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A Smith-Purcell device can operate as a backward-wave oscillator for intense, narrow-bandwidth,
continuous wave radiation at terahertz wavelengths. We determine the requirements on electron beam
current and emittance for the system to oscillate based on a three-dimensional extension of our previous
two-dimensional analysis. It is found that specially designed electron beams are required with a current
that exceeds a certain threshold value and a flat transverse profile that allows the beam to travel very close
to the grating surface. Two methods for producing electron beams with the required characteristics are
discussed.
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I. INTRODUCTION

The interest in a Smith-Purcell device, first proposed and
experimentally tested over half a century ago [1], was
rekindled recently when a Dartmouth group constructed a
tabletop terahertz source by retrofitting the sample cham-
ber of a scanning electron microscope (SEM) with a metal
grating [2]. The radiation intensity after a certain threshold
was reported to increase as a fourth power in the electron
beam current. The behavior was interpreted as arising from
a gain process similar to that occurring in a free-electron
laser (FEL). If confirmed, the device, due to its compact
size and high-intensity output, will have a great impact on
terahertz science, which suffers from a scarcity of readily
available sources [3].

An effort to reproduce the Dartmouth result at the Enrico
Fermi Institute (EFI) in the University of Chicago with a
Smith-Purcell device closely resembling the Dartmouth
design [4] has not been successful. Although prominent
signals exhibiting nonlinear behavior were indeed ob-
served in the initial measurements, they were reduced
drastically to near noise level when a cooling channel
was introduced to the copper block attached to the grating.
Therefore, the initial signal was likely due to the blackbody
radiation from the heated grating surface onto which the
electron beam was swept periodically.

While the EFI experiment was not successful, we should
still expect that a Smith-Purcell device can be made to
‘‘lase’’ if certain conditions on electron beam qualities are
met. It is therefore important to ask what those conditions
are and whether it is feasible to meet those conditions.
These are the questions we address in this paper.

The gain in a Smith-Purcell radiator occurs when elec-
tron beam interacts with a copropagating surface mode,
which is an evanescent electromagnetic mode near the
grating surface [5]. A consistent linear analysis of the
electron beam interacting with the surface mode was pre-
sented by Andrews and Brau [6]. They also made a crucial

observation that the surface mode is a backward wave, i.e.,
its group velocity is in the direction opposite to its phase
velocity. In this case the device can operate as an oscillator,
even in the absence of external mirrors, due to the distrib-
uted feedback arising from backward propagation of the
optical energy. Such a device is known as the backward-
wave oscillator (BWO) in the microwave literature [7].

The results in Ref. [6] are not directly useful in deriving
the criteria for the characteristics of the electron beam
since the analysis was for the case of an electron beam
filling uniformly the entire half space above the grating.
However, we have recently developed a nonlinear theory
for a two-dimensional Smith-Purcell BWO in which the
electron distribution is infinitely wide and uniform in the
groove direction and has an arbitrary profile in the direc-
tion normal to the grating surface [8]. The special case of
this theory with a thin electron beam is a good starting
point for studying a practical Smith-Purcell BWO for
terahertz generation since the required beam profile turns
out to be very thin.

When the surface mode is a forward wave, the gain
process is similar as in a traveling wave amplifier
(TWA). Devices based on a Smith-Purcell TWA have
been studied for two-dimensional configurations by several
authors in the past, including the Smith-Purcell oscillator
by Schachter and Ron [9] and an amplifier by Yasumoto
et al. [10]. Lacking a natural feedback mechanism, how-
ever, the TWA devices require either an optical cavity with
a high round trip reflectivity or a very high single-pass
gain. Therefore, we concentrate on the BWO devices in
this paper.

