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In this paper the operability of a Smith-Purcell free-electron laser for an arbitrary grating is considered.
An arbitrary grating is described in terms of impedance matrix. The consideration is based on the self-
consistent set of Maxwell-fluid equations. The dispersion relation is established for the TM mode of
electromagnetic waves. The latter is studied considering amplification of the evanescent as well as
radiation modes. The small signal gain in various limits is calculated and the dependence of the gain on the
electron beam current is analyzed.
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I. INTRODUCTION

A traveling charged particle induces radiation when it
passes over the metallic grating. This radiation, called
Smith-Purcell (SP) radiation [1], has several remarkable
properties. Since its first observation, SP radiation has been
studied both experimentally and theoretically by many
authors [2–4] (for more recent discussions and other refer-
ences on the subject see [5]). Owing to the unique proper-
ties of SP radiation, it has long been recognized that SP
radiation can be a basic mechanism for a compact free-
electron laser (FEL) [6,7].

Recently, there has been a renewed interest in the SP
system related to both a possibility of using it to generate
intense radiation from the millimeter to optical region [8]
and to implement it in nondestructive beam diagnostics [9].
The experiment at Dartmouth College [10,11], where
superradiance in the SP system was observed, has stimu-
lated new investigations concerning the SP FEL as an open
slow wave structure [12–16].

In the paper [7], the authors considered the initial inci-
dent propagating wave, which is amplified during the
multiple reflection upon grating. They predicted a small
signal gain of SP FEL to be proportional to I1=3

b , where Ib
denotes the electron beam current. The authors of [7]
considered magnetized electron beam and described grat-
ing in terms of reflection matrix. It an additional require-
ment was invoked that the reflection matrix is singular at
the frequency of the incident propagating wave. But this is
actually not the case. As will be shown below, the singu-
larities of the reflection matrix correspond to eigenmodes
of grating which are the evanescent waves.

In [12], the authors considered an infinitely thin electron
beam passing close to a grating. They assumed that both an
evanescent and a propagating mode have the same fre-
quency. The electron beam amplifies the evanescent

mode, which scatters into the propagating radiation
mode. The gain predicted by this model is / I1=2

b .
A different result has been obtained in Ref. [13]. In this

paper it is considered a rectangular grating, assuming that
the entire space above the grating is filled by a uniform
electron beam. The authors have established the dispersion
relation and found the dispersion law!�k�. It turns out that
the dispersion equation allows only evanescent solutions
and the operating point of a SP FEL is fixed by the
intersection of the dispersion curve with the beam line.
The corresponding small signal gain follows the I1=3

b law.
However, the coefficient differs from that of Ref. [7]. In
Refs. [14,15] it has also been shown that for a low-energy
electron beam the group velocity of the resonant evanes-
cent wave may be negative. This means that the device
operates on an absolute instability regime in contrast to the
conventional FEL, where a convective instability takes
place. At the absolute instability, the SP FEL operates
like a backward wave oscillator [17] and without external
feedback if the current is above a threshold value called the
start current.

In [16], the authors have revised the work [12] with
proper evaluation of singularities of reflection matrix for
rectangular grating. The authors considered an infinitely
thin electron beam extending analysis also to the nonlinear
regime by performing one-dimensional numerical simula-
tions. Particularly, they found that the growth rate equation
becomes cubic near the singularity of the reflection matrix
as obtained in Ref. [7]. Otherwise the growth rate equation
is quadratic as obtained in Ref. [12]. The latter regime
corresponds to the spectral region, where some of the
spectral orders are radiative.

Recently, SP FEL dynamics has also been investigated
using the 2D particle-in-cell (PIC) code [18,19]. The nu-
merical results of [18] in general are in agreement with the
analysis of [13,14], but the gain calculated in [18] is within
a factor of 2 of that predicted in the work [13].

Hence, there is no general consent on the mechanisms of
the SP FEL and the small signal gain obtained by different*mkrtchian@ysu.am
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approaches. Taking also into account that there is currently
substantial interest in the implementation of a SP FEL, it is
of interest to reexamine the theory of SP FEL.

