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In a companion report, we have derived a method for finding the impedance at high frequencies of
vacuum chamber transitions that are short compared to the catch-up distance, in a frequency regime
that—in analogy to geometric optics for light—we call the optical regime. In this report we apply the
method to various nonaxisymmetric geometries such as irises/short collimators in a beam pipe, step-in
transitions, step-out transitions, and more complicated transitions of practical importance. Most of our
results are analytical, with a few given in terms of a simple one-dimensional integral. Our results are
compared to wakefield simulations with the time-domain, finite-difference program ECHO, and excellent
agreement is found.
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I. INTRODUCTION

In many current and future accelerator projects short,
intense bunches of charged particles are transported
through vacuum chambers that include objects such as
transitions, irises, and collimators. For example, in the
beam delivery system of the International Linear Collider
(ILC), 3 nC, 300 �m-long bunches encounter many colli-
mators on their way to the interaction region [1]. In the
undulator region of the Linac Coherent Light Source
(LCLS), a 1 nC, 20 �m-long bunch passes by square-to-
round transitions, beam position monitors, and other
changes in chamber geometry [2]. Wakefields generated
by such changes in vacuum chamber geometry can nega-
tively affect the beam emittance and ultimately the per-
formance of an accelerator. Numerically obtaining the
strength of the wakefields or, equivalently, of the imped-
ances for short bunches in such vacuum chamber objects
can be difficult, in particular, when the object is long and
noncylindrically symmetric.

In a recent paper [3] we developed a method to solve
such seemingly difficult problems in a so-called optical
approximation. This method is valid in the limit of high
frequencies and reduces the calculation of the impedance
to the two-dimensional integration of potential functions.
In this report we make use of this method to work out
solutions to a selection of 3D (shorthand for noncylindri-
cally symmetric) geometries that can be encountered in
today’s accelerators.

The geometry of the problems to be considered is, in
general, of the type sketched in Fig. 1. An in-going beam
pipe (region A with cross-section profile SA) is followed by
a short transition (the gap or aperture region with cross
section Sap) and ends in an outgoing pipe (region B with
cross section SB). We limit consideration to cases where
Sap is contained within the intersection of SA and SB

[Sap � �SA \ SB�]. The transition need not be smooth
like the one in the figure. A speed of light beam passes
through the three regions on a straight line that we call the
design orbit. At first there is no assumption on transverse
symmetry in the three regions. However, we do assume that
the axes of regions A and B are parallel to the design orbit.
Note that if Sap � SB the structure is called a step-in
transition (by which we mean a short, inward transition),
if Sap � SA it is a step-out transition (a short, outward
transition). If SA � SB, with the aperture of Sap smaller
than the beam pipes, then the structure is an iris (a metallic
diaphragm with a hole or slot) or short collimator in a beam
pipe.

We are interested in finding the high frequency longitu-
dinal or transverse impedance of a general transition such
as is sketched in Fig. 1. The impedance regime can be
described as the regime of geometric optics. This regime is

FIG. 1. (Color) Sketch of a generalized 3D transition, showing
the regions A, aperture, and B, with cross sections SA, Sap, and
SB, respectively.
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applicable provided that (1) the frequency is high and (2)
the transition is short. By condition (1), we mean that the
frequency !� c=g, with c the speed of light and g the
minimum aperture of the structure. If the transition is
tapered, we require further that !� c=�g��, with � the
taper angle. By condition (2), we mean that the length of
the transition is short compared to the catch-up distance,
‘ � g2!=c. Note that in the optical regime the high fre-
quency longitudinal impedance of a structure is resistive,
with the impedance Zk real and independent of frequency.
The transverse impedance Z? is also real and depends on
frequency as !�1.

The method of Ref. [3] can be used to find the imped-
ance, for example, for an iris in a beam pipe, a step-in or
step-out transition, and a short collimator. Also, there are
objects that we call long collimators; i.e., collimators that
have a fixed (minimum) aperture over a length that is long
compared to the catch-up distance ‘, with transitions at the
front and back ends. For long collimators our methods also
apply, provided that the two transitions satisfy the above
two conditions. For such a collimator, the impedance is the
sum of the impedances of its two transitions. Note, how-
ever, that for intermediate length collimators, those of
length comparable to the catch-up distance, our methods
do not apply.