A three-dimensional theory is necessary to discuss pa-
rameters for a realistic electron beam with a finite width
that can drive a Smith-Purcell BWO. Fortunately, it turns
out that the three-dimensional extension of the two-
dimensional theory presented in Ref. [8] is simple and
straightforward. We are therefore able to determine the
requirements of electron beam properties to operate a
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practical Smith-Purcell BWO for terahertz generation; we
found that the electron beam current must exceed a certain
threshold value and the profile of the electron beam should
be thin and flat so that the beam can be placed close to the
grating surface. The experiments at Dartmouth and at EFI
did not satisfy these requirements. We discuss two possible
approaches to produce such electron beams, one by a line
source and one by a phase-space manipulation of an ini-
tially round beam. Using these beams, a Smith-Purcell
BWO capable of producing a few watts of terahertz power
can be constructed.

In Sec. II, we review the two-dimensional theory of
interaction between an electron beam of vanishing thick-
ness and infinite width and a surface mode of a grating [8].
Extension of the theory to the case of finite beam width,
and paraxial mode propagation is discussed in Sec. III. We
obtain in Sec. IV the requirements on electron beam char-
acteristics for operation of a BWO. We then discuss an
explicit example for a THz source in Sec. V. Section VI is
devoted to a discussion of two methods for production of a
suitable quality electron beam for such a device. Finally,
we present some conclusions in Sec. VII.

II. SMITH-PURCELL BWO: TWO-DIMENSIONAL
THIN BEAM CASE

The coordinate system we use in this paper is shown in
Fig. 1 and is as follows: the x-direction is along the grating
groove, the y-direction is normal to the grating surface, and
the z-direction is on the grating surface but perpendicular
to the groove direction. The grating extends uniformly to
the positive and negative x-direction. The length of the
grating and its period are L and �g, respectively. There are
three plane segments in each grating period; the bottom
segments of widthw at y � �h, the top segments at y � 0,
and segments connecting the top and bottom segments.

A surface mode is a solution of Maxwell equation
satisfying suitable boundary conditions in the absence of
a driving electron current. We assume harmonic time de-
pendence exp��i!t�. The grating may be regarded as a
wave guide in the x-direction, and we consider the modes
for which the x-component of the electric field Ex vanishes
and other field components are determined from the
x-component of the magnetic field Bx. (Although the
z-component of the magnetic field vanishes, these are
properly the TE modes in the waveguide terminology since
the axis of the waveguide in the present case is in the
x-direction.) In this section we consider the two-
dimensional situation in which all quantities are indepen-
dent of the x-coordinate. Taking into account the grating
periodicity, the field can be written as a sum of space
harmonics. Thus we write the z-component of the electric
field as follows:

 Ez �
X
n

Anei�kz�nkg�ze��ny; (1)

where kz is the propagation wave number for the n � 0
term in the z-direction, kg � 2�=�g, k � !=c � 2�=�, c
is the speed of light, � is the free space wavelength, and

 �n �
�����������������������������������
�kz � nkg�

2 � k2
q

: (2)

The boundary condition on the grating surface determines
the relative magnitudes of the amplitudes An as well as the
relation between kz and k, i.e., the dispersion relation as
discussed in Refs. [8,11].

Consider now an electron beam, infinitely thin in the
y-direction, propagating in the z-direction at a distance y �
d above the grating. A sustained interaction can occur
between the surface mode and electron beam if the phase
velocity of the n � 0 term is the same as the electron
velocity:

 

k
kz
� �: (3)

Here� is the electron velocity in units of the speed of light.
The group velocity on the other hand is given by d!=dkz,
which can be computed from the dispersion relation of the
surface mode. For cases of interest in this paper, the group
velocity of the copropagating surface mode turns out to be
backward, i.e., along the negative z-axis [6]. In the follow-
ing, the magnitude of the group velocity will be denoted by
vg. The n � 0 term of the copropagating Ez field at the
location of the electron beam y � d is written as E�z; t��
exp�ikzz� i!t�, where E�z; t� is the amplitude, which
varies slowly due to interaction with the electron beam.
The equation for the evolution of the amplitude E�z; t�
derived earlier [8] and generalized to include the wave
attenuation [12] is as follows:

 

@E
@z
�

1

vg

@E
@t
�

IZ0�
4���x

e�2�0dhe�i�i � �E; (4)