In the present work, the operability of the SP FEL for the
arbitrary grating is considered. The method described al-
lows any complex geometry one may wish to consider so
long as the geometry repeats itself periodically and has one
axis of translational invariance. The consideration is based
on the self-consistent set of Maxwell-fluid equations. An
arbitrary grating is described in terms of impedance matrix.
The electron beam is not assumed to be infinitely thin as it
was considered in Refs. [12,16] and it does not occupy the
entire space above the grating as was assumed in Ref. [13].
We consider an electron beam of finite thickness to be at a
finite height above the grating and in contrast to Ref. [7]
there is no external incident wave, and the electron beam is
not magnetized. For comparison, we also analyze the case
of a magnetized electron beam. We derive a general ex-
pression for the dispersion relation and examine various
limits of small signal gain depending on the particle beam
and grating parameters. Then, obtained results are applied
to rectangular grating making comparisons with the results
of the works [13,18].

The paper is organized as follows. In Sec. II we solve the
self-consistent set of equations which describe FEL dy-
namics in general and as the most effective case the hydro-
dynamic instability of a cold electron beam is considered.
Rectangular grating is considered in Sec. III. A concluding
section summarizes the paper.

II. HIGH-GAIN REGIME OF A SP FEL

In this section, we develop a theory of a SP FEL for an
arbitrary grating considering the linear stage of instability
and calculate the small signal gain of a SP FEL in the
regime of hydrodynamic instability. We take a Cartesian
coordinate system: the electrons initially move to the z
direction in the vacuum over the grating along the trajec-
tories d � x � d� � as it is shown in Fig. 1 and coupled
with the TM mode of electromagnetic wave. The grating is

ruled parallel to the y axis and its ruled area is assumed to
be large enough to ignore any boundary effect. We denote
the grating period as g.

Our goal is to obtain the dispersion relation for the TM
mode of electromagnetic waves. The roots of the disper-
sion equation give us the functional dependence !�k�. The
presence of the electron beam leads to complex shift of the
characteristic frequencies (or wave numbers). The roots
with imaginary part indicate the collective instability, i.e.,
exponential gain of the corresponding wave.

Following the ansatz developed in the paper [20] for
surface Cherenkov FEL, we proceed to calculation of the
gain in the regime of hydrodynamic instability. Thus, we
will arise from the self-consistent set of the Maxwell and
fluid equations. For the TM mode (Ey � Hx � Hz � 0)

 

Ex�x; z; t� � E!x�x; z�e
�i!t � c:c:;

Ez�x; z; t� � E!z�x; z�e
�i!t � c:c:;

Hy�x; z; t� � H!y�x; z�e
�i!t � c:c:;

the Maxwell equations can be written as

 

@xE!z � @zE!x � �i
!
c
H!y; (1a)

�@zH!y � �i
!
c
E!x �

4�
c
j!x; (1b)

@xH!y � �i
!
c
E!z �

4�
c
j!z; (1c)

where

 j �x; z; t� � j!�x; z�e�i!t � c:c: (2)

is the current density. The fluid equations read (with v
denoting the local fluid velocity)

 �
@
@t
� v � r

�
�v�� �

e
m

E�
e
mc
�v	H
; (3a)

@n
@t
� div�nv� � 0; (3b)

j�x; z; t� � en�x; z; t�v�x; z; t�; (3c)

where � � 1=
���������������������
1� v2=c2

p
is the Lorenz factor, m is the

electron mass, e is the electron charge, and n�x; z; t� is the
electron beam density. Before the interaction for n�x; z; t�
we assume

 n�x; z; t�jt�0 � n0�x� �

8><>:
0; x < d
n0 � const; d � x � d� �
0; x > d� �

:

(4)

The set of Eqs. (1)–(3) holds as in the grooves of the
grating as well as out of it (x � 0).

