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Frequency jumps in an ion linac use to be made in order to provide a large transverse acceptance in the
low-energy part and a high accelerating gradient in the high-energy part. This frequency jump may induce
a discontinuity in the average longitudinal force per focusing period and shrink the longitudinal
acceptance of the linac if this transition is not performed carefully. In this paper, three techniques are
developed which produce a ‘‘certain’’ continuity of the channel at the transition between. The continuity
type is discussed. It is demonstrated that the longitudinal acceptance can be preserved whatever the
frequencies of the cavities in the linac. This point is very important when comparisons between different
cavity types are made (spoke and elliptical cavities for, instance). A few examples are shown to illustrate
the performances of the three techniques.
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I. INTRODUCTION

Frequency jumps in ion linacs use to be made in order to
provide a large transverse acceptance (physical aperture) in
the low-energy part and a high accelerating gradient and/or
a better shunt impedance in the high-energy part. The
minimization of the size of the cavities in the high-energy
section is also interesting to reduce the cost because these
cavities are the most numerous in the accelerator. Smaller
cavities help to reduce the cryogenic load and induce a
cheaper fabrication. This frequency jump may induce a
discontinuity in the average longitudinal force per focusing
period and shrink the longitudinal acceptance of the linac if
this transition is not performed carefully. In Ref. [1], tech-
niques are shown to manage the transition an radio fre-
quency quadrupole operating at 350 MHz and a coupled
cavity drift tube linac (CCDTL) operating at 700 MHz. It is
explained that as the frequency is doubled in the CCDTL, a
conservative synchronous phase of �60 degrees is re-
quired at the beginning of the structure to capture all
particles. The concept of the continuity of the phase ad-
vance per unit length is discussed for the transverse plane
in order to provide a current and emittance independent
design. This continuity simplifies significantly the match-
ing at the transition. In this paper, we propose to develop
techniques for designers to tune the phase and the field at
frequency transitions in an ion linac which include accep-
tance and phase advance per unit length issues. During the
European Spallation Source studies in 2000 [2], we devel-
oped a first technique to keep constant the confinement
potential shape at the frequency jump. The goal was to
maintain the beam in the achieved equilibrium state. Later,
we proposed a different approach based on the continuity
of the acceptance of the system. More recently, a third
technique which is a mix of the first two has been proposed.

In this paper, these three techniques are developed and
compared to the classical method which is a matching at
the transition (tuning of the focusing elements to maintain
a smooth evolution of the phase advance per meter in the
following section) keeping a high accelerating efficiency.

II. CONSTANT POTENTIAL SHAPE

The superconducting option for the European Spallation
Source linac is made with different sections which operate
at different frequencies (175, 350, and 700 MHz) [3]. To
render transparent these frequency jumps to the beam, a
first technique to keep the confinement potential shape
constant at the transition has been developed [2]. This
technique aims at maintaining the beam in the achieved
equilibrium state. This point is especially relevant when a
very intense beam has to be transported [4]. As the longi-
tudinal force is nonlinear (sine), assuming that the beam
has reached an equilibrium in the low frequency section, a
continuity of these nonlinearities is mandatory in order to
avoid a new emittance growth in the high frequency sec-
tion. From the equation of the longitudinal motion, it is
shown in [5] that the potential well can be written:
 

V���� � �
2�

m���c�3frf

� qE0T

� �cos�s�sin��� ��� � sin�s � �cos��� 1��;

(1)

with �� the phase shift of the particle with respect to the
synchronous phase �s, frf the operating frequency, � the
reduced speed, � the Lorentz factor, E0T the average field
per focusing period taking into account the transit time
factor, c the speed of light,m the mass of the particle, and q
its charge. Writing �� � 2�frf�t and developing at third
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order in �t the expression (1), one finds
 

V��t� �
2�

m���c�3frf

� qE0T

�

�
cos�s � �2�frf�

3 �
�t3

6
� sin�s � �2�frf�

2 �
�t2

2

�
:

(2)

The two preceding equations can be used for any axis field
profile of the electrical longitudinal component of the
cavity if the synchronous phase �s is calculated with the
definition given in the Appendix. The approach is then
relevant for a standing wave cavity with equal or not equal
cell length.

At a frequency change, one should try to keep this
potential well as continuous as possible. This can be
made at third order by changing both the synchronous
phase and the accelerating field. One has to solve the
equation system:

 

�
E0T � f2

rf � cos�s � cst

E0T � frf � sin�s � cst:
(3)

If f1 is the frequency for the section before the transition
and f2 the frequency for the section after, writing k �
f2=f1, this gives the necessary conditions:

 

8><
>:

tan��s�2 � k � tan��s�1

�E0T�2 �
�E0T�1
k2

����������������������
1�k2tan2��s�1
1�tan2��s�1

r
:

(4)

The second condition in the system (3) is equivalent to
keep the phase advance per meter constant. The relative
variation of the accelerating rate can be calculated with the
following formula:

 < �
�E0T�2 cos���s�2�

�E0T�1 cos���s�1�
: (5)

This gives

 < �
1

k2 : (6)

If f1 < f2,< is lower than 1. This is the main drawback of
the method.

