei2��

�
1���
3
p ei��2�3��=N
ei3�� � � � �

�

(39)

when � 	 �!�,

 �!� �!�����!�� 	 b0

�
ei��2���=N
e�i!��

�
1���
2
p ei��2�2��=N
e�i2!��

�
1���
3
p ei��2�3��=N
e�i3!�� � � � �

�
:

(40)

Then ��b�� is given by
 

� 	 �!� �
b0

2!�

�
ei��2���=N
e�i!��

�
1���
2
p ei��2�2��=N
e�i2!�� �

1���
3
p ei��2�3��=N
e�i3!��

� � � �

�
: (41)

The symmetrical nature of Eqs. (38) and (41) means that
graphically, the imaginary part of ��b�� is a simple reflec-
tion of the imaginary part of ��a�� , which is the growth rate.
These are plotted in Fig. 12(a) for N � 100. The real part
corresponds to the frequency, and is plotted in Fig. 12(b) as
a fractional shift, Re���!��=!�, with respect to the
betatron frequency.
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An interesting point to note is that the imaginary parts of
��a�� and ��b�� are both negative for the following mode
numbers:

 0 � �< � and M� � < �<M:

These modes will always decay, even if there is an ‘‘error,’’

i.e., even if the initial conditions differ from the normalized
action, and will therefore not produce the growth seen in
mode 500 above.
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We are now ready to explain the small oscillations in the
growth rates in Fig. 3 obtained from the tracking simula-
tion. Figure 13 shows the growth rates obtained from the
above analytical formula for ��a�� in Eq. (38), truncated at
N � 100 (labeled ‘‘Analytic N � 100’’). This clearly
shows the same oscillation as the simulated growth rates,
also shown on the same figure labeled ‘‘Simulation
N � 100.’’ On the same graph, the analytic results forN �
500 are plotted. The amplitudes gradually decrease as N
increases. In the limit that N goes to infinity, it should
converge to the analytic result given by the Fourier trans-
formed expression in Appendix A, labeled ‘‘Analytic
N � infinity’’ in the figure. We have also repeated the
calculations of growth rates by doing a minimum search
for the root (a) on the contour plot in Fig. 10. These results,
when plotted on the same graph in Fig. 13, are visually
indistinguishable from those already obtained from
Eq. (38). The spiraling curves displayed in Fig. 14 repre-
sent the result of summing the terms in Eq. (38) [Fig. 14(a)]
and Eq. (41) [Fig. 14(b)]. The triangles represent the final
values of the sums when truncated at N � 100. Notice that
they terminate at the center of the concentric circles on the
figures, which represent the roots of the characteristic
Eq. (26).

V. ANALYTIC SOLUTION

In this section, we derive an analytic solution for the
equation of motion for the case of constant beta function.
An analytic solution has been derived in Ref. [4]. However,
this only makes use of the solution closest to !�. It does

not include the root ��b�� , nor is there an explanation of why
the rest of the roots ��n�� should be neglected. The use of
only root ��a�� means that the analytic solution will match
the actual solution only when the initial conditions are
properly matched, as we have demonstrated in the previous
section, and not for general initial conditions. Here, we
shall derive a solution that is valid for any initial condition,
and measure its accuracy by comparing it with the case
when the history is neglected, i.e. set to zero. The impor-
tance of initial history in delay differential equations has
been widely studied (see, e.g., Ref. [16]). In the cases of
wakefield coupled bunches that we have considered so far,
it appears that correct growth rates may be obtained even
without the initial history being considered. However, the
initial history may become important if the system parame-
ters are changed significantly, and it is important to know
for what parameters this may happen.

We approach the problem as follows. We know from the
example in Fig. 11 that it is possible to get excellent
agreement with simulation by using a linear combination
of only two elementary solutions [Eq. (34)] of the form

 

~x � � Ae�i�
�a�
� t � Be�i�

�b�
� t (42)

and fitting the coefficients A and B to the initial conditions

at t � 0 only. If this solution is sufficiently accurate, we
can apply it to all modes and derive an analytic formula for
the trajectory of every bunch. For such a formula to be
useful, we must first obtain an estimate of the actual errors
involved. We know that there is an error of 0.3% in Fig. 11.
There are two possible sources of this error: one is the kick
method used to perform the numerical integration, and the
other is the neglect of the initial history. The reason why we
expect the latter error is as follows. In the simulation, the
initial history has been set to zero. However, if the true
trajectory is in fact given by Eq. (42), the initial history
over the time interval ��N�; 0�, must also be given by
Eq. (42). The reason is that, if the initial history is not given
by Eq. (42), then it must be given by Eq. (29) which is
reproduced here:

 ~x � � Ae�i�
�a�
� t � Be�i�

�b�
� t �

X1
n��1

Cne�i�
�n�
� t; (43)

where the coefficients Cn are nonzero. However, if Cn are
nonzero over the time interval ��N�; 0�, they must con-
tinue to be nonzero for t > 0, since these coefficients are
constant. Then Eq. (42) would not give the actual trajec-
tory. Therefore if Eq. (42) is the actual trajectory for t > 0,
then the initial history must also be given by Eq. (42).

This reasoning gives us a way to check the numerical
error due to the kick method. All we need to do is to
calculate the initial history using Eq. (42) for some values
of the coefficients A and B, carry out the simulation, and
compare the results with Eq. (42). As an example, we set
A � 1:05 and B � �0:05, which would give the same
initial conditions at t � 0 as in Fig. 11. We compute the
initial history at t � �N�;��N � 1��; . . . ;�2�;��; 0.
This and the subsequent simulation are illustrated in
Fig. 15 for mode 500. The simulation result up to turn
number 500 looks the same as in Fig. 9. If the simulation
method is perfectly accurate, it should give exactly the
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FIG. 15. Single mode simulation of mode 500 using initial
history created from the analytic solution.