In Ref. [3] the impedance of a general transition in the
optical regime is developed following a systematic ap-
proach. Earlier work on the subject was focused on specific
geometries and often was rather informal in nature.
Balakin and Novokhatski were among the first to address
the question of impedance in the optical regime [4]. Heifets
and Kheifets studied the longitudinal impedance of round
step-in and step-out transitions (in the optical regime)
numerically by field matching [5]. For round, long colli-
mators the dipole mode impedance was obtained rigor-
ously in Ref. [6], and the higher azimuthal mode
impedances, more informally, in Ref. [7]. The impedance
of short and long, round and 3D collimators was studied
numerically in Refs. [8,9]; it was found, for example, that
the impedances of short and long collimators, in general,
differ significantly in amplitude (by a factor �2 in the
round, transverse case).

The impedances that we obtain in this report following
our method will also be compared to numerical results
obtained by the computer program ECHO [10]. This pro-
gram solves Maxwell’s equations to find the wakefield of
an ultrarelativistic Gaussian bunch within (perfectly con-
ducting) metallic boundaries of fully 3D geometry. From
the wakefields of a sufficiently short bunch, the impedance
in the optical regime can be obtained directly. In the
present report discussions of ECHO calculations will be
brief; their main purpose is to confirm our results and to
give us confidence in our method.

This report is organized as follows: In Sec. II the method
of calculation, derived in the companion paper, Ref. [3], is

presented. At the end of this section some details of the
ECHO simulations will be given. The heart of the present
report, however, is the next four sections where our method
is applied to 3D transition examples. The problems that we
solve are example irises or short collimators within a beam
pipe (Sec. III), step-in transitions (Sec. IV), step-out tran-
sitions (Sec. V), and more complicated transitions
(Sec. VI). In these sections our results will be compared
briefly to ECHO simulation results. Section VII gives the
conclusions. In the Appendix specific limits for the imped-
ance of an elliptical step-out transition are derived. Note
that Gaussian units will be used throughout; to convert
impedances to MKS units, one multiplies by the factor
Z0c=4�, with Z0 � 377 �.

Although we follow the method of Ref. [3], the notation
used in this report is not exactly the same. In particular, the
numerical subscripts of the potentials (1 and 2) that indi-
cate whether the potential refers to the leading or trailing
particle have been dropped. Reference [3] derives the
theory that we use here, and these subscripts were impor-
tant in the derivation; however, in this report, since we only
apply the method, these subscripts become superfluous. In
the final notation for potentials we have also moved in-
dicators of the type of potential [(m) for monopole, (d) for
dipole, (q) for quadrupole] from superscript to subscript
modes (and dropped the parentheses), which we believe
makes for a cleaner notation.

II. IMPEDANCE CALCULATIONS

Consider a general (transversely nonsymmetric) transi-
tion. Let the design orbit follow the z-axis, with the particle
motion in the �z direction. The transverse impedance of a
general transition consists of monopole, dipole, and quad-
rupole components (with respect to the design orbit) that
involve tensors, and the method of Ref. [3] can, in princi-
ple, deal with such problems. However, to simplify, in this
report we will limit consideration to geometries for which
the design orbit lies on a vertical symmetry plane of the
boundaries, defined by (horizontal coordinate) x � 0. Then
the transverse (vertical, y) impedance (with respect to the
reference trajectory) can be written as

 Z?;tot � Z?;m � y1Z?;d � y2Z?;q; (1)

where the three terms are called the (transverse) monopole,
dipole, and quadrupole contributions; where y1 is a small
offset of particle 1 (the leading particle), and y2 a small
offset of particle 2 (the trailing particle, see Fig. 2). Note
that the horizontal impedance has an equation equivalent to
Eq. (1), with the quadrupole term equal to ��Z?;q�.

For most of the examples of this paper, the system has
also a horizontal symmetry plane and the design orbit lies
in this plane. In such a case Z?;m � 0; if, in addition, y1 �
y2 � y0 we can define a normalized total impedance
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 Z? �
Z?;tot

y0
� Z?;d � Z?;q: (2)

By convention, this is the normal definition of total trans-
verse impedance for bi-symmetric problems. (In this paper,
however, we will calculate the individual terms Z?;d and
Z?;q as well as Z? for bi-symmetric problems.) The trans-
verse wake at position swithin a bunch (s < 0 is toward the
head), normalized to the offset y0, in the optical regime is
given by

 W?�s� �
i

2�

Z 1
�1

Z?�!�~�z�!�e�i!s=cd!