FIG. 1. The configuration of the Smith-Purcell FEL. The elec-
tron beam moves at a distance d parallel to the grating surface in
the z direction. The grooves, oriented in the y direction, repeat
periodically with the grating period g. The electron beam thick-
ness is �. The grating surface is at x � 0.
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The linearization of the fluid equations (3)

 v � v0 � �v!e�i!t � c:c:�; v0 � f0; 0; v0g;

v0 � const;
(5)

 n � n0�x� � �n!e
�i!t � c:c:� (6)

gives

 v 0
@v!x
@z
� i!v!x �

e
m�0

�
E!x �

v0

c
H!y

�
; (7)

 v 0
@v!z
@z
� i!v!z �

e

m�3
0

E!z; (8)

 v 0
@n!
@z
� i!n! �

@
@x
�n0�x�v!x� � n0�x�

@
@z

v!z � 0;

(9)

 j!x � en0�x�v!x; j!z � en0�x�v!z � en!v0: (10)

Taking into account the periodicity of the grating, the
solutions of Eqs. (1) above the grating are expanded in
infinite series
 

E!x;z�x; z� �
X1

L��1

Ex;zL�x�eikLz; (11a)

H!y�x; z� �
X1

L��1

HyL�x�e
ikLz; (11b)

where

 kL � k�
2�
g

L:

With the help of Eqs. (11), from Eqs. (7) and (8) we obtain

 v !x;z �
X1

L��1

vx;zLeikLz; (12)

where

 v zL �
ie

m�3
0�L

EzL�x�; (13)

 v xL �
ie

m�0�L

�
ExL�x� �

v0

c
HyL�x�

�
: (14)

Here

 �L � !� v0kL (15)

is the resonance width.
Taking into account Eqs. (13) and (14), from Eqs. (9)

and (10) for the amplitudes of the current density compo-
nents we obtain

 

j!x;z �
X1

L��1

jx;zLeikLz;

jxL�x� �
1

4��0

c2!2
p�x�

c2k2
L �!

2 �
!2
p�x�
�0

�L

�L

@EzL�x�
@x

;

(16)

 jzL�x� �
i!2

p�x�!

4��3
0�2

L

EzL�x� �
v0

i�L

@jxL�x�
@x

; (17)

where

 !p�x� �

����������������������
4�e2n0�x�

m

s

is the plasma frequency of the electron beam and

 �L � kL � �
!
c

; � �
v0

c
: (18)

Returning to the Maxwell equations (1) with the help of
Eqs. (16) and (17), for the tangential component of the field
amplitude we obtain the following equation:
 

@2EzL�x�

@x2 �

�
!2

c2 � k
2
L

��
1�

!2
p�x�

�3
0�2

L

�
EzL�x�

�
c2�2

L

�0�2
L

@
@x

� !2
p�x�

!2 � c2k2
L �

!2
p�x�
�0

@EzL�x�
@x

�
� 0: (19)

In region (I) for the tangential component of the field from
this equation we have

 E�I�zL�x� � E���1L e
�qLx; (20)

where E���1L is a constant and

 q2
L � k2

L �
!2

c2 �

�
k�

2�
g

L
�

2
�
!2

c2 : (21)

When qL is imaginary, the solution (20) represents prop-
agating waves. In this case we assume

 qL � �i

������������������
!2

c2 � k
2
L

s

and Eq. (20) corresponds to an outgoing wave to x � 1.
When qL is real, the solution (20) corresponds to an
evanescent wave. To satisfy the boundary condition, that
the wave vanish in the limit x! 1, we will choose the root
with positive real part.

In region (II) d � x � d� �, where the electron beam
exists, we have

 

@2EzL�x�

@x2
� ß2

LEzL�x� � 0 (22)

and the solution can be written in the form

 E�II�zL �x� � E���2L e
�ßLx � E���2L e

ßLx; (23)
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where

 ß2
L � q2

L �
!2
p

�0c
2 : (24)

In region (III) the solution of Eq. (19) can be written in
the form

 E�III�zL �x� � E���3L e
�qLx � E���3L e

qLx: (25)

Hence the solutions of the Maxwell equations (1) in the gap
between the electron beam and grating can be written in the
form
 

E�III�z! �x; z� �
X1

L��1

�E���3L e
�qLx � E���3L e

qLx�eikLz; (26a)

H�III�y! �x; z� �
X1

L��1

i!
cqL
�E���3L e

�qLx � E���3L e
qLx�eikLz; (26b)