TIME EVOLUTION OF COUPLED-BUNCH MODES FROM . . . Phys. Rev. ST Accel. Beams 10, 084401 (2007)

084401-13



same results as Eq. (42); any difference must represent the
error due to the method.

The relative error from the kick method for mode 500 is
shown in Fig. 16. It appears that the simulation method
gives a systematic error that increases with time. In order to
determine the error due to the neglect of the initial history,
we must separate out this systematic error. We shall take
the following approach. Ideally, if we can compute the
trajectories from all possible initial histories and compare
them, we can determine how strongly they depend on
initial history. This is of course not possible because the
initial history is infinite dimensional, i.e., an initial history
can be any function on the time interval ��N�; 0�. The next
best option then may be to take a small random sample.
One way is to construct the initial history as a Fourier sum
of random coefficients, and carry out the simulation. To
obtain the error due to the initial history, we should not
compare the result with Eq. (42), because this would
include the systematic error due to the kick method.
Instead, we can compare it with the simulation result
obtained for an initial history given by Eq. (42), which

we used in the previous paragraph. In this way, the system-
atic error can be removed. The error due to the initial
history, for one set of random Fourier coefficients, is shown
in Fig. 17 for mode 500. This error is much smaller than the
systematic numerical error in Fig. 16. It is interesting to
note that this history-induced error approaches a constant
at large turn numbers. This suggests that, in this case at
least, the error induced by neglecting the initial history
does not grow, which is reassuring. We shall use this
history-induced error to provide a measure for the accuracy
for the analytic formula.

We repeated the calculation for a number of random
Fourier coefficients, as well as for zero initial history, and
obtained similar results to those shown in Fig. 17. Using
the zero initial history, we compute the history-induced
error for every mode. The result is plotted in Fig. 18. The
error peaks at mode numbers close to the betatron tune.
Notice that the peak error is just over 1%, which is not as
small as we would like it to be. Fortunately, the peak is
narrow, and for most of the other modes, the errors are of
order 0.001%. Together with the property that the error
remains constant at large turn numbers, this result could
provide enough confidence for us to construct an analytic
solution.

Before writing down the analytic solution, we should
look at the parameters that affect this history-induced error.
First, combining Eq. (5) and the formula for the resistive
wake function in Appendix A, we write the equation of
motion in the following form:

 

�~x ��t� �!�
2~x��t� � b0

X
n�1

1���
n
p ei��2�n��=M
~x��t� n��:

(44)

All the issues with the infinite number of roots and the
initial history arise from the presence of the right-hand
term. Therefore, the effect of the initial history depends

FIG. 16. Numerical error of kick method for mode 500.

FIG. 17. History-induced error for mode 500.
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upon the parameter b0, as defined in Eq. (35): if b0 is large,
the effect of the initial history will be large. To quantify the
effect of b0, we insert a factor, w, on the right-hand side of
the equation:

 

�~x ��t� �!�
2~x��t� � wb0

X
n�1

1���
n
p ei��2�n��=M
~x��t� n��:

(45)

The parameter w scales the strength of the wakefield; we
shall call w the ‘‘wakefield strength.’’ We compute the
history-induced error for mode 500 for different wakefield
strengths. The result is shown in Fig. 19. As expected, the
error increases with wakefield strength. The log-log plot
follows a fairly straight line, at least for this particular
mode, which is convenient for error estimation. Recall
our estimate above of the 4% error for the analytical
solution of a bunch trajectory. This figure shows that, for
the ILC damping ring, it may just be possible to construct
an analytic solution with acceptable accuracy based only
on ��a�� and ��b�� . The accuracy would decrease for larger
wakefields.

We are now ready to write down the analytic solution.
Based on the above results and discussion, we first make
the assumption that the wakefield must be sufficiently
small. The effect of the initial history may then be ne-
glected, and only two elementary solutions are significant
for each mode. For a very small wakefield, the dominant
solutions are obtained from the following roots of the
characteristic equation. Instead of using Eqs. (38) and
(40) where we have to truncate at some N, we use the
Fourier transformed version that can be obtained from
Appendix A:

 ��a�� � !� � i
MNr0c

2�T2
0!�

X1
p��1

Z?1 �!� � �pM���!0


(46)

and

 

��b�� ��!�� i
MNr0c

2�T2
0!�

X1
p��1

Z?1 ��!���pM���!0
;

(47)

which converge much more rapidly. Equation (47) can be
obtained from Eq. (46) by comparing the sign changes
between Eqs. (38) and (41). These give us the accurate
limit when N goes to infinity, as required by the original
Eq. (1). Next, we compute the mode amplitudes of the
initial conditions xm�0� and _xm�0�:

 ~x ��0� �
XM�1

m�0

xm�0�e�i��2�m��=M
 (48)

and

 

_~x ��0� �
XM�1

m�0

_xm�0�e
�i��2�m��=M
: (49)

The solution for each mode is then

 ~x ��t� � A�e�i�
�a�
� t � B�e�i�

�b�
� t: (50)

The unknown constants are obtained with the help of the
initial conditions. At t � 0, we have

 ~x ��0� � A� � B� (51)

and

 

_~x ��0� � �i�
�a�
� A� � i�

�b�
� B�: (52)

Solving, we get

 A� �
i��b�� ~x��0� � _~x��0�

i��b�� � i�
�a�
�

(53)

and

 B� �
i��a�� ~x��0� � _~x��0�

i��a�� � i�
�b�
�

: (54)

Finally, we can invert the discrete Fourier transform using

 xm�t� �
1

M

XM�1

��0

~x��t�e
i��2�m��=M
 (55)

and obtain the analytic solution for every bunch:
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 xm�t� �
1

M

XM�1

��0

�A�e
�i��a�� t � B�e

�i��b�� t
ei��2�m��=M
;

(56)

where the imaginary part is to be neglected since xm�t� is
real.