� �!Z?�
Z s

�1
�z�s0�ds0; (3)

with ~�z�!� the Fourier transform of the line charge density
�z�s�. To arrive at the last expression in this equation, we
have used the fact that, in the optical regime, Z? / !�1.
Thus the quantity �!Z?� is independent of frequency. The
result is proportional to the integral of the line charge
density (and in the longitudinal case, it is proportional to
the line charge density itself ). The kick factor �?, the
average kick experienced by the beam per unit charge
per unit offset, is the integral of W?�s� when weighted
by the longitudinal charge density. In the optical regime the
kick factor is simply given by the constant

 �? �
�!Z?�

2
: (4)

In Ref. [3] using the Panofsky-Wenzel theorem [11], the
transverse monopole, dipole, and quadrupole terms are
related to longitudinal monopole, dipole, and quadrupole
impedances:

 Z?;m �
c
!
Zk;m; Z?;d �

c
!
Zk;d; Z?;q �

2c
!
Zk;q:

(5)

The longitudinal impedances can, in turn, be obtained from
integrals involving the Green functions to Poisson’s equa-
tion (the potentials) in regions A and B of the transition of
interest. In the case of the monopole part

 

Zk;m �
1

2�c

�Z
SB
r�m;B 	 r�d;BdS

�
Z
Sap
r�m;A 	 r�d;BdS

�
; (6)

with the integrals taken over the cross-section areas SB and
Sap, respectively. Here the monopole and quad potentials
in region A are given by the solutions to

 r2�m;A � �4���y���x�; r2�d;A � 4��0�y���x�;

(7)

with boundary conditions �m;A � 0, �d;A � 0, on metallic
boundary CA that encloses SA. Similar equations hold for
�m;B and �d;B of region B.

In the case of the dipole part of the impedance

 Zk;d �
1

2�c

�Z
SB
�r�d;B�

2dS�
Z
Sap
r�d;A 	 r�d;BdS

�
:

(8)

For the quad part of impedance
 

Zk;q �
1

2�c

�Z
SB
r�m;B 	 r�q;BdS

�
Z
Sap
r�m;A 	 r�q;BdS

�
: (9)

The quadrupole potential in region B is given by the
solution to

 r2�q;B � �2��00�y���x�; (10)

with �q;B � 0 on boundary CB. Finally, the longitudinal
impedance on the reference trajectory is given by
 

Zk;long �
1

2�c

�Z
SB
�r�m;B�

2dS�
Z
Sap
r�m;A 	 r�m;BdS

�
:

(11)

To obtain the needed potentials �m, �d, �q, we begin
with the Green function solution to

 r2G�x; y; y0� � �4���x���y� y0�; (12)

where G � 0 on the boundary C of the surface of interest
S. Here the source particle is located at x � 0, y � y0. For
region S, �m�x; y� � G�x; y; 0�,

 �d�x; y� �
�
@
@y0

G�x; y; y0�

�
y0�0

;

�q�x; y� �
1

2

�
@2

@y2
0

G�x; y; y0�

�
y0�0

:

(13)

As was shown in Ref. [3], with the help of Green’s first
identity [12],

 

Z
S
��r2 �r� 	 r �dS �

Z
C
�n 	 r dl; (14)

FIG. 2. (Color) Sketch of a transition showing the relationship of
the design trajectory and the vertical offsets of particle 1, y1, and
particle 2, y2 (the particles are indicated by red dots). For the
calculations the offsets y1, y2, are assumed to be small.
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the surface integrals involved in the impedance equations
can be converted to line integrals. In this formula � and  
are functions that can be differentiated twice; S is a surface
over which a surface integration is performed; C is the
contour that encloses S and over which a line integral is
performed; and n is a unit normal vector pointing outward
from the contour. This device is used throughout the ex-
amples of this report.

A. Numerical comparisons

A great number of ECHO simulations were performed to
test and verify our results. ECHO is a 3D, time-domain
finite-difference program that calculates wakefields gener-
ated by an ultrarelativistic bunch passing through a struc-
ture. ECHO has two features that make these 3D, optical
regime simulations tractable: (1) a method to reduce the so-
called ‘‘mesh dispersion’’—errors generated in time-
domain mesh programs that are especially difficult to
deal with for the combination of short bunches and long
structures, and (2) an indirect method of calculating wakes
in 3D structures that eliminates long downstream beam
pipes, which would be needed in the case of direct wake
calculation with very short bunches. Since the ECHO simu-
lations play a supporting role in the present report, other
than comparing results, we will only discuss them briefly.
For a more detailed report on ECHO, see, e.g., Ref. [10].