E�III�x! �x; z� �
X1

L��1

ikL

qL
�E���3L e

�qLx � E���3L e
qLx�eikLz: (26c)

Next we consider the boundary conditions. For this
purpose we integrate Eq. (19) across the interface between
the electron beam and vacuum
 

lim
"!0

Z x1;2�"

x1;2�"

@
@x

�
@EzL�x�
@x

�
c2�2

L

��2
L

� !2
p�x�

!2 � c2k2
L �

!2
p�x�
�0

@EzL�x�
@x

��
dx � 0; (27)

where x1 � d� �, x2 � d, and we obtain the boundary
condition for the normal component of the wave field

 

@EzL�x�
@x

��������x�x2#

�
q2

L

ß2
L

�
1�

!2
p

�3
0�2

L

�
@EzL�x�
@x

��������x�x2"

; (28)

 

@EzL�x�
@x

��������x�x1"

�
q2

L

ß2
L

�
1�

!2
p

�3
0�2

L

�
@EzL�x�
@x

��������x�x1#

: (29)

Taking also into account the matching conditions for the
tangential fields

 EzL�x�jx�x2#
� EzL�x�jx�x2"

; (30)

 EzL�x�jx�x1#
� EzL�x�jx�x1"

; (31)

we obtain the coupling equation for E���3L , E���3L , E���2L , E���2L ,
and E���1L . From these equations one can express the ampli-
tude of the reflected wave, as

 E���3L � �LE
���
3L ; (32)

where

 �L �
1��2

L

1��2
L � 2�L cothßL�

e�2qLd (33)

is the coupling constant and

 �L �
qL

ßL

�
1�

!2
p

�3
0�2

L

�
: (34)

To guide electron beams near the grating surface, usu-
ally the strong static magnetic field is applied along the
direction of the electron beam motion. At that, the electron
beam dynamics is assumed to be one dimensional. The
electron beam can be assumed to be magnetized and
electron motion—one dimensional, if

 !c �
jejH0

mc�0
 j�0j;

and the Larmor gyration of the electron with radius Rc does
not violate the electron wave coupling Rc � v0�0=!. The
latter reads

 H0 
!mv?
�jej

:

Here H0 is the static magnetic field strength, v? is the
electron transversal velocity, and !c is the cyclotron fre-
quency. For magnetized electron beam, one can omit the
density variation effect and the normal component of the
current density in Eqs. (1)–(3). In this case Eq. (19) reads

 

@2EzL�x�

@x2
�

�
!2

c2 � k
2
L

��
1�

!2
p�x�

�3
0�2

L

�
EzL�x� � 0: (35)

In region (II), where the electron beam exists, the solution
can be written in the form

 E�II�zL �x� � E���2L e
��Lx � E���2L e

�Lx; (36)

where

 �L � qL

���������������������
1�

!2
p

�3
0�2

L

vuut : (37)

With the same analysis performed for an unmagnetized
electron beam, one can obtain coupling constant (32) for
the magnetized electron beam:

 ��mag�L �
q2

L � �
2
L

q2
L � �

2
L � 2�LqL coth�L�

e�2qLd: (38)

Note that the latter is exactly the same as that obtained in
Ref. [7].

For the boundary conditions on the grating surface, at
x � 0, one needs the solution of the Maxwell equations in
the grooves (x < 0). The latter is expressed as series of the
cavity modes in the grooves. At this stage we do not
concretize this solution and represent the boundary con-
ditions imposed by the grating, in terms of an impedance
matrix. As the most general relation between the ampli-
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tudes of electric and magnetic fields we take

 E�III�zL �0� �
X1

J��1

cqJZLJ

i!
H�III�zJ �0�; (39)

where ZLJ is the impedance matrix. In terms of E���3J and
E���3J , the relation (39) with the help of Eqs. (26) becomes

 E���3L � E
���
3L �

X1
J��1

ZLJ�E
���
3J � E

���
3J �: (40)

Here the elements of the impedance matrix are determined
by the coupling of each incident harmonic (E���3J ) with the
entire manifold of reflected ones (E���3J ). Taking also into
account the coupling of reflected and incident waves due to
the presence of the electron beam [see, Eq. (32)], we obtain

 

X1
J��1

��ZLJ � �LJ� ��J�ZLJ � �LJ��E
���
3J � 0: (41)

For a solution of Eq. (41) to exist, the determinant of the
coefficients must be zero:

 det��ZLJ � �LJ� ��J�ZLJ � �LJ�
 � 0: (42)

This is the most general dispersion relation, and its roots
give us the functional dependence !�k�.