III. CONTINUITY OF THE ACCEPTANCE

We developed a second approach to calculate the field
and the phase at the transition. Instead of fitting the poten-
tial shape, the longitudinal acceptance is kept constant.
Taking into account that the phase is not a canonical
coordinate, this statement implies that �W (energy) and
�Z (for the position, and not ��) have to be maintained at
the transition. To compute the expression for �Z � �� �
��=2�, we use the following approximation for the ac-
ceptance in phase,

 ��	 3�s; (7)

where �s is the synchronous phase. It is valid when �s is
close to the crest (strong acceleration) which is the case for
our problem. For �Wmax conservation, we will use the
analytical formula [5]:

 �Wmax � 
2
�
qmc3�3�3E0T��s cos�s � sin�s�

frf

�
1=2
:

(8)

This formula is derived from the integration of the motion
in the longitudinal plane. The integration is performed with
the assumption that the speed is quasiconstant during the
acceleration. This assumption is valid at high energy which
is, again, relevant for this study. To keep constant �Z and
�W at the frequency jump, it is required that

 

8><
>:
�s
frf
� cst

E0T��s cos�s�sin�s�
frf

� cst:
(9)

Writing k � f2=f1, the first condition gives

 ��s�2 � k��s�1: (10)

For the second condition, replacing the cosine and sine
functions by a Taylor expansion at second order (which is
justified because we are working close to the crest) and
inserting in the system (9) gives

 �E0T�2 �
�E0T�1
k2 : (11)

It appears that the accelerating rate is also reduced at the
transition. The relative reduction of the accelerating rate
can be calculated with the following formula:

 < �
cos�k��s�1�

k2 cos���s�1�
: (12)

If f1 < f2, < is always lower than 1. If �s tends to zero,
Eq. (12) is equal to Eq. (6).

Using the same Taylor expansions at second order, it can
be shown that the conditions (10) and (11) induce a con-
stant phase advance per meter at the transition if �s is
sufficiently close to the crest.

One may be surprised that Eq. (2) is derived at third
order instead of the second order for Eq. (8). It can be
verified that a second order treatment of (2) is not equiva-
lent and produces a poor efficiency [2].

IV. CONTINUITY OF THE PHASE ACCEPTANCE
AND THE PHASE ADVANCE PER METER

Recently, we developed a third approach to perform the
transition which is a mix of the two previous ones. We set
that the phase acceptance (but not the energy one) and the
phase advance per meter have to be kept constant. It
implies that
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8<
:
�s
frf
� cst

E0T � frf � sin�s � cst:
(13)

Writing again k � f2=f1, we found from (13) that the
phase and E0T have to follow the relations

 

8><
>:
��s�2 � k � ��s�1

�E0T�2 �
�E0T�1
k

sin���s�1�
sin�k��s�1�

:
(14)

The relative accelerating rate reduction can be calculated
with the formula (15):

 < �
tan���s�1�

k � tan�k��s�1�
: (15)

A comparison of the 3 accelerating rate (AR) reduction is
shown in Fig. 1 for k � 2 and a synchronous phase of the
low frequency section varying from �45 to 0 degrees. It
can be noticed that the reduction of the AR can be total for
the two last methods.

V. BENCHMARKS

To test the efficiency of the three techniques and to
illustrate the relevancy of such methods, this section com-
pares the emittance growth induced by an increasing input
longitudinal emittance in a test linac. No space charge is
taken into account for this test, the nonlinearity of the
longitudinal rf restoring force (sine) is the only source of
the emittance growth. In a second part, the relative conser-
vation of the acceptance is computed for different input
synchronous phase in the linac.