A few comments on the parameters used in the ECHO

simulations: The bunches in the simulations are Gaussian.
Typically we choose �z � g=10, with g the minimum
vertical half aperture of the iris or transition. For a flat
iris or beam pipe we take the structure half-widthw � 10g.
(In this report we use the word flat to mean ‘‘having a
rectangular cross section with a small height to width
ratio.’’) For a small iris in a beam pipe or a transition
opening into a large beam pipe, the beam pipe is square
with half-height 10g. We take mesh sizes to be 1

5�z,
5
8�z,

5
8�z, in the longitudinal, horizontal, vertical directions,

respectively. Irises have the thickness of one longitudinal
mesh size. For bi-symmetric structures ECHO calculates
the dipole and quadrupole components of the wakes
independently.

To demonstrate the validity of the optical approxima-
tion, and how one moves out of the optical regime as the
bunch length increases, we consider the problem of a thin
round iris of radius g in a round beam pipe of radius b. We
choose b=g � 4. We perform ECHO calculations for bunch
lengths in the range �z=g � 0:02 to 4. In Fig. 3 we plot
twice the kick factor of our results as a function of bunch
length. According to Eq. (4), in the optical regime 2k? �
!Z?, which is a number independent of bunch length or
frequency. We see that the result of our numerical calcu-
lation is fairly constant up until �z=g� 0:2, after which
the validity of the optical approximation starts to break
down. In more detail, we give in Fig. 4 the actual wake
functions for four example bunch lengths as obtained by
ECHO. The (Gaussian) bunch shape, with the head to the
left, is indicated by the black dashes. The analytical wake
of a Gaussian bunch in a round iris in the optical regime,
W? � 
1� erf�s=

���
2
p
�z��=g

2, with erf�x� the error func-
tion, is also given (the red dashes). We see that, although
the weighted average of the wake agrees well for �z=g�
0:2, good agreement between the wakes over �4�z is not
obtained until �z=g� 0:04.

III. IRIS/SHORT COLLIMATOR IN BEAM PIPE

We begin by performing calculations of examples with
thin irises or short collimators in a beam pipe (for an
example, see Fig. 5). In these cases the solution is given
by a particularly simple ‘‘clipping’’ type calculation of the
energy impinging on the iris wall.

σ

⊥/( / )

FIG. 3. Twice the kick factor k? of a thin round iris in a beam
pipe vs rms bunch length �z, as obtained by ECHO. The iris
radius is g.

− −
σ

⊥/( / )

λ

σ

FIG. 4. (Color) Transverse wake of a thin round iris in a beam
pipe as obtained by ECHO. Results for bunch lengths over iris
radius �z=g � 0:04, 0.16, 0.4, and 0.8 are given. The (Gaussian)
bunch shape, with the head to the left, is indicated by the black
dashes. The analytical wake of a Gaussian bunch in a round iris
in the optical regime, W? � 
1� erf�s=

���
2
p
�z��=g

2, with erf�x�
the error function, is also given (the red dashes).
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For these examples the beam pipes in Region A and B
are identical, i.e. SB � SA. Thus Eqs. (5), (8), and (9) give

 Z?;d �
1

2�!

Z
SB�Sap

�r�d;B�
2dS; (15)

 Z?;q �
1

�!

Z
SB�Sap

r�m;B 	 r�q;BdS: (16)

Both equations involve integrals over the metallic surface
of the iris. Using Green’s first identity and considering the
fact that r�2 � 0 in any region that precludes the axis, we
can write Eqs. (15) and (16), as one-dimensional integrals.
For example, Eq. (15) becomes

 Z?;d �
1

2�!

Z
Cap

�d;Bn 	 r�d;Bdl; (17)

where the integral on the right is a line integral over the
curve that encloses the area of Sap, which we denote by
Cap, and n is a unit vector normal to this curve in the
direction of the axis (an identical integral over CB was
dropped, since �d;B � 0 on CB). Similarly,

 Z?;q �
1

�!

Z
Cap

�m;Bn 	 r�q;Bdl: (18)

The examples dealt with in this section are: (I1) a small,
flat iris (or horizontal slot) in a beam pipe, (I1b) the same
but with the design orbit shifted vertically, (I2) a small
rectangular iris, (I3) a small elliptical iris, (I4) a flat iris
(not necessarily small) in a flat beam pipe. In all cases
except I1b, the design orbit is on a horizontal symmetry
plane. A cross-section view of the geometries is sketched in
Fig. 6. Dimension labels and the design orbit location are
also shown.

In the following subsections (except for Sec. III D), we
will assume that the pipe radius is very large compared to

the iris aperture. We can use the free-space Green function
for a particle vertically offset by y0:

 G�x; y; y0� � � ln
x2 � �y� y0�
2�: (19)

From this Green function we obtain the potentials:

 �m � � ln�x2 � y2�; �d �
2y

x2 � y2 ;

�q �
y2 � x2

�x2 � y2�2
:

(20)

Then using these potentials, we perform the calculations of
Eqs. (17) and (18).