λ

FIG. 1. The grating profile and the coordinate system. The
x-direction is into the page.
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where the first term on the left-hand side of this equation
describes transport of the optical energy to the backward
direction, i.e., along the negative z-direction. The right-
hand side represents the electron-mode coupling, in which
I is the electron beam current, �x is the half width of the
beam in the x-direction assumed to be large so that the two-
dimensional approximation is valid, � is the electron en-
ergy in units of rest energy, Z0 � 377 � is the character-
istic impedance of free space, �0 � k=��, � is the electron
phase, and � is the residue of the singularity associated
with the surface mode as defined in Ref. [8]. The factor
e�2�0d in Eq. (4), which will be important for our discus-
sion of the desirable electron beam profile, arises from the
fact that the force acting on the beam is mediated by the
grating surface. The second term on the right-hand side of
Eq. (4) represents attenuation due to the finite conductivity
of the grating material, where the attenuation coefficient �
can be obtained by the prescription given by Andrews et al.
[13].

The dynamics of the system is determined by the
Maxwell equation given by Eq. (4) together with the
Lorentz equation for the electron motion under the influ-
ence of the surface mode. If the mode is a forward wave, as
in the usual FEL, the mode amplitude will be amplified as
it propagates together with the electron beam in the posi-
tive z-direction. Oscillation occurs in this case only if the
amplified radiation is fed back to the entrance of the
interaction region by placing the system within an optical
cavity. In the case of a backward wave considered in this
paper, however, the oscillation is possible even without
feedback mirrors [7]. Indeed, by linearizing the equations
and solving them with the boundary condition appropriate
for the backward-wave case, E�z � L; t� � 0 for all t, we
find that the system may exhibit an absolute instability, i.e.,
the mode amplitude grows exponentially at all points in the
interaction region 0 � z < L [14]. The condition for this
instability is that the linear density of the current dI=dx
exceeds a threshold value dIS=dx:

 

dI
dx

>
dIS
dx
� J S���

IA
2��

�4�4

kL3 e
2�0d: (5)

Here J S��� is the dimensionless start current as a function
of the loss parameter � � �L and IA � 17 kA is the
Alfvén current. Equation (5) generalizes the corresponding
inequality for the special case of a perfect conductor � � 0
[8]. The quantity dIS=dx will be referred to as the linear
density of the start current.

The exponential growth will stop eventually and the
system will reach a steady state. The behavior near the
‘‘saturation’’ is nonlinear and can only be determined
accurately by numerically solving the Maxwell-Lorentz
equation, as was done in Ref. [8], or by using the PIC

code, as was done in Refs. [15–19].

III. LOCALIZATION OF SURFACE MODE IN THE
HORIZONTAL DIRECTION

For practical application, the two-dimensional thin beam
theory we reviewed in the previous section needs to be
extended for the three-dimensional case where the surface
mode has a finite extent in the x-direction. Since the grating
is open in the x-direction, we expect that the surface mode
will undergo diffraction in the �x; z� plane similar to freely
propagating optical beam. We can construct a surface
mode in such a case by combining the plane waves prop-
agating at different angles in the �x; z� plane as follows:

 Ez �
X
n

Z
dkxAn�kx�ei�kz�nkg�zeikxxe��ny: (6)

The analysis in the last section is a special case with kx �
0. It is now necessary to find a modified dispersion relation
for nonvanishing kx. By retracing the derivation in Ref. [9],
we find the simple result that the quantities k and kx occur

only through the quantity
����������������
k2 � k2

x

p
in the impedance ma-

trix defined there. Leaving the details of the derivation to
another publication [20], we can therefore state the follow-
ing simple result: For a given k, the value of kz for a
nonvanishing kx is the same as the value of kz obtained

for the kx � 0 case provided we replace k with
����������������
k2 � k2

x

p
.