Now, we should take into account that the electrons
resonantly interact with an evanescent mode traveling
along the surface of a grating. Indeed, for the resonant
interaction, the phase velocity of the wave should be
synchronous with the mean velocity of the electron
beam. The wave-electron synchronous implies that

 �N � !� v0kN ’ 0; (43)

and from Eq. (21) we see that for this mode

 q2
N �

!2

�2
0v2

0

> 0: (44)

Without loss of generality, one can assume N � 0. Hence,
near the particle-wave synchronism �J can be omitted,
except the one for a mode J � 0, then

 �J � �0�0J;

and the dispersion relation (42) can be rewritten as

 �1��0�D�!; k� � 2�0M�!; k� � 0: (45)

Here we have introduced the notations

 D �!; k� � det�ZLJ � �LJ�; (46)

and

 M �!; k� � det�ZLJ � �LJ�00 (47)

is the corresponding minor. The dispersion relation (45)
among other effects includes the space charge effects, the
gain dependence on the beam thickness, and the beam

height above the grating. Note that Eq. (45) can be written
in terms of the reflection matrix:

 1��0R00 � 0; (48)

where

 R00 � �
D�!; k� � 2M�!; k�

D�!; k�
(49)

is the element of reflection matrix:

 H���3L �
X1

J��1

RLJH
���
3J :

The dispersion relation in the form (48) with the coupling
constant (38) corresponding to magnetized electron beam
is exactly the same as that obtained in Refs. [7,16].

In the absence of the electron beam (�0 � 0), the dis-
persion relation is

 D �!; k� � 0: (50)

The solution of Eq. (50) gives us the functional dependence
!�k� of eigenmodes for a grating. It is important to note
that the eigenmodes are evanescent waves. As we see from
Eq. (49), the roots of Eq. (50) correspond to the singular-
ities of the reflection matrix.

In general case Eq. (45) can be solved only numerically
for different parameters of the beam. However, if the beam
density is small enough

 !2
p � �3

0G
2; !2

p �
!2

�0�2 (51)

(G is the small signal gain), then �0 can be expanded on
powers of the small parameter �!2

p:

 �0 �
!2
p

2�3
0�2

0

�1� e�2q0��e�2q0d: (52)

For a magnetized electron beam under the condition (51),
coupling constant (38) becomes

 ��mag�0 �
!2
p

4�3
0�2

0

�1� e�2q0��e�2q0d: (53)

As seen, the coupling constant for the magnetized electron
beam under the condition (51) is 2 times smaller than that
for the unmagnetized beam.

Dispersion relation (45) with Eqs. (52) and (53) be-
comes

 

�2
0D�!; k�

D�!; k� � 2M�!; k�
�
�!2

p

2�3
0

�1� e�2q0��e�2q0d: (54)

Here, for joint consideration of magnetized and unmagne-
tized electron beams, we have introduced a factor �, i.e.,
� � 1 for the unmagnetized beam and � � 1=2 for the
magnetized one.
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In the case of evanescent wave amplification, we expand
D�!; k� about the solution for the no-beam case:
D�!�k0�; k0� � 0 and write

 

�!2
p

�3
0�2

0

�1� e�2q0��e�2q0d �
Dk�!�k0�; k0��k� k0�

M�!�k0�; k0�
;

(55)

where Dk � @D=@k.
The dispersion relation (55) near the particle-wave syn-

chronism

 !�k0� � c�k0; �0 � c��k0 � k�

gives the cubic equation for small signal gain in the cold
beam limit:
 