The error in transverse impedance introduced by the
approximation of the free-space Green function is rela-
tively small. For example, in the case of a round (i.e.
cylindrically symmetric) iris of radius g within a round
beam pipe of radius b, it is known that the correction to the
first order term is �g=b�4 [8].

FIG. 5. (Color) An iris in a beam pipe.

∆

FIG. 6. (Color) Cross-section views of the iris/short collimator
geometries considered in this section (for case I4 a longitudinal
view is also given). Dimension labels are given, and the design
orbit location is indicated by the red dot. In cases I1–I3, the beam
pipe aperture is specified as large compared to the iris aperture;
in case I4 the beam pipe is flat, with vertical aperture 2b. For
case I4 two colors are used for the boundaries as an aid in
visualization.
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A. Flat iris or horizontal slot in large pipe (I1)

Consider a beam pipe containing an iris with a horizon-
tal slot of vertical size 2g, with g very small compared to
the beam pipe size. We take the reference trajectory to be
the symmetry line, so the monopole term Z?;m � 0. The
dipole term is given by

 Z?;d � �
2

�!

Z 1
0
�d;B�x; g�

@�d;B

@y
�x; g�dx; (21)

and similarly for the quadrupole term. With the free-space
potentials, the integrals can be performed analytically, and
after some algebra we obtain

 Z?;d � Z?;q �
1

!g2 ; Z? �
2

!g2 : (22)

We see that the dipole and quad terms are equal, and that
the total result is the same as the leading order impedance
for a round, thin iris of radius g [8]. Note that for a flat
iris that is oriented vertically, we have Z?;d � �Z?;q �
1=�!g2� and Z? � 0.

1. Case of shifted design orbit (I1b)

We can also find the impedance for the case the design
orbit is shifted vertically by �y. In this case the (trans-
verse) monopole term Z?;m dominates the transverse im-
pedance, and we can neglect the effect of Z?;d and Z?;q
[see Eq. (1)]. The transverse monopole term is obtained
using Eqs. (5) and (6). Then the calculation proceeds in the
same manner as before:

 Z?;m � �
1

�!

Z 1
0

�
�d;B�x; g� �y�

@�m;B

@y
�x; g� �y�

��d;B�x;�g� �y�
@�m;B

@y
�x;�g� �y�

�
dx:

(23)

We find that the transverse impedance is given by

 Z?;m �
1

!

�
1

g� �y
�

1

g� �y

�
: (24)

For small �y, Z?;m � 2�y=�!g2�, which is consistent
with our earlier results.

B. Rectangular iris (I2)

For the case of a rectangular iris with a small aperture of
2w by 2g (horizontal by vertical), the calculation follows
the same procedure as before; however, the integration now
is a line integral along the rectangular aperture. We per-
form integrals like

 Z?;d � �
2

�!

�Z w

0
�d;B�x; g�

@�d;B

@y
�x; g�dx

�
Z g

0
�d;B�w; y�

@�d;B

@x
�w; y�dy

�
: (25)

The final solution is

 

Z?;d �
2

�!g2

	� arccot�	� � 	2 arctan�	�

	2

Z?;q �
2

�!g2

	��1� 	2� � �1� 	2�
�arccot�	� � 	2 arctan�	��

	2�1� 	2�

Z? �
4

�!g2

	� �1� 	2� arctan�	�

1� 	2 ;

(26)

where 	 � w=g.
The results, when normalized to 2=!g2, are plotted as

functions of 
 � �w� g�=�w� g� in Fig. 7. Note that
when 
 � 1 the results agree with the results for the iris
with the infinitely wide horizontal slot, given above. For


 � �1 (an infinitely high vertical slot) Z?;q � �Z?;d �
�1=�!w2� and Z? � 0. For the special case of a square
aperture Z? � Z?;d � 2�1��

1
2�=g

2 and Z?;q � 0. Note
that the horizontal impedance is obtained from Eqs. (26)
by exchanging w and g.

−

−

⊥/( ω )

β

⊥

⊥,

⊥,

FIG. 7. (Color) For a rectangular iris in a beam pipe, the trans-
verse impedances Z?, Z?;d, Z?;q, normalized to 2=�!g2�, as
functions of 
 � �w� g�=�w� g�. Plotting symbols give ECHO

numerical results.
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In Fig. 7 ECHO numerical results for Z?;d and Z?;q are
shown by the plotting symbols. We see good agreement
with the results of our method.