It is now convenient to introduce the angle via kx �
kz sin	. Under the paraxial approximation 	� 1, the
quantities involving 	 may be expanded in a Taylor
series, and we find the following expressions for the
’-dependence of kz and �0:
 

kz�	� � kz

�
1�

	2

2��g

�
;

�0�	� � �0 �
k2
z	

2

2�0

�
1�

1

��g

�
;

(7)

where we simplified the notation by writing kz � kz�0� and
�0 � �0�0�. Once we have derived the expression for the
n � 0 term of the surface mode propagating at an angle in
the �x; z� plane, we combine these in the following manner
with a suitable weight function A0�	� to obtain a mode
localized in �x; z� plane
 

Ez�x; y; z� �
Z
A0�	�e

i	�kz	2z�=�2��g�


� e�	�k
2
z	2�=�2�0�
f1�	1=���g�
gye��0yeikz	x

� eikzzd	: (8)

The rms size of the surface mode in the x-direction may
be introduced as follows:

 �x
2�y; z� �

R
x2jEz�x; y; z�j2dxR
jEz�x; y; z�j

2dx
: (9)

The integration can be performed if we choose A0�	� �
exp��	2=4
2

	� with the result:

ELECTRON BEAM REQUIREMENTS FOR A THREE- . . . Phys. Rev. ST Accel. Beams 10, 080702 (2007)

080702-3



 �x
2�y; z� � �x

2�y; 0� ��	
2�y�z2: (10)

The equation is in the form of paraxial diffraction with a
waist at z � 0, the rms waist beam size of �x�y; 0�, and an
rms diffraction angular divergence of �	�y�. The quanti-
ties on the right-hand side of Eq. (10) are determined by the
following relations:

 �2
x�y; 0� � 
2

x �
y

2�0

�
1�

1

��g

�
; (11)

 
x
	 �
1

2kz
; (12)

 �x�y; 0��	�y� �
1

2kz��g
�

�
4��g

: (13)

These reduce to the well-known relations between the rms
size and angular divergence in free space when �g � 1.
Equation (10) can also be written in a form familiar in
paraxial optics discussions:

 �2
x�y; z� �

�
4��g

�
ZR �

z2

ZR

�
; (14)

where the Rayleigh range ZR is given by

 ZR �
4��g
�

�x
2�y; 0�: (15)

Paraxial diffraction of a wave has a close parallel with the
propagation of a particle beam of a finite emittance [21]. In
the present case, the quantities �=4��g and ZR play the
role of emittance and beta function, respectively, in particle
beam optics.

In the next section, these results will be used to make an
estimate for the effect of three-dimensional effects on the
performance of Smith-Purcell (SP)-BWOs. There, we will
find that the second term in Eq. (11) proportional to y is
negligible and can be dropped. Hence the beam size,
angular divergence, and the Rayleigh range can all be
regarded as independent of the y-coordinate.

IV. ELECTRON BEAM REQUIREMENTS

Before discussing the transverse profile of the electron
beam desirable for operation of a Smith-Purcell BWO, it is
useful to review the beam properties in phase space. For
clarity, we will assume that the electron beam distribution
in the four-dimensional phase space �x;	; y;  � is given by
the Kapchinskij-Vladimirskij (KV) distribution [22],
where x and y are the horizontal and vertical coordinates,
respectively, and 	 and  are the horizontal and vertical
angles, respectively. The KV distribution is convenient
because the distribution in any two-dimensional subspace
is uniform within an ellipse. We consider the distribution in
the middle of the grating and assume that the two-
dimensional beam ellipses are all upright with the half

widths ��x;�	;�y;� �. The half widths are related to
the rms values by a factor of 2; ��x;�	;�y;� � �
2�
x; 
	; 
y; 
 �. The product "x

0 � 
x
	 �
�1=4��x�	 is known as the geometric rms emittance in
the x-direction and is a measure of the beam quality. The
normalized rms emittance is defined by "x � ��"x

0,
which is invariant under acceleration. The quantity �x �

x=
	 � �x=�	 is known as the Courant-Snyder enve-
lope (in the middle of the grating) in the x-direction and is
determined by the beam transport design. Similar quanti-
ties are defined in the y-direction with the subscript y. The
emittance can also be written as "x0 � 
2

x=�x. The rms
x-beam size at the end of the grating is given by��������������������������������������������
"x0�x	1� �L=2�x�2


p
. We need to choose �x � L and

similarly in the y-direction so that the beam sizes do not
vary much along the length of the grating. For a given beam
size, we need to choose �x � L to maximize the emit-
tance, keeping the beam size more or less constant along
the length of the grating.