We have arrived at this solution heuristically, and a test
on its validity should be carried out. As before, we do a
comparison between tracking simulation and analytic so-
lution. For convenience, we combine the errors in both
displacement and velocity into one measure, by using the
distance between points in a phase space. Let displacement
and velocity be the two coordinates on a Cartesian plane.
To give equal emphasis to both quantities, we scale the
velocity by a factor of 1=!�. The reason is because, for
small wakefield, if the displacement is given approxi-
mately by e�i!�t, then the velocity is given by the same
expression multiplied by �i!�. At a particular time t, let
the point �x; _x =!�� be given by the actual values of the
displacement and velocity, and let �xe; _xe=!�� be given by
the estimated values. We then define the distance between
these two points as the error. We also define the relative
error as the error divided by the distance from the origin to
�x; _x =!��. The relative errors for bunch number 100,
shown in Fig. 20, are computed in a similar way as those
for the single mode case in the previous section. The roots
used in the analytic solution are obtained using Eqs. (38)
and (41) instead of Eqs. (46) and (47), since we are
comparing with simulation for N � 100. The numerical
error is obtained by comparing the analytic solution with
simulation results using a history created from the analytic
solution, starting with a set of random xm and _xm at t � 0.
The history-induced error is obtained by comparing the
simulation results for the case where the history is created
from the analytic solution, with the case where the history

is set to zero. Thus, the accuracy of the analytic solution up
to 100 turns for the bunch trajectory is about 0.07%. If we
were to plot the analytic and simulation results for xm and
_xm=!� on the same graph at about 100 turns, they would
look very similar to Fig. 11.

VI. CONCLUSION

We have demonstrated that the Fourier modes are in fact
not the eigenmodes in a real lattice as a result of beta
function variation. The concepts of modes and growth rates
remain approximately valid in a real lattice in the short
term. For mode 100 in the ILC damping ring (Fig. 4), short
term would mean less than 30 turns. This is of the order of
the time required for injection and extraction [20], as well
as the damping time of the feedback system. Over the long
term, the strong oscillations in the beta function give rise to
coupling between modes. The mixing of growth modes
into decay modes can cause the decay modes to grow. This
observation casts some doubt on the accuracy of the growth
rate formula in Appendix A. In Appendix E, for instance,
we can see on Fig. 24(a) that, even for a very simple lattice,
the actual growth rate is larger than that predicted by the
growth rate formula. However, if we are mainly interested
in the maximum growth rate, the formula may still provide
a good estimate. The periodic variation of the beta func-
tion, with period equal to the time of revolution around the
damping ring, also gives rise to additional oscillation. The
frequency of this oscillation is equal to the number of
wavelengths of a mode passing through a given point per
unit time.

We have also shown that the growth of decay modes is
not restricted to large, complex rings like those of the ILC,
but could also take place in small, simple rings consisting
of no more than repeating FODO cells and a small number
of bunches. A FODO lattice consists of an alternating
sequence of focusing (F) and a defocusing (D) quadru-
poles, separated by drift spaces (O) of equal length. In
general, we may imagine that the eigenmode can be
changed if any assumption in the macroparticle model is
changed. Practical examples include nonuniform fill pat-
terns and localized wakefield. In the case of the ILC damp-
ing ring, we have calculated the corresponding effects due
to nonuniform fill patterns in Appendix C and shown that
the effects of the beta function variation is comparable. In
Appendix D, we have also computed the effects of local-
ized wakefield due to the transverse HOMs in the kind of rf
cavities expected for the damping rings, and shown that
these effects are quite small in comparison to the beta
function variation.

Although the Fourier mode is only an eigenmode in the
case of the constant beta function, it remains useful be-
cause this case is amenable to analytic solution. It is there-
fore important that the solution be properly characterized.
As previously published solutions [4] are not applicable to
general initial conditions, we have derived more complete
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lation of the trajectory of bunch number 100, plotted on the same
graph as the history-induced error of the trajectory.
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solutions to address this gap. We have also shown that the
validity of such solutions depends directly on the strength
of the wakefield. The reason is that the wakefield gives rise
to a dependence on initial history of the bunch trajectories,
which is not likely to be available in practice. The analytic
solutions would therefore be useful only for small wake-
fields. The ILC damping ring parameters we use corre-
sponds to a current of about 580 mA. (This is rather higher
than the average because the damping rings tend to have
lower bunch number or particles per bunch, whereas we
have taken the worst case in our simulation.) Increasing the
current beyond this value would quickly increase the error
in the solutions, as Fig. 19 shows.