C. Elliptical iris (I3)

The impedance calculation for an elliptical iris with a
small aperture, with axes w by g (horizontal by vertical),
follows in a similar manner to the rectangular iris case. The
equations that need to be solved are Eqs. (17) and (18). We
see that the elliptical case is more complicated in that it
requires the formation of n 	 r�q;B and of the length
metric on the ellipse of the iris, though the final solution
is quite simple. We find that

 Z?;d �
1

!g2

�
1�

g2

w2

�
; Z?;q �

1

!g2

�
1�

g2

w2

�
;

Z? �
2

!g2 :

(27)

We find that for an elliptical iris the vertical impedance is
independent of its horizontal size! As was true for the
rectangular iris, the horizontal impedance of the elliptical
iris can be obtained by exchanging w and g in the solution
equations. In Fig. 8 we plot the analytical results and
compare with ECHO numerical results. We see good
agreement.

D. Flat iris in flat beam pipe (I4)

Consider a flat iris of height 2g centered within a flat
beam pipe of height 2b. We begin this problem with the
Green function between two parallel plates of aperture 2b
[13]:

 G�x; y; y0� � ln

"
cosh�x2b � cos��y�y0�

2b

cosh�x2b � cos��y�y0�
2b

#
: (28)

The calculation procedure is the same as for the free-space-
to-flat-iris example, example I1. The potentials are
 

�m;B�x; y� � ln

"
cosh�x2b � cos�y2b

cosh�x2b � cos�y2b

#

�d;B�x; y� �
�
2b

sin�yb
cosh2 �x

2b � cos2 �y
2b

�q;B�x; y� �
�2

8b2

��2� cosh�xb � cos�yb � cosh�x2b cos�y2b

�cosh2 �x
2b � cos2 �y

2b�
2 :

(29)

The final solution is
 

Z?;d �
�	2

2!g2 csc2��	�
2��1� 	� � sin�2�	��

Z?;q �
�	2

!g2 csc��	�
1� ��1� 	� cot��	��

Z? �
�	2

2!g2 csc2��	=2�
��1� 	� � sin��	��;

(30)

where 	 � g=b. These curves are plotted in Fig. 9. The
round case, with g and b, representing, respectively, the
radius of the iris and of the beam pipe, �Z?�round �
2�1=g2 � g2=b4�=! [8], is also shown (the dashes). We
note that Z? is always close to and larger for the flat than
for the round case.

In Fig. 9 ECHO numerical results for Z?;d and Z?;q are
again shown by plotting symbols. We see basically good
agreement with the results of our method. We should point
out one subtlety however. For g=b � 0:8 the numerically
obtained wake begins to take on some inductive character
and the result for impedance begins to deviate from our
analytical solution (particularly Z?;d). We attribute this to
the fact that, for the parameters used in the simulations,
�b� g�=b � �z; as �b� g�=b & �z we are beginning to
leave the optical regime.

−

−

⊥/( ω )

β

⊥

⊥,

⊥,

FIG. 8. (Color) For an elliptical iris in a beam pipe, the trans-
verse impedances Z?, Z?;d, Z?;q, normalized to 2=�!g2�, as
functions of 
 � �w� g�=�w� g�. Plotting symbols give ECHO

numerical results.

⊥/( ω )

⊥,

⊥,

⊥

⊥

FIG. 9. (Color) For a flat iris with aperture 2g in a flat beam pipe
of aperture 2b, the transverse impedances Z?, Z?;d, Z?;q as
functions of 	 � g=b. Plotting symbols give ECHO numerical
results. The round case, �Z?�round � 2�1=g2 � g2=b4�=!, is also
shown (dashes).
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1. Longitudinal impedance

If we specify the geometry of both the beam pipe and the
iris we can also obtain the longitudinal impedance, Zk;long.
For the longitudinal impedance we begin with Eq. (11),
which we convert to a line integral, and obtain

 Zk;long � �
2

�c

Z 1
0
�m;B

@�m;B

@y
�x; g�dx

�
8

c

Z 1
0

sin�	 cosh�x
cos2�	� cosh2�x

 ln
�
cosh�x� cos�	
cosh�x� cos�	

�
dx; (31)

with 	 � g=b. The last integral we evaluate numerically.
The result, when normalized to 4=c, is shown in Fig. 10.
For comparison, the round case impedance (with g and b
representing, respectively, the iris and beam pipe radius) is
also shown. We see that the longitudinal impedance in the
flat case is always less than in the round case.