The optimum beam profile corresponds to the minimum
of the linear density of the start current. In view of the last
factor in Eq. (5), e2�0d, we should require that the elec-
trons’ vertical separation from the grating surface satisfy
d � 1=2�0. Assuming that the beam edge just touches the
grating surface, we require �y � 1=2�0. Choosing the
envelope �y � L to avoid making the emittance require-
ment too stringent, we obtain

 "y �
��

�4�0�
2

1

L
: (16)

This condition turns out to be very stringent.
Let us now turn to the requirement in the x-direction.

From the analysis presented in the last section, we find that
the geometric rms emittance, i.e., the product of the rms
beam size and the divergence for the copropagating eva-
nescent wave, is �=4��g. Hence, the normalized rms
emittance of the electron beam in the x-direction should
satisfy

 "x � ��
�

4��g
: (17)

The Rayleigh range ZR for an optical wave packet is the
quantity corresponding to the envelope for an electron
beam. To avoid large variation in the optical beam size,
we will set ZR � L. The choice may require the use of
external mirrors of suitable curvature. In the situation
where it is not possible to control the Rayleigh range, it
will be decided by the boundary conditions at the ends of
the grating. It will be complicated to obtain ZR for the most
general case. Here, we assume that it will be possible to set
ZR � L. In a real situation, if ZR has a different value, then
one will have to change the value of ZR in the analysis
presented here. The electron beam envelope should be
suitably chosen so that the electron beam size is the same
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as the optical beam size to maximize the overlap:

 �x � 2

������������
�L

4��g

s
: (18)

If the electron beam emittance in the x-direction is signifi-
cantly less than the right-hand side of Eq. (17), Eq (18) can
still be satisfied by choosing �x � L.

In a three-dimensional situation, we may interpret the
linear density of the start current dIS=dx as the peak value
in the middle of the electron beam distribution. The thresh-
old condition in Eq. (5) then becomes a condition on total
current I:

 I > IS �
�
2

dIS
dx

�x: (19)

The inequalities of Eqs. (16), (17), and (19) are the basic
requirements for operation of a Smith-Purcell BWO. If
these conditions are satisfied, the intensity of the surface
mode in the grating region rises exponentially until it
reaches saturation, and from then on the device operates
in a steady state. The efficiency at saturation—the ratio of
the optical energy generated to the electron beam’s kinetic
energy—can be estimated from the amount of electron
energy loss corresponding to its slipping behind by a
distance of �z=4 [8]. For the nonrelativistic case, the
efficiency is given by �eff  �z=2L. We emphasize that
this is only an order of magnitude estimate since it is based
on simple considerations and many realistic effects like
attenuation due finite conductivity of grating material, the
reflection at the ends of the grating, etc., are not taken into
account while deriving this formula. The optical power
appears partly in the form of diffracted wave at the grating
entrance and partly in the form of propagating waves at
higher harmonics due to the higher harmonic components
of the density modulation in the electron beam [23]. Since
the electron beam power at threshold is Pebeam

S � VIS,
where V is the beam voltage, the optical output power is
therefore Popt � Popt

S � �effVIS.