Simulation using the kick method is required when the
beta function oscillates strongly, but it is computationally
intensive and the numerical error grows with turn number.
The analytic solution is fast but is useful at large turn
number only if the beta function is constant. Otherwise,
it cannot account for the growth of decay modes resulting
from mode mixing. Nevertheless, it is important as a
theoretical reference for the simulation. For machines re-
quiring very high levels of beam stability, particularly in
the presence of strong transients (as in the case of the ILC
damping rings), a thorough and rigorous understanding of
the dynamical effects associated with long-range wake-
fields will be essential. Together, simulation and analytic
solution can provide a more complete picture of the bunch
trajectories, and will be useful tools for determining the
specifications of the feedback systems and estimating the
impact of transient effects.
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APPENDIX A: STANDARD FORMALISM FOR
COUPLED-BUNCH INSTABILITIES

We summarize here the standard formalism for coupled-
bunch instabilities relevant to the work in this paper. In the
macroparticle model for bunches in a storage ring, a num-
ber of assumptions are often made to simplify the equa-
tions of motion: (i) Each bunch of charged particles (in our
case, electrons or positrons) is treated as a single, rigid
particle. Only the motion of the centroid is considered. The
distortion of each bunch is neglected. (ii) Bunches travel at
the same speed around the ring, and distances between
adjacent bunches are equal. In our case, we also assume
that this speed is very close to the speed of light. (iii) The
displacements of bunches from the design trajectory is
small, so that a linear approximation of the wake force is
valid. This wake force is proportional to the displacement
of the exciting bunch.

The resulting equation of motion for each bunch takes
the following form [5]:

 �x m�t� �!2
�xm�t� � �

Nr0c
�T0

fW1��c��xm�1�t� ��

�W1��2c��xm�2�t� 2�� � � � �g:

(A1)

The notations are as follows:

xm�t� Transverse displacement of the mth bunch
!� Betatron frequency
W1�z� Wake function
� Time taken by light to travel from one

bunch to the next
N Number of particles in each bunch
r0 Classical electron radius
c Speed of light
T0 Time taken for each bunch to travel

one round around the ring
� Energy of each particle in units of its rest mass

The argument, z, of the wake function is the distance
between the exciting bunch that produces the wakefield,
and the spectator bunch that experiences it. !� is assumed
to be a constant here, but variation of the beta function can
have significant effects, as we see in Secs. II and III. When
the betatron frequency is assumed to be constant, we use
the averaged value given by the following expression:

 !� �
2��
T0

; (A2)

where � is the transverse (vertical or horizontal) tune. An
important contribution to the long-range wakefield in many
storage rings comes from the resistive wall of the beam
pipe. For a beam pipe with conductivity � and circular
cross section of radius b, the wake function is given by [5]

 W1�z� � �
2

�b3

���������
c
�jzj

r
C: (A3)

Equation (A1) may be understood qualitatively as fol-
lows. The left-hand side has the same form as the equation
for a simple harmonic oscillator. This represents the effect
of the focusing forces arising from the focusing elements.
The right-hand side is the sum of the wake forces arising
from all of the bunches in front of bunch m. This sum is to
be taken to infinity. Note that if we start at bunch m and go
around the ring, we would come back to bunch m itself, so
that each bunch can see its own wakefield. In the absence
of any wakefield, the right-hand side is zero and bunch m
undergoes simple harmonic motion at the betatron fre-
quency, !�.

It should be mentioned that we have left out damping
effects, such as those coming from synchrotron radiation,
decoherence, and action of a feedback system. We are
mainly interested in the qualitative behavior produced by
the interaction between the focusing term!2

�xm�t�, and the
wakefield coupling on the right-hand side of Eq. (A1). A
damping term, 2& _xm�t�, can be inserted on the left-hand
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side when required. The effect will be to subtract & from
the growth rate formula given below. The modification to
the analytic results is straightforward and has been given in
[4].

Next, it is often more convenient to work with modes
instead of the bunch displacements directly. A mode is
essentially a discrete Fourier transform (DFT) of the bunch
displacements. Suppose there is a total of M bunches. The
mode number � is defined by

 ~x ��t� �
XM�1

m�0

xm�t�e
�i��2�m��=M
: (A4)

This has been described as a normal mode [4], a multi-
bunch mode [5] or a Fourier mode [6]. The advantage of
using modes is that the equations of motion, which are
fully coupled in Eq. (A1), become completely decoupled,
as in Eq. (5). However, decoupling only really occurs in the
case of constant beta function. We show in Sec. III that if
the beta function varies around the ring, the modes remain
coupled.

For constant beta function, it is possible to derive an
elementary solution for each mode in the following form:

 ~x ��t� � e�i��t: (A5)

By substituting this into the transformed equation of mo-
tion, and solving the characteristic equation under certain
approximations (see Sec. IV), the following formula is
obtained [5]:

 �� �!� � �i
MNr0c

2�T2
0!�

X1
p��1

Z?1 �!� � �pM���!0
;

(A6)

where Z?1 �!� is the Fourier transform of the wake function
in Eq. (A3). The growth rate is the defined as the imaginary
part of ��:

 

1

��
� Im��: (A7)

APPENDIX B: REDERIVING THE KICK METHOD

The equation of motion given by Eq. (A1) is a delay
differential equation. If we truncate the sum on the right-
hand side at the Nth term, it can be written in the following
form:
 

�xm�t� �!
2
�xm�t� � b1xm�1�t� �� � b2xm�2�t� 2��

� � � � � bNxm�N�t� N��: (B1)

Suppose we want to integrate to obtain xm�t� from t � 0 to
�. In order to do so, we need to know the history of each
bunch represented on the right-hand side. Specifically, we

need to know
 

xm�1�t� from t � �� to 0;

xm�2�t� from t � �2� to � �;

. . .

xm�n�t� from t � �n� to � �n� 1��;

. . .