IV. STEP-IN TRANSITION

For the dipole component of impedance of a step-in
transition we replace, in Eq. (8), Sap by SB, and use
Green’s first identity to obtain
 

Zk;d �
1

2�c

�Z
CB
�d;Bn 	 r�d;Bdl�

Z
SB
�d;Br

2�d;BdS

�
Z
CB
�d;Bn 	 r�d;Adl�

Z
SB
�d;Br

2�d;AdS
�
� 0:

(32)

The first and third integrals are zero because �d;B � 0 on

boundary CB; the second and fourth integrals cancel be-
cause the Laplacian is the same independent of region.

The same kind of analysis shows that Zk;q � 0 in a step-
in transition, and that Zk;m � 0 also in nonsymmetric step-
in transitions. Since specifics of the geometry were not
used in our derivation, we conclude that the total transverse
impedance is zero for a (short) step-in transition of any
geometry. Similarly the longitudinal impedance of any
short step-in transition is also zero in the optical regime
(something that has been known to be true for the special
case of a round step-in transition [4,5]). We conclude that
the longitudinal and transverse impedance of any step-in
transition, in the optical regime, is zero.

The impedance of a long collimator is just the sum of the
impedances of a step-in and a step-out transition. Since the
impedance of a step-in transition is zero, the impedance of
a long collimator is the same as that of a step-out transition
alone, the impedance of which we will study in the follow-
ing section.

V. STEP-OUT TRANSITION

An example step-out transition is sketched in Fig. 11
(the particles move in the �z direction). The examples
dealt with in this section are: (T1) a flat beam pipe that
transitions to larger flat beam pipe, (T2) a rectangular pipe
that transitions to a large pipe, and (T3) an elliptical pipe
that transitions to a large pipe. Cross-section views of the
geometries [and a longitudinal view in case (T1)] are
sketched in Fig. 12. Dimension labels and the design orbit
location are also shown.

For the impedance of a step-out transition we replace, in
Eq. (8), Sap by SA. The impedance function (in the dipole
case) Zk;d of a step-out transition can be written, beginning
with Eq. (8), as

/( )

FIG. 10. (Color) For a thin flat iris with aperture 2g in a flat
beam pipe of aperture 2b, the longitudinal impedance Zk;long as
function of 	 � g=b. The round case, �Zk�round � 4 ln�b=g�=c, is
also shown (dashes).

FIG. 11. (Color) A step-out transition. The particles move in the
�z direction.
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Zk;d �
1

2�c

�Z
SB
�r�d;B�

2dS�
Z
SA
r�d;A 	 r�d;BdS

�

�
1

2�c

�Z
SB
�r�d;B�

2dS�
Z
SA
�r�d;A�

2dS

�
Z
SA
r�d;A 	 r��d;B ��d;A�dS

�
: (33)

By using Green’s identity one can easily see that the last
integral is zero. Thus

 Zk;d �
1

2�c

�Z
SB
�r�d;B�

2dS�
Z
SA
�r�d;A�

2dS
�
: (34)

This result can be interpreted as 2=c times the static field
energy of a dipole in region B minus that of a dipole in
region A. This principle—that the longitudinal impedance
(here longitudinal dipole impedance) of a step-out transi-
tion in the optical regime is given by twice the difference in
the static field energy in the two regions—was first elabo-
rated for the round step-out transition (longitudinal case)
by Heifets and Kheifets [5]. The principle was then used
for obtaining higher order wakes (azimuthal mode number
m> 0) of (long) round collimators [7], and also for spe-
cific 3D structures [8].

We see that a main difference in the calculation of the
impedance of a step-out transition and of an iris is that, in
the former case the surface integrals are performed over a
region that includes the source charges of the potentials,
and in the latter case the region of the charges is excluded.
In the step-out transition case, however, it turns out that
even though the potentials diverge at the source charges,
for the impedance two terms with the same divergence are
subtracted, and the impedance is finite.

By regrouping integrals and using Green’s identity we
can write the impedance of a step-out transition in terms of
a simple line integral. The impedance function (for ex-
ample, in the dipole case) can be written, beginning with
Eq. (8), as

 

Zk;d �
1

2�c

�Z
SB�SA

�r�d;B�
2dS�

Z
SA
r�d;B 	 r��d;A ��d;B�dS

�

�
1

2�c

�Z
CB�CA

�d;Bn 	 r�d;Bdl�
Z
SB�SA

�d;Br
2�d;BdS�

Z
CA
�d;Bn 	 r��d;A ��d;B�dl

�
Z
SA
�d;Br

2��d;A ��d;B�dS
�

� �
1

2�c

Z
CA
�d;Bn 	 r�d;Adl: (35)

To go from the second to the third form of the impedance in
this equation, we use the fact that �d;B � 0 on CB, that
r2�d;B � 0 in the region SB � SA, and that r2��d;A �
�d;B� � 0 everywhere.