V. AN EXAMPLE CASE

We now wish to discuss an explicit example. The elec-
tron’s kinetic energy qV (q � electron charge) is taken to
be 35 keV, corresponding to � � 0:352 (�� � 0:376). For
grating, we set the period �g � 173 �m and the total
length L � 19:03 mm. These are the same as in the
Dartmouth experiment [2] except that the grating length
is increased by 50% in order to reduce the start current. For
the grating profile, we took the parameters for the
Dartmouth experiment, i.e., the width of the bottom seg-
ment w � 62 �m and the height of the top segment h �
100 �m as the base parameter and then further optimized
them for the minimum start current. To compute the at-
tenuation coefficient � for copper grating, we have fol-
lowed the procedure described in Ref. [13] using the DC

conductivity 
0 � 5:76� 107=�-m and the electron re-
laxation time � � 2:4� 10�14 s. The dimensionless start
current J S��L� is then obtained by solving a cubic equa-
tion as discussed in Ref. [12]. The resonant wavelength �,
the group velocity vg, and the parameter � can be obtained
using the procedure discussed in Ref. [8]. The start current
IS can then be obtained by substituting these parameters in
Eqs. (5), (18), and (19). The result as a function of h is
plotted as a solid curve in Fig. 2, which shows that it
decreases initially as h is increased from 100 �m, reaching
a minimum IS � 46 mA at around h � 130 �m, and in-
creases thereafter. We therefore choose h � 130 �m.
Then the procedure is repeated for optimizing the groove
width w to minimize Is, keeping h � 130 �m. This is
shown by the dashed curve in Fig. 2 where the optimum
groove width w is seen to be 110 �m, for which Is �
37:2 mA. As discussed earlier 2�0d � 1 in the calculation
here. The free-space wavelength of the surface mode for
these optimized parameters is then found to be � �
761 �m, the group velocity vg � 0:184c, �0 �

0:0222 �m�1, �y � 22:6 �m, and the required emittance
in the y-direction from Eq. (16) is very small: "y � 2:5�
10�9 m-r. The emittance in the x-direction from Eq. (17)
can be much larger: "x � 120� 10�6 m-r. The half width
of the beam in the x-direction from Eq. (18) is �x �
5:00 mm.

A simulation of Smith-Purcell BWO was performed by
solving the Maxwell-Lorentz equations [8,12]. The energy
spread of the electron beam is not included in this calcu-
lation since the spread produced by electron guns under
consideration is negligible. The three-dimensional effects
were included in the approximate manner as discussed.

FIG. 2. Start current as a function of the groove height h (solid
curve) as well as groove width (dashed curve) for grating and
electron beam parameters as discussed in the text. For the solid
curve, we have kept the groove width fixed at 62 �m. For the
dashed curve, the groove height is fixed at 130 �m.
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More elaborate PIC simulations have been performed re-
cently by several authors [15–19]. Compared to the results
of three-dimensional PIC simulations by Li et al. [16], our
simulation for the parameters mentioned there gives the
amplitude of saturated longitudinal electric field, which is
around 17% larger compared to the that obtained using PIC

code [24]. Compared to the results of two-dimensional PIC

simulation reported by Li et al. [17], the start current
obtained by us using Eq. (5) is only 13% lower [24].
Finally, compared to the results of two-dimensional simu-
lation by Donohue et al. [18], our result for the amplitude
of saturated magnetic field for the parameters mentioned in
Ref. [18] is in excellent agreement [24]. We note that our
simulation based on Maxwell-Lorentz equations is much
faster compared to the PIC codes. A detailed description of
the comparison of our simulation with more elaborate PIC

simulation can be found in Ref. [23].
For the case we discussed in the previous paragraph,

Fig. 3 shows the evolution of power in the surface mode for
a beam current of 45 mA. Note that we have plotted the
total power in the surface mode, which includes electro-
magnetic field in all space harmonics in Eq. (1). We have
discussed the calculation of power in detail earlier in
Ref. [8]. It can be seen in Fig. 3 that the saturated power
is 3.9 W, which corresponds to efficiency �eff  0:3%
since the power in the electron beam for these parameters
is Pebeam � 1:35 kW. Using the approximate formula for
the efficiency derived in the previous paragraph, the esti-
mated efficiency �eff  0:7%. The reduced efficiency in
the simulation is due to attenuation and also due to non-
linear effects; the efficiency is improved at higher current.
Hence, we conclude that this system can generate a con-
tinuous wave terahertz output of the order of a few Watts,
an intensity level that has not been available with a com-
pact, laboratory-scale device.