A. Emittance growth

One figure of merit for the beam dynamics is the con-
servation of the initial emittance in the linac. To test our

three techniques, we propose to use a section of accelerat-
ing periods starting at 50 MeV. The lattice is FDO. The
accelerating voltage is set to 2 MV and the initial synchro-
nous phase is �20 degrees. The length of the section is
80 meters with 22 focusing periods. The operating fre-
quency of the first half is 352 MHz. For this first subsec-
tion, the field and synchronous phase are kept constant. We
designed 5 versions for the second part of the linac: (i) a
constant field and phase linac with a frequency of 352 MHz
to get a reference simulation which can be compared to the
versions with a frequency jump; (ii) a constant field and
phase linac with a frequency of 704 MHz and a matching at
the transition (focusing elements are changed around the
transition to obtain a smooth evolution of the phase ad-
vance per meter in the following section); (iii) a linac at
704 MHz with field and phase held constant per section,
the second section obeys the technique ‘‘constant accep-
tance’’; (iv) a linac at 704 MHz with field and phase held
constant per section, the second section obeys the tech-
nique ‘‘constant potential shape’’; (v) a linac at 704 MHz
with field and phase held constant per section, the second
section obeys the technique ‘‘constant phase acceptance
and phase advance per meter.’’ For each of these 5 linacs,
we computed several transports increasing the input lon-
gitudinal emittance. For each run, the relative emittance
growth produced by the nonlinear rf force has been calcu-
lated. Figure 2 shows the behavior of these emittance
growths. An emittance blowup can be noticed for the linac
with just a matching at the transition, whereas the emit-
tance growth behaviors for the three techniques are com-
parable with the one for the linac which has no frequency
jump. No loss has been observed in the simulations to be
capable to compare the emittance evolutions. To illustrate
the effect in the longitudinal plane of the nonlinear rf force
on a case, Fig. 3 shows the phase space portraits of the
beam at the exit of the section for three cases: when one
single frequency is used, when the frequency is doubled
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FIG. 1. (Color) The relative accelerating rate reduction with
respect to the synchronous phase of the low frequency section
when k � 2.

FIG. 2. (Color) The relative emittance growths for an increasing
input longitudinal emittance for the four linacs.
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and a matching is proceeded, and when the frequency is
doubled and the technique ‘‘constant phase acceptance and
phase advance per meter’’ is applied. For each case, the
relative emittance growth is given. To illustrate the ob-
tained potential well according to the used method, Fig. 4
shows the potential shape for the three different techniques
for an initial synchronous phase of �45 degrees which
maximizes the discrepancies.

B. Acceptance

Several hypothesis have been used to obtain the fre-
quency transition rules in the previous sections. For the
first technique, it is assumed that the phase shift between
the particles and the synchronous one is small. For the
second technique, the hypothesis that the synchronous
phase is close to zero is made. For the three techniques,
it is assumed that the speed of the particle is constant in an
accelerating gap. To check these approximations, we pro-
pose to compute the acceptance of the preceding linacs
with the following method: (i) simulate the transport of a
huge cloud of particles which are initially uniformly dis-
tributed in the longitudinal phase space; (ii) then, count the
surviving particles to allow a relative comparison of the
linac acceptances. The area of the initial distribution in
phase space has to be significantly larger than the calcu-
lated acceptance. We repeated these simulations for differ-
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FIG. 3. (Color) Phase space portraits of the beam at the exit for
three cases: (a) single frequency (� 0:3%), (b) frequency jump
with a matching at transition (� 2%), (c) frequency jump the
mix technique (� 0:6%).
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FIG. 4. (Color) The potential well shape for the three different
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ent initial synchronous phases from �45 degrees to
�5 degrees to check the validity of the several approxi-
mations about the phase. Figure 5 shows the evolution of

the relative acceptances for linacs with a frequency jump
with respect to the linac with only 352 MHz cavities.

First, it is clear that keeping constant the field and the
phase and performing a matching at the transition is not
satisfying. The acceptance is reduced by a factor 2. Second,
the second and the third techniques appear to be very
efficient for a wide range of synchronous phase. The
acceptance is conserved even if the synchronous phase is
relatively far from the crest. Let us recall that the AR tends
to zero for such a case. For the technique of the constant
potential shape, it is equivalent to the two previous ones in
the range beyond�25 degrees to the crest. To illustrate the
impact on the acceptance for the different techniques,
Fig. 6 shows the computed acceptance in the longitudinal
plane for three cases: single frequency, frequency jump
with a matching at transition, frequency jump the ‘‘mix’’
technique.

It can be noticed that the efficiency for the three methods
slowly decreases when the phase is close to zero. The
reason is the approximation of the constant speed for the
integration of the motion which provided Eqs. (1), (7), and
(8). This approximation is not valid any more when the
acceleration is sufficiently high to significantly change the
particle speed in a period. For a synchronous phase of
�5 degrees, when the field is decreased by a factor 10 in
order to minimize the speed change in an accelerating gap,
the relative acceptance is increased from 0.9 to 0.96.
Differently, if the input energy is increased by a factor 10
to produce the same effect, the relative acceptance is
increased from 0.9 to 0.98.