xm�N�t� from t � �N� to � �N � 1��:

The history of xm�n�t� is ‘‘stored’’ at the time slices, i.e., its
values are known at t � 0;��;�2�; . . . ;�N�. If the time
interval is short enough, we can make a linear interpolation
at each time interval to obtain the value of ym�n�t� in
between the slices. Thus, for t � �n� to ��n� 1��, we
may write the interpolated function as

 xm�n�t� � an�t� n�� � cn: (B2)

Since the values of xm�n�t� are known at t � �n� and
��n� 1��, we have

 xm�n��n�� � �cn; xm�n���n� 1��
 � an�� cn:

(B3)

The constants an and bn can then be calculated. The nth
term on the right-hand side of Eq. (B2) is approximated by
a straight line:

 xm�n�t� n�� � ant� cn: (B4)

The equation of motion can be written in the form

 �x m�t� �!
2
�xm�t� �

XN
n�1

bn�ant� cn�: (B5)

Defining

 p �
XN
n�1

bnan and q �
XN
n�1

bncn; (B6)

the equation of motion becomes

 

�x m�t� �!2
�xm�t� � pt� q: (B7)

The solution can be obtained analytically and is given by
 

xm�t� � A cos!�t� B sin!�t�
pt� q

!�
2

_xm�t� � �!�A sin!�t�!�B cos!�t�
p

!�
2 :

(B8)

Let the initial conditions be

 xm�0� � x0 and _xm�0� � v0:

Solving,
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 A � x0 �
q

!�
2 and B �

1

!�

�
v0 �

p

!�
2

�
: (B9)

Substituting from Eq. (B9) into Eq. (B8),
 

xm�t� �
�
x0 �

q

!�
2

�
cos!�t�

1

!�

�
v0 �

p

!�
2

�
sin!t

�
pt� q

!�
2

_xm�t� � �!�

�
x0 �

q

!�
2

�
sin!�t�

�
v0 �

p

!�
2

�
cos!�t

�
p

!�
2 :

(B10)

It is useful to separate out the contribution from the simple
harmonic oscillator on the left of the Eq. (B1), and the
contribution from the wakefield on the right. The solution
for the simple harmonic oscillator—when the right-hand
side is zero—is
 

xm�t� � x0 cos!�t�
v0

!�
sin!�t

_xm�t� � �!�x0 sin!�t� v0 cos!�t:

(B11)

Separating out the wakefield terms is useful because the
harmonic oscillator behavior can be described very simply
using action-angle (J��) variables: the action is con-
served, and the phase advance increases monotonically
with distance along the beam line. The phase advance in
a real lattice is readily calculated by a beam optics code
such as MAD. The contribution from the wakefield can be
computed separately, and then added.

For !��
 1, we can write, to first order,

 

xm�t� � x0 cos!�t�
v0

!�
sin!�t�

q

!�
2 cos!�t

�
p

!�
2

1

!�
sin!�t�

pt� q

!�
2

	 x0 cos!�t�
v0

!�
sin!�t�

q

!�
2 �

p

!�
2 t�

pt� q

!�
2

� x0 cos!�t�
v0

!�
sin!�t

_xm�t� � �!�x0 sin!�t� v0 cos!�t�!�
q

!�
2 sin!�t

�
p

!�
2 cos!�t�

p

!�
2

	 �!�x0 sin!�t� v0 cos!�t� qt�
p

!�
2 �

p

!�
2

	 �!�x0 sin!�t� v0 cos!�t� qt: (B12)

At end of time interval when t � �,

 xm��� 	 x0 cos!���
v0

!�
sin!��

_xm��� 	 �!�x0 sin!��� v0 cos!��� q�:
(B13)

This gives the integrated value of xm�t� at the first time
slice after t � 0. Comparing this with the result for the
simple harmonic oscillator in Eq. (B11), we see that the
only change is the addition of q� to the velocity.

Since q is in fact the value of wake force on the right-
hand side of Eq. (B1) when t � 0, q� is exactly the same as
the kick that is used in the kick method described in Sec. II.
Therefore, we have demonstrated that the kick method is
equivalent to integrating the equation of motion with a
linear interpolation on the history of the bunches.

In general, !2
� in Eq. (B1), which represents the focus-

ing strength of the magnets, can also be 0 or negative [21].
These correspond, respectively, to drift space or defocusing
region. For these cases, the above steps can be repeated in a
similar way and would lead to the same first-order result.

APPENDIX C: MATRIX METHOD

We express problem of the varying beta function in
matrix formalism, and compare this with the case of non-
uniform charge distribution. The objective is to highlight
the difference between these two cases, as well as the
difference from standard linear system analysis that arises
because of the time delay involved in the coupled-bunch
problem.

In the varying beta case, the beta function is fixed with
respect to the lattice as the bunches move through the
lattice. In the nonuniform distribution case [22], the distri-
bution moves with the bunches. As a result, although the
Fourier modes no longer form the eigenmodes for the
nonuniform distribution case, it is nevertheless possible
the find a new set of eigenmodes by diagonalizing the
matrix that describes the dynamics with the wakefields.
In the varying beta case, although this matrix can also be
diagonalized at any instant in time, the matrix elements
change with time because of the relative movement be-
tween the bunches and the beta function. This means that a
different eigenmode may be required for each time step,
which is not very useful.