VI. BEAM PRODUCTION

Can such an electron beam to create coherent THz
radiation be produced? For an elliptically shaped, planar,
thermionic cathode with the major (minor) axis of �xc
(�yc), the thermal emittances in the x- and y-directions are

given by �"cx; "cy� � 0:5��xc;�yc�
��������������������
kBT=mc2

p
, where kB

is Boltzmann’s constant, T is the absolute temperature, and
m is the electron mass. For T � 2500 K, the square root
factor is 0:65� 10�3. The cathode dimensions satisfying
the emittance requirements discussed in the previous sec-
tion are �xc � 37 cm and �yc � 8 �m. The cathode is
therefore a long, thin line source. The current density at the
cathode, corresponding to the current of 45 mA, is jc �
IS=��xc�yc � 0:5 A=cm2, well within the range of an
off-the-shelf tungsten cathode for SEMs producing jc �
1–3 A=cm2 [25].

We need to check that the space-charge effect does not
blow up the emittance. This will be the case if the emit-
tance term is smaller than the space-charge term in the
beam envelope equation [22]. The condition in the
y-direction can be written as

 

1

4��
I
IA

�y3

��x� �y�"y2 < 1: (20)

If the left-hand side is evaluated with the beam parameters
at 45 mA and 35 keV, we obtain 0.7, thus the inequality is
satisfied. The condition in the x-direction is less restrictive.
The magnitude of the emittance dilution while the beam is
accelerated depends on the acceleration gradient and can
only be determined by detailed simulation.

Another possibility is the novel phase-space technique,
in which a round electron beam is produced from a cathode
immersed in an axial magnetic field, and then the beam
angular momentum is removed by a set of quadrupoles
[26,27]. The technique was recently demonstrated experi-
mentally [28,29]. In this scheme, the ratio of the final
emittances is given by

 

"x
"y
�

�
qB
mc

rc2

4"I

�
2
; (21)

where B is the magnetic field at the cathode; rc is the
cathode radius; and "I �

����������"x"y
p is the initial, round-

beam emittance before emission into the axial magnetic

field. Using rc � 2"I=
��������������������
kBT=mc

2
p

, we find that the required
magnetic field can be written as B � �kBT�=�q"yc�. Note
that this is independent of "x. Choosing the maximum
allowed value "y � 2:5� 10�9 m-r and assuming a
thermionic cathode with T � 2500 K as in the previous
paragraph, we obtain B � 2:9 kG, a modest value that can
be generated either by a permanent magnet or an electro-
magnet. Let us take "x � 2:5� 10�6 m-r, smaller by a
factor of 48 than the maximum allowed value, 120�
10�6 m-r. The emittance ratio "x="y  1000 appears to

FIG. 3. Plot of power as a function of time in the surface mode
at the entrance of the grating for the optimized parameters
discussed in the text. We have taken I � 45 mA.
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be feasible, although it is approximately an order of mag-
nitude larger than the ratio achieved recently [29]. The
round-beam emittance is "I  7:9� 10�8 m-r, and the
corresponding radius is rc � 243 �m. The current density
at threshold is jc � 24 A=cm2, which should be feasible
with a tungsten cathode. The tungsten cathodes in a recent
EFI experiment [4] produced electron beams with an rms
emittance similar to the round-beam emittance required
here: �1–2� � 10�7 m-r. The current, (1–2) mA, was
smaller by an order of magnitude than the start current of
37.2 mA. However, thermionic cathodes producing an
order of magnitude higher current density than tungsten
are available. For example, LaB6 at 2500–3000 K pro-
duces 20–50 A=cm2 [25]. Therefore, the flat-beam tech-
nique appears to be a promising candidate for producing
electron beams satisfying the requirements of a Smith-
Purcell BWO for terahertz radiation.