�k� k0�
3 �

�!2
p

�3
0c

2�2 �1� e
��2k0�=�0��e��2k0d=�0�

	
M�c�k0; k0�

Dk�c�k0; k0�
:

Of the three roots, the root with the negative imaginary part
gives rise to exponential gain of the corresponding wave,
and we find that the amplitude growth rate is
 

G � Im�k0 � k�

�

���
3
p

2

� �!2
p

�3
0c

2�2 �1� e
��2k0�=�0��e��2k0d=�0�

	

��������M�c�k0; k0�

Dk�c�k0; k0�

��������
�

1=3
: (56)

As is seen from Eq. (56), the small signal gain decays
exponentially with the beam height above the grating as
exp��2k0d=�3�0��. The gain dependence on the beam
thickness is given by the factor �1� exp��2k0�=�0�


1=3.
For the thick electron beam k0�=�0  1, and when pass-
ing very close to a grating k0d=�0 � 1, from Eq. (56) we
get

 G �

���
3
p

2

� �!2
p

�3
0c

2�2

��������M�c�k0; k0�

Dk�c�k0; k0�

��������
�

1=3
: (57)

This formula is analogous to a small signal gain obtained in
[13] for a rectangular grating (with � � 1).

For the thin electron beam k0�=�0 � 1, which for
magnetized electron beam (� � 1=2) corresponds to the
setup of Ref. [16], from Eq. (56) we get

 G �

���
3
p

2

�
�

�4
0�

3

8�k0

�y

Ib
IA
e��2k0d=�0�

��������M�c�k0; k0�

Dk�c�k0; k0�

��������
�

1=3
:

(58)

Here the plasma frequency associated with the electron
beam is expressed by the beam current as follows:

 !2
p �

4�c2

���y

Ib
IA
; (59)

where IA � mc3=e � 17 kA is the Alfvén current and �y
is the beam width in the y direction.

If one assumes the existence of a propagating mode, then
for those ! and k some of qL (L � �1;�2; . . . :) are
imaginary. In this case D�!; k� � 0 and Eq. (54) becomes

 G2 � R00�c�k; k�
�!2

p

2�3
0c

2�2 �1� e
��2k0�=�0��e��2k0d=�0�:

Assuming that ImR00�c�k; k� � 0, and ReR00�c�k; k�> 0
for the small signal gain, one obtains
 

G �
�
R00�c�k; k�

�!2
p

2�3
0c

2�2
�1� e��2k0�=�0��e��2k0d=�0�

�
1=2
:

(60)

Far away from the grating, the propagating modes corre-
spond to SP radiation. In this regime, the electron beam
amplifies the evanescent mode which scatters into the
propagating radiation mode. The wavelength of the radia-
tion, observed at the angle # from the direction of the
electron beam, is

 � �
g
jLj

�
1

�
� cos#

�
: (61)

As follows from Eqs. (51) and (60), the formula for the
gain (60) is valid when jR00�c�k; k�j  1. The latter is
difficult to realize and presumes severe restriction on the
grating parameters.

For the thin electron beam k0�=�0 � 1, the small signal
gain (60) becomes

 G �
1

�2
0�

2

�
4��
�y

!
c
Ib
IA
R00�c�k; k�e

��2k0d=�0�

�
1=2
: (62)

Note that the latter with � � 1=2 is exactly the same as
that obtained in Ref. [12]. This can be understood as
follows. In [12] the electron beam dynamics is assumed
to be one dimensional which is applicable for magnetized
electron beam.

For the high-gain regime it is also necessary to take into
account the conditions

 G max
�

1

c�

��������@�0

@	i
�	i �

1

2

@2�0

@	2
i

��	i�2
��������; 1

Lint

�
; (63)

where Lint is the interaction length in the z direction. Here
by 	i we denote the set of quantities characterizing the
electron beam and by �	i their spreads. The condition (63)
can be written as

 G max
�
k
��

�2�3
0

;
k
2
�
2;

1

Lint

�
: (64)

The first and second terms in the curly brackets of Eq. (64)
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are the resonance widths due to energetic and angular
spreads, and the last term expresses the resonance width
due to limited interaction length.