In either case, because the equations of motion resemble
closely those of a system of linear differential equations
[23], the direct approach is to express it as a matrix
eigenvalue problem. Solving for the eigenvalues and ei-
genvectors using standard methods then gives the complete
solution to the problem. This is essentially the approach
that has been taken for both the uniform distribution case
[5] and the nonuniform distribution case [22]. In the uni-
form distribution case, the eigenvectors are the Fourier
modes, and the eigenvalue for each mode can be obtained
by making the approximation that � 	 !�, as is done in
Eq. (37). However, if the system depends on the history of
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the dynamical variables, it is possible to have more than
one eigenvalue for each Fourier mode, as shown in
Eq. (29). In the matrix formalism, as we now show, this
is because the matrix itself is also a function of the
eigenvalues.

We start with the case of uniform distribution and con-
stant beta function. The equation of motion is given by
Eq. (4). Let the trial solution be xm�t� � ame

�i�t.
Substituting gives

 ��2am �!�
2am � b1am�1e

i�� � b2am�2e
i2��

� b3am�3e
i3�� � � � � : (C1)

Since there are only M terms of am, this repeats itself and
the equation may be written as

 ��2am �!�
2am �

X1
p�0

bpM�1am�1ei�pM�1���

�
X1
p�0

bpM�2am�2e
i�pM�2��� � . . .

�
X1
p�0

bpM�Mam�Me
i�pM�M���:

(C2)

This set of equations for m � 0; 1; . . . ;M� 1 may then be
written in matrix format as

 ���2 �!�
2�x0 � C���x0; (C3)

where

 x 0 � �a0; a1; . . . ; aM�1�
T (C4)

and

 C ��� �

CM C1 C2 . . . CM�1

CM�1 CM C1 . . . CM�2

. . .

. . .
C1 C2 C3 . . . CM

0
BBBBB@

1
CCCCCA; (C5)

where

 Cn �
X1
p�0

bpM�nam�ne
i�pM�n���: (C6)

Notice that the matrix elements in each row are exactly the
same as those in the previous row, but shifted one place to
the right. This type of matrix is called a circulant matrix,
and it is known that the eigenvectors of such a matrix are
the Fourier coefficients, ei2�n�=M. The matrix equation
above forms the linear system that we have mentioned.
In standard systems, we can solve the eigenvalue problem
and obtain the complete solution. In this case, however, we
notice one complication—the matrix C is a function of �,
which also appears in the eigenvalue ��2 �!�

2. If we

trace this back to the original equation of motion, we see
that this arises from the term xm�n�t� n��, where the
value of the dynamical variable at an earlier time is re-
quired. Since we do not know �, we do not know the
matrix elements in C, and we cannot solve the problem
directly. As explained earlier, the approach taken in
Ref. [5] at this point is to approximate the � in C by the
known quantity !�, so that we have

 ���2 �!�
2�x0 � C�!��x0: (C7)

The matrix C is now specified, and we can proceed to solve
the eigenvalue problem. The eigenvectors then give Fourier
modes that behave exponentially with time.

In this paper, we have been motivated by the observation
on exponential behavior to solve the problem exactly
without making the above approximation. Although we
do not know the value of the elements in C���, we do
know that this matrix is circulant. We can write down the
solution to the problem, in terms of the unknown �, using
the results for circulant matrices from Ref. [24]. This gives
the eigenvectors

 x ���0 � �1; ei2��=M; ei2�2�=M; . . . ; ei2���M�1�=M�T (C8)

for � � 0; 1; . . . ;M� 1, and the eigenvalues

 ��2
� �!�

2 �
XM
n�1

Cnei��2�n��=M
: (C9)

On substituting Eq. (C6), this can be shown to be equiva-
lent to the characteristic equation (26), which has an infi-
nite number of solutions. Thus, unlike the standard linear
system where each eigenvector corresponds to one eigen-
value, we have a time delay system in which each eigen-
vector has an infinite number of eigenvalues [16].

We define a few matrices here that will be useful in
subsequent discussion. Let

 U � �x�0�0 ;x
�1�
0 ; . . . ;x�M�1�

0 �: (C10)

Let D be the diagonal matrix containing the eigenvalues in
Eq. (C9) or Eq. (26) on the diagonal elements. Then we
know from eigenvalue problems that these are related by

 D ��� � U�CU; (C11)

where U� is the Hermitian conjugate of U.
Next, we consider the case of nonuniform distribution

pattern, but still constant beta function. The equation of
motion may then be written as

 �x m�t� �!�
2xm�t� �

X1
n�1

bnfmxm�n�t� n��; (C12)

where fm is the number of particles in bunch m, relative to
the number of particles in each bunch in the original
uniformly distributed bunches. Following through the
above reasoning, the matrix equation is then given by
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 ���2 �!�
2�x0 � G���x0; (C13)

where

 G ��� �

f0CM f1C1 f2C2 . . . fM�1CM�1

f0CM�1 f1CM f2C1 . . . fM�1CM�2

. . .

. . .
f0C1 f1C2 f2C3 . . . fM�1CM

0
BBBBB@

1
CCCCCA:

(C14)

This is an eigenvalue problem not unlike the previous one,
in that G is unknown. This time, G is not circulant, so in
general the eigenvectors need not be Fourier modes. Since
our objective is to provide a comparison between different
cases, we shall express all in the same Fourier mode basis.
This can be achieved with a similarity transformation like
the one in Eq. (C11). For convenience, we define a diago-
nal matrix F where the diagonal elements are given by
f0; f1; . . . ; fM�1. We can see that this relates G to C by

 G � CF: (C15)

Carrying out the similarity transformation on G in the
Fourier mode basis then gives

 U�GU � U��CF�U � U�C�UU��FU

� D����U�FU�: (C16)

Here, D is diagonal. If F is the identity (uniformly distrib-
uted and filled bunches), then U�U is just the identity, but
in general, for nonuniformly distributed or filled bunches,
U�FU contains off-diagonal elements. As expected, we do
not get a diagonal matrix since the Fourier modes are not
the eigenmodes. The matrix U�FU then gives the off-
diagonal coupling between the Fourier modes.