Sheet beams have been used previously for millimeter/
submillimeter slow wave generator. For example, Chen
et al. [30] have used sheet beam in a Smith-Purcell FEL
experiment at 3 mm wavelength. However, the aspect ratio
(horizontal beam size/vertical beam size) in these experi-
ments has been at the most 20 [31] while we require an
aspect ratio of 1000 or higher. In addition, the magnitude of
the vertical emittance needs to be much smaller. For this
reason, it is necessary to employ special techniques such as
discussed in this section. We would like to point out that,
once the flat beam is produced, one could use the longitu-
dinal magnetic field produced by a solenoid to guide the
electron beam, which will be needed to transport the beam
maintaining close vicinity to the grating surface.

VII. DISCUSSIONS AND CONCLUSIONS

In this paper, we have examined the requirements of
electron beam parameters for successful operation of a
compact terahertz source based on a Smith-Purcell
BWO. We have analyzed the three-dimensional mode
structure of the surface wave and used it to evaluate the
three-dimensional effects correctly. Three-dimensional ef-
fects play an important role in determining the start cur-
rent. The requirements for electron beam parameters were
not met in earlier experiments [2,4]. For example, for the
Dartmouth experiment [2], the start current from Eq. (19)
is 135 mA if the beam half width �y is taken to be 10 �m
as reported in Ref. [2]. We also obtain dIs=dx �
39:2 mA=mm and �x � 2:2 mm. The requirement for
the electron beam’s vertical emittance is then "y � 7:4�
10�10 m-r. The electron beam current and emittance did
not satisfy these criteria in the Dartmouth experiment [2].
Even if these criteria were satisfied, the right-hand side
of Eq. (20) for these numbers is 4.3, the inequality is
clearly violated, and thus the space-charge effect will
significantly deteriorate the electron beam emittance.
With the optimized parameters used in Sec. V, the start
current is reduced significantly from that required for the

Dartmouth case. The space-charge effect does not there-
fore deteriorate the electron beam quality significantly.

It is interesting to compare the structure of electromag-
netic fields and Poynting vectors in the 2D and 3D analyses
presented here. In the 2D analysis, there will be three
components of electromagnetic field �Ez, Bx, and Ey.
The Poynting vector, above the grating surface, will be in
the z-direction. Inside the grooves, standing waves will be
formed. For the 3D case, one can show using Maxwell
equations that there will be additional components of
electromagnetic fields �By and Bz. Hence, the Poynting
vector, above the grating surface, will be in the z as well as
the x-direction. Inside the grooves, standing waves will be
formed along the z-direction, but there will be a Poynting
vector along the x-direction. Hence, there will be a flow of
energy along the direction of grooves, inside all grooves.
Under the paraxial approximation that we have discussed
in this paper, however, the components By and Bz will be
small and the Poynting vector along x-direction will be
much smaller compared to that along the z-direction. We
can therefore primarily assume that flow of power is along
the z-direction above the grating surface even in the 3D
case.

In this paper we have assumed no reflection at the ends
of the grating. When one includes the reflections, the back-
ward wave gets reflected to forward wave at the upstream
end and the forward wave gets reflected to the backward
wave at the downstream end of the grating. The start
current changes due to reflections and, by properly tuning
the grating length or the electron beam energy, one can get
a reduced start current. An analysis including reflections at
the ends of the grating has been performed recently
[32,33]. In Ref. [32], we have extended our simulation to
include reflections. The reflection will be naturally present
at the end of the grating, and one can also enhance it with
mirrors. For the parameters discussed in this paper, follow-
ing the analysis presented in Ref. [32], we find that the start
current requirement can be relaxed if the reflection is
included. If the amplitude reflection coefficient R � 0:8,
the start current can be reduced from 37.2 to 27.5 mA.

To summarize, we obtained criteria on electron beam
properties to operate a Smith-Purcell BWO for terahertz
radiation, and an expression for the output power. The
derivation is based on the results of a two-dimensional
thin beam theory and its three-dimensional extension.
Methods to produce electron beams of required character-
istics were suggested by means of a line-shaped tungsten
cathode or by employing a flat-beam technique on an
initially round, high-current thermionic cathode such as
LaB6.
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