III. RECTANGULAR GRATING

In this section, as an important example of the applica-
tion of the obtained results, we present the small signal
gain of a SP FEL in the case of a rectangular grating. The
grating is assumed to have ideal conductivity. We denote
width and depth of a groove as w and a, respectively. The
solution of the Maxwell equations in the grooves (� a �
x � 0) is expressed as series of the cavity modes in the
grooves. With the help of these solutions it is easy to
calculate the impedance matrix ZLJ. The latter is presented
in the Appendix of this work. On inserting the impedance
matrix ZLJ Eq. (A11) into Eq. (50), we obtain the free
dispersion relation for a rectangular grating:

 det
�

2w
g

X1
m�0

pm tanpma
�1� �m0�

��mL�mJ

qL
� �LJ

�
� 0: (65)

Note that the coefficients of Eq. (65) show the existence
of the similarity relation in the functional dependence !�k�
with respect to the grating parameters. In other words,
the dependence of the normalized angular frequency
!g=�2�c� on the normalized wave number kg=�2�� for
one grating coincides with that of another grating if the
ratios w=g and a=g are the same for the two gratings.

To find out the functional dependence !�k� for rectan-
gular grating we solve Eq. (65) using a 5	 5 approxima-
tion to infinite determinant (we have kept elements with J,
L � �2, �1, 0, 1, 2). The result of the numerical solution
of Eq. (65) is shown in Fig. 2 for a rectangular grating with
w=g � 0:5 and a=g � 0:5. This corresponds to the setup
of [18]. The abscissa is the normalized wave number and

the ordinate is the normalized angular frequency. As is seen
from this figure, the beam line ! � c�k for � � 0:548 (at
the kinetic energy 100 keV) intersects the dispersion curve
at the wave number 0.5684 and frequency 0.3115 of the
resonant evanescent wave. The resonant frequency and
wave number are close to those of the paper [18]. As we
see the group velocity (d!=dk) of the resonant evanescent
wave is negative and for this energy of an electron beam
the SP FEL operates like a backward wave oscillator.

Next we solve Eq. (45) to find out small signal gain. In
Fig. 3 the small signal gain versus the beam current (I) per
meter in the y direction is plotted for d=g � 0:1 and �=g �
0:25. We have also plotted gain calculated by the approxi-
mate solution (56) (dashed line). As we see, the numerical
solution is in agreement with the analytical one, except the
region for high current values because of the space charge
effects contribution in the amplification process.

For the comparison with the results of PIC simulations
[18] where the gain is estimated to be Gg=�2�� ’
0:0045	 I1=3 cm�1, we solve Eq. (45) with a coupling
constant corresponding to the magnetized electron beam
[see Eq. (38)]. The latter comes from the fact that in [18] a
superimposed constant magnetic field of 2 T (in the z
direction) was assumed. That is, in fact they have magne-
tized electron beam. In Fig. 4 the small signal gain versus
the beam current is plotted for the magnetized electron
beam. The solid line corresponds to the numerical solution
of Eq. (45), while the dashed line to PIC simulations [18].
As we see, the agreement is quite good.

We have also made calculations for the parameters close
to those of the experiment at Dartmouth [10]. We assume
that the electron beam fills a region of width � � 24 �m,
equal to the diameter of the beam used at experiment. At
that, beam height above the grating is assumed to be d � 0

FIG. 2. Dispersion relation for the rectangular grating with
w=g � 0:5, a=g � 0:5 and intersection with the beam line for
� � 0:548.

FIG. 3. Normalized small signal gain versus the beam current
per meter in the y direction. The solid line corresponds to
numerical solution of the dispersion relation Eq. (45), while
the dashed line corresponds to approximate solution Eq. (56).
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and beam current per meter is I ’ 53 A=m (this corre-
sponds to beam current Ib � 1 mA). In Fig. 5 the small
signal gain versus the beam energy is plotted for g �
173 �m, w � 62 �m, and a � 100 �m. Within factor
1.2 this result is close to that of [13], where it is assumed
that the entire space above the grating is filled by an
electron beam. It is easy to see that difference comes
from the ‘‘filling factor’’ ��1� e�2k0�=�0
1=3 for a beam
of finite height.