VI. CONCLUSIONS

We investigated three different techniques to manage a
frequency change in a ion linac to render it as transparent
as possible: the ‘‘constant potential shape,’’ the ‘‘constant
acceptance,’’ and a mix which is a constant phase accep-
tance and a constant phase advance per meter. We com-
pared them with the common method which is a simple
matching maintaining a high acceleration efficiency. It is
shown that the three techniques significantly enhanced the
acceptance of the system. To simplify and to provide to
linac designers rules which are valid for a wide range of
parameters, we recommend to use the following formulas
at the transition:

 

8><
>:
��s�2 � k��s�1

�E0T�2 �
�E0T�1
k

sin���s�1�
sin�k��s�1�

:
(16)

with k � f2=f1, f1 the frequency for the section before the
transition, f2 the frequency for the section after, �E0T�i the
average field taking into account the transit time factor, and
��s�i the synchronous phase of the section i. Let us note
that the continuity of the phase advance per meter is then
preserved and the acceptance is not shrunk for a synchro-
nous phase lower than �25 degrees. Moreover, the accel-
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FIG. 6. (Color) Computed acceptance for three cases: (a) single
frequency, (b) frequency jump with a matching at transition,
(c) frequency jump the mix technique.
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erating rate is slightly better compared to the technique of
the ‘‘constant acceptance.’’ Nevertheless, in case of an
intense beam which reached the equilibrium in the section
at low frequency in which a nonlinear focusing force is
applied, the first technique has to be preferred. It allows
one to maintain the same nonlinearity and then to avoid a
new emittance growth [4].

The main drawback of the three methods is a reduction
of the accelerating rate at the transition. But the higher the
exit energy of the linac, the lower the impact of this
reduced acceleration at the transition since the field ampli-
tude can be ramped gradually. It is then possible to enhance
significantly the accelerating efficiency with the high gra-
dient of high frequency cavities (warm or superconduct-
ing). It is very important to respect such rules at the
frequency transition in the linac when comparisons be-
tween different cavities are made from the beam dynamics
point of view (spoke and elliptical cavities, for instance, in
[6]).

APPENDIX: ENERGY GAIN IN A rf CAVITY

For a rf cavity with a length L, the energy gain for a
charged particle which traverses the cavity on the axis with
an amplitude profile of the longitudinal component Ez�s�
can be calculated with the formula

 �W �
Z s0�L

s0

qEz�s� � cos���s�� � ds; (A1)

with q the charge of the particle, and s the beam axis
coordinate. The function ��s� is the rf phase when the
particle is at the coordinate s. It is defined by

 ��s� � �0 �
!rf

c

Z s0�s

s0

ds0

�z�s0�
(A2)

with c the Einstein constant, !rf the rf pulsation, �0 is the
rf phase when the particle is at the cavity entrance, and
�z�s0� is the longitudinal component of the particle reduced
speed at the s0 location. Writing ��s� � ��s� ��s ��s,
with �s being an arbitrary phase and using trigonometric
relations, we found that the energy gain can be written

 �W � cos��s�
Z s0�L

s0

qEz�s� � cos���s� ��s� � ds

� sin��s�
Z s0�L

s0

qEz�s� � sin���s� ��s� � ds:

(A3)

We can define �s such as

 

Z s0�L

s0

qEz�s� � sin���s� ��s� � ds � 0: (A4)

It gives

 �s � arctan
�Rs0�L

s0
qEz�s� � sin���s�� � dsR

s0�L
s0

qEz�s� � cos���s�� � ds

�
: (A5)

Then the energy gain can be rewritten:

 �W �
�
q
Z s0�L

s0

jEz�s�j � ds
�
� T � cos�s

� qV0 � T � cos�s (A6)

with

 T �
1

V0

Z s0�L

s0

qEz�s� � cos���s� ��s� � ds: (A7)

T is known as the transit time factor. It depends on the
speed of the particle and the field amplitude. A crucial
point is that no hypothesis about the field profile in the
cavity has been made to develop these formulas. This
general approach can then be used for a standing wave
resonator with a fixed or not fixed geometrical �. This
definition of the synchronous phase is different compared
to the one which can be found in the literature which is the
rf phase when the particle reaches the middle of the cavity.
This definition and our definition correspond exactly when
the cavity is symmetric and the speed variation can be
neglected. It has to be noticed that, in fixed � cavities,
there is no synchronism between cells, but this redefinition
of the phase allows us to use the classical formalism [5].
This phase can then be called ‘‘effective’’ phase or ‘‘ref-
erence’’ phase. With this last hypothesis, the parameter T
depends only on the average speed of the particle in the
cavity. The calculation of T with Eq. (A7) may be difficult
because it is required to know the value of �s. But when
the speed gain is weak enough, this dependence can be
neglected and it is possible to use another equation for the
transit time factor:

 T �
1

V0

��������
Z s0�L

s0

qEz�s� � e
j��s� � ds

��������: (A8)
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