Next, we write down the corresponding matrix for the
case of the uniform distribution, with varying beta func-
tion. This can be read off from Eq. (13) and is given, after
substituting the trial solution x��t� � e�i�t, by

 H ��� �

D0��� �
~kM�1�t�
M �

~kM�2�t�
M . . . �

~k1�t�
M

�
~k1�t�
M D1��� �

~kM�1�t�
M . . . �

~k2�t�
M

. . .

. . .
�

~kM�1�t�
M �

~kM�2�t�
M �

~kM�3�t�
M . . . DM�1���

0
BBBBBBB@

1
CCCCCCCA

(C17)

with the off-diagonal coupling terms given by�~k���0=M,
as has been discussed in Sec. III. Here, we have used
Dn��� to denote the diagonal elements in D.

Comparing Eqs. (C16) and (C17), it is clear that the
coupling terms in the case of varying beta function depend
on time, and the diagonalization could in general be differ-
ent from one time step to the next. In principle, we can
compare the off-diagonal elements in the two matrices to
see which of the two effects—varying beta or nonuniform

distribution—is stronger. While Eq. (C16) is fairly
straightforward to compute, Eq. (C17) would be difficult
given the complexity of the lattice. Instead, we can simu-
late the time evolution of each and every mode in the same
way as we have done for Fig. 4. We do this for both the
varying beta and the nonuniform distribution. For the non-
uniform distribution, we simulate approximately one of the
cases that are considered for the ILC damping ring [20].
We consider minibunch trains of 22 bunches each, sepa-
rated by gaps that correspond to the distance of 20 bunches.
Thus we have 22 consecutive bunches, followed by 20
empty spaces, and this is repeated all around the ring.
The last part of the ring, into which this repeating unit of
minitrain plus gap cannot fit, is left vacant. We selected all
of the modes that would be expected to decay exponen-
tially in the uniform distribution, constant beta case, as
predicted by the growth rates in Fig. 3. These are all plotted

FIG. 21. (Color) Mode amplitude as a function of turn number
for (a) the varying beta case, and (b) the nonuniform distribution
case. The amplitudes of each mode are sampled once every ten
turns.

TIME EVOLUTION OF COUPLED-BUNCH MODES FROM . . . Phys. Rev. ST Accel. Beams 10, 084401 (2007)

084401-21



on the same graph, and the result is shown in Fig. 21. The
graph shows that many of the modes that are expected to
decay will eventually grow. Figure 21(a) shows the decay
modes for the case of the varying beta function, and
Fig. 21(b) those for the case of the nonuniform distribution.
The numbers in the legend are the mode numbers obtained
from the modes in Fig. 3 with negative growth rates. For
illustration, the graph for mode 100, in particular, has been
plotted in Fig. 4. Figure 4 also contains the graph for the
case of constant beta and uniform distribution, where the
amplitude decays monotonically—also observed for all
other decay modes in the simulation. It is clear from
Fig. 21 that the effect of varying beta function is compa-
rable with the effect of nonuniform charge distribution, if
not stronger.

APPENDIX D: HIGHER-ORDER MODES

We estimate here the effect of a main source of localized
wakefield, that of the transverse HOM in the rf cavity of the
ring, by carrying out the tracking simulation to determine
the effect on the Fourier modes. In order to do so, we first
calculate the wake function of a typical rf cavity recom-
mended for the ILC damping ring [10], and obtain a
formula for the transverse kick on each bunch by the HOM.

The cavity parameters are obtained from the KEK-B
superconducting rf cavity [25], listed in Table I. We assume
that there are two sets of nine cavities each, arranged in
diametrically opposite positions of the OCS6 damping
ring, and that the cavities in each set are fairly close, of
the order of 1 m apart from each other. Each set of cavities
is approximated as a thin lens, and gives a single kick to
any bunch passing through the set. The wake function is
obtained by Fourier transforming the impedance, which is
given by [10]

 Z1
?�!� � Ncav

X �!?=!��R=Q?�Q?
1� iQ?�!=!? �!=!?�

; (D1)

where Ncav � 9. Note that this is in SI units. The wake
function is then given by [5]

 W�z� � �
i

2�

Z 1
�1

d!ei!z=cZ?1 �!�: (D2)

This Fourier transform can be carried out using contour

integration. The result is

 W�z� � Ncav

X
!?�R=Q?� sin

�
!?z
c

�
exp

�
!?z

2Q?c

�
(D3)

for z < 0, and zero for z > 0. In order to relate this to the
earlier formulas, it is first converted into cgs units using

 WHOM�z� �
4�
Z0c

W�z�: (D4)

Then, following the procedure in [5], we obtain an expres-
sion for the kick (change in velocity) on the mth bunch
when it goes through the cavity:

 � _xm � �
Nr0c
�

WHOM��cn��xm�n�t� n��; (D5)

where xm�n is the displacement of the (m� n)th bunch
which has excited the wakefield in the cavity at an earlier
time. Note the similarity in form with the resistive wall
expression in the equation of motion Eq. (A1). There the
kick in one time step �t is

 � _xm � �
Nr0c
�

�
W1��cn��

�t
T0

�
xm�n�t� n��: (D6)

The factor �t=T0 arises because W1 is the wake function
for the whole circumference, whereas the kick is only for
one time step.