IV. CONCLUSION

We have presented a theoretical treatment of the high-
gain regime of a SP FEL. Considering an electron beam of
finite thickness being at a finite height above the grating,

we have established the dispersion relation for the TM
mode of electromagnetic waves. An arbitrary grating is
described in terms of impedance matrix. We have also
taken into account electron motion in the normal to the
grating surface direction. The dispersion relation has been
studied considering amplification of the evanescent as well
as radiation modes. An analytical expression for the small
signal gain has been derived. The gain dependence on the
beam thickness and the beam height above the grating has
also been analyzed. We have examined various limits of
small signal gain depending on the electron beam and
grating parameters. For comparison, we have also analyzed
the case of a magnetized electron beam. Then, obtained
results have been applied to rectangular grating, making
comparisons with the works [13,18]. The numerical results
in general are in agreement with analytical ones. The
analysis of obtained results shows that the obtained small
signal gain is in good agreement with the results of nu-
merical investigations [18].
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APPENDIX

In this Appendix we present expression of the imped-
ance matrix for the rectangular grating. The latter is neces-
sary for the solution of dispersion relation (45). We denote
the grating period, width, and depth of the groove as g, w,
and a, respectively. The solution of the Maxwell equations
in the grooves (� a � x � 0) is expressed as series of the
cavity modes in the grooves

 H�w�!y � eiskg
X1
m�0

Hm cos
m��z� sg�

w
cospm�x� a�;

(A1)

 E�w�!z � eiskg
X1
m�0

Ezm cos
m��z� sg�

w
sinpm�x� a�; (A2)

 E�w�!x � eiskg
X1
m�0

Exm sin
m��z� sg�

w
cospm�x� a�;

(A3)

where Hm, Ezm, and Exm are constants, and s �
�0;�1;�2; . . .� indicates the number of the groove.
These expressions satisfy the boundary conditions that
E�w�!z vanishes at the bottom of the groove (x � �a), and
E�w�!x vanishes at the sides of the groove (z � sg; w� sg).
From the Maxwell equations (1), we find that

FIG. 5. Small signal gain for the experimental parameters of
Ref. [10].

FIG. 4. Normalized small signal gain for magnetized electron
beam. The solid line corresponds to numerical solution of the
dispersion relation Eq. (45) for magnetized electron beam, while
the dashed line corresponds to PIC simulations [18].
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 p2
m �

!2

c2 �

�
m�
w

�
2

(A4)

and

 Hm � i
!
cpm

Ezm; Exm � �
m�
wpm

Ezm: (A5)

Across the interface between the grating and the vacuum,
the tangential component of the electric field is continuous.
Since the tangential field vanishes on the surface of the
conductor, with the help of Eqs. (26a) and (A2) we will
have the following boundary condition:

 

X1
J��1

�E���3J � E
���
3J �e

ikJz �

�P1
m�0 Ezm cosm�zw sinpma; 0< z < w

0; w < z < g:
(A6)

Multiplying Eq. (A6) by e�ikLz and integrating over z in the
range 0< z< g, we get

 E���3J � E
���
3J �

w
g

X1
m�0

Ezm�mJ sinpma; (A7)

where

 �mJ �
��1�me�ikJw � 1

w
ikJ

k2
J � �

m�
w �

2 : (A8)

The tangential component of the magnetic field must be
continuous across the interface, so with the help of
Eqs. (26b) and (A1) we have

 

X1
m0�0

1

pm0
Ezm0 cospm0a cos

m0�z
w

�
X1

L��1

1

qL
�E���3L � E

���
3L �e

ikLz: (A9)

Multiplying Eq. (A9) by cosm�zw and integrating over z in
the range 0< z< w, we get

 Ezm �
2pm

�1� �m0� cospma

X1
L��1

��mL

qL
�E���3L � E

���
3L �:

(A10)

Combining Eqs. (A7) and (A10) with definition (40), we
obtain the impedance matrix for a rectangular grating:

 ZJL �
2w
g

X1
m�0

pm tanpma
�1� �m0�

��mL�mJ

qL
: (A11)
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