At this point, it is useful to compare the relative magni-
tudes of the two wake functions. The appropriate quantities
to compare are WHOM and the resistive wall wake function,
W1. These are plotted together in Fig. 22. The HOM wake-
field is significantly weaker than the resistive wall wake-
field. Note that the HOM wakefield is often expressed as
WHOM divided by the length of the cavity, so that the unit is
V=pC=mm=m. We have not expressed the wakefield in this
form because we need to compare the resistive wall wake-

TABLE I. Impedance parameters for the transverse HOM of
the KEKB superconducting rf cavity [25].

Frequency !?=2� (MHz) R=Q? (Ohm/m) Q?

609 1.9 92
648 40.19 120
688 170.4 145
705 227.3 94
825 6.16 60
888 3.52 97
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FIG. 22. (Color) The resistive wall wake function for the whole
ring, and the HOM wake function for one set of nine cavities, are
plotted against the distance.

KAI MENG HOCK AND ANDRZEJ WOLSKI Phys. Rev. ST Accel. Beams 10, 084401 (2007)

084401-22



field for the whole circumference with the HOM wakefield
for one set of cavities, which have different lengths.

From the above comparison, we would expect that the
effect of the HOM wakefield is small. We have carried out
the simulation to compare the effect of the HOM wakefield
on the Fourier modes and found that this is indeed the case.
The HOM kick is applied once to each bunch when it
reaches the middle of each set of cavities. Each kick is a
superposition of the wakefield of all the bunches that have
gone through the cavity earlier. The kick on the mth bunch
is given by

 � _xm � �
Nr0c
�
fWHOM��c��xm�1�t� ��

�WHOM��2c��xm�2�t� 2�� � � � �g: (D7)

The simulation is carried out with constant beta function.
Over the first 100 turns, the plotted results of the mode
amplitudes with and without the HOM wakefield are vis-
ually indistinguishable. The result for mode 100 is shown
in Fig. 4.

APPENDIX E: SIMPLE LATTICE

We demonstrate here that the phenomenon of growth of
decay modes can occur even for a very simple lattice. We
use a lattice consisting only of ten FODO cells. Filled with
four evenly spaced bunches. The beta function is plotted in
Fig. 23.

The machines parameters are summarized as follows:

Circumference of ring 200 m
Particle energy 1 GeV
Horizontal tune 1.666 820 1
Number of electrons per bunch 2� 1010

Number of bunches 4
Beam pipe (stainless steel) conductivity 8:815� 1015 s�1

Beam pipe radius 5 mm

In order to increase the wakefield coupling between the
bunches so that growth and decay of the modes may be
observed more quickly, we have used a smaller radius and a
lower conductivity for the beam pipe. We assume that the
beam pipe is made from the type of stainless steel with the
lowest conductivity listed in [26].

The simulation follows the same procedure as the kick
method described in Sec. II, and uses the resistive wall
wake function in Eq. (A3). We have checked for conver-
gence with respect to the number of time slices in the ring,
and the number of terms to keep in the wakefield sum in
Eq. (1). We plotted out the displacement x0�t� at the 1000th
turn and checked visually that it has converged for 100
time slices and 400 terms in the wakefield sum. In the case
of four bunches and a constant beta function, with !�

given by Eq. (A2), there are four modes. According to
Eq. (A7), modes 1 and 2 are growth modes, and modes 0
and 3 are decay modes. The results for modes 2 and 3 are
shown in Fig. 24. On the same graphs are plotted the
analytic corresponding results when the beta function is a
constant. Notice that, for the actual beta function, the mode
3 amplitude follows the analytic result initially. It decays
for the first 100 turns, and then grows after that. Mode 0,
not shown, behaves in a similar way to mode 3. Modes 1
and 2, the growth modes, both tend to have slightly higher
growth rates than the analytic results over the 1000 turns.
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FIG. 23. Beta function for a ring with a simple lattice consist-
ing of ten FODO cells.

FIG. 24. (Color) Amplitude of (a) mode 3 and (b) mode 2 in the simple lattice with two bunches. The points are sampled 1 turn every
10 turns.
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This behavior suggests that the variation in beta function
in any lattice could lead to decay modes growing, and that
this feature is not restricted to large, complex rings like the
ILC damping ring. This is a result of the breaking of
translational symmetry along the lattice; since bunches
no longer experience the same focusing strength at differ-
ent times, the Fourier modes are no longer eigenmodes. As
we have see from Eqs. (8)–(13), the equations of motion
are not decoupled by transforming to Fourier modes.

Finally, we should mention the interesting case of using
two bunches instead of four. In the case of two bunches and
10 FODO cells, our simulation shows that the decay mode
amplitude does not grow. The reason is as follows. Since 10
is an even number, one bunch is exactly 5 FODO cells
away from the other bunch, so that the beta function
experienced by the two bunches are identical. In
Eq. (11), this means that k�t�m�� are equal for all m
even though they can all vary with time. Equation (11) can
therefore be rewritten as
 

�~x��t� � �K~x��t� �
X
n�1

bnei��2�n��=M
~x��t� n�� � k�t�~x��t�;

(E1)

so that the equations of motion can become fully de-
coupled. Therefore the Fourier modes are still the normal
modes for this special case. This does not necessarily mean
that the mode amplitude must be exponential in time,
although in this case it is. Our simulation shows the
mode amplitudes follow the analytic results fairly closely,
and the decay mode does not grow again—at least not
within the first 1000 turns.
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