However, we can obtain formulas for the impedance
of a step-out transition that are even simpler. The
dipole part of the impedance, for example, can be written
as

 Zk;d �
1

2�c

�Z
CB
�d;Bn 	 r�d;Bdl�

Z
SB
�d;Br

2�d;BdS

�
Z
CA
�d;An 	 r�d;Bdl�

Z
SA
�d;Ar

2�d;BdS
�
:

(36)
The line integrals are zero again. Combining the remaining
terms and substituting for r2� from Eq. (7), we obtain

FIG. 12. (Color) Cross-section views of the step-out transition
geometries considered in this section (for case T1 a longitudinal
view is also given). Dimension labels are given, and the design
orbit location is indicated by the red dot. In cases T2–T3 the
outgoing beam pipe aperture is specified as large compared to
the incoming beam pipe aperture; in case T1 the outgoing beam
pipe is flat, with vertical aperture 2b. For case T1 two colors are
used for the boundaries as an aid in visualization.
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 Z?;d � lim
x;y!0

2

!
@
@y

�d;B�x; y� ��d;A�x; y��: (37)

Both dipole potential terms diverge in the limit x; y! 0;
however, the divergences are the same, and Z?;d is finite.

For the quad component of impedance of a step-out
transition we replace, in Eq. (9), Sap by SA, and use
Green’s first identity to obtain

 Zk;q �
1

2�c

�
�
Z
SB
�q;Br

2�m;BdS

�
Z
SA
�m;Ar

2�q;BdS
�
; (38)

where the line integral terms are again zero. Substituting
for the Laplacians from Eqs. (7) and (10), using the relation
limx;y!0
@2�m;A�x; y�=@y2 � 2�q;A�x; y�� � 0, and going
to Z?;q, we obtain

 Z?;q � lim
x;y!0

4

!

�q;B�x; y� ��q;A�x; y��: (39)

Similarly, the transverse monopole impedance is

 Z?;m � lim
x;y!0

2

!

�d;B�x; y� ��d;A�x; y��; (40)

the longitudinal impedance is given by

 Zk;long � lim
x;y!0

2

c

�m;B�x; y� ��m;A�x; y��: (41)

We see that, once the Green functions are known, obtaining
the impedances of step-out transitions (as well as long
collimators) is a relatively straightforward matter.
Whereas an equation of the form of Eq. (34) can be
interpreted to mean that the longitudinal impedance in
the optical regime is 2=c times the static field energy of a
charge distribution in region B minus that of one in region
A, these simpler equations can be interpreted to mean that
the longitudinal impedance is 2=c times the potential dif-
ference at the charge distribution in region B minus that at
the charge in region A.

As was the case with the irises/short collimators, for a
transition into a large beam pipe, one also does not need to
know details of the large beam pipe in order to calculate the
leading order behavior of a transverse impedance. In the
equations for impedance, one can take the potentials in
region B to be derived from the free-space Green function,
given in Eq. (19).

As we have seen, the impedance of step-out transitions
has a special linearity property; i.e., the impedance of such
transitions can be written as differences of potentials (or
the derivative of differences of potentials) in regions A and
B. Thus, if we know the transverse impedance from pipe A
to a large beam pipe and also from pipe B to a large beam
pipe, then the impedance from pipe A to pipe B, if it is a
step-out transition, is just given by the difference of these
two results. In the following sections we calculate, e.g., the

transverse impedance for a rectangular pipe to a large pipe
and also for an elliptical pipe to a large pipe. Because of
this linearity principle, it will then be trivial to obtain the
impedance of a step-out transition from one rectangular
pipe to another, from a rectangular pipe to an elliptical
pipe, etc. Note that this method applies also to the longi-
tudinal case, provided that the singularity in the two con-
stituent impedances is first subtracted away.

A. Flat transition (T1)

In the case of a flat, symmetric, step-out transition going
from aperture 2g to 2b, we substitute the potentials
Eq. (29) into Eqs. (37) and (39). We obtain

 Z? �
�2

2!

�
1

g2 �
1

b2

�
; (42)

with Z?;q �
1
2Z?;d. We see thus that the transverse imped-

ance of a flat step-out transition (or of a long, flat collima-
tor) is a factor �2=8 times the transverse impedance of a
long, round collimator, if we take the half-heights in the
former case to be equal to the radii in the latter [6]. In
Fig. 13 we plot the theoretical dependence and compare
with ECHO numerical results (the plotting symbols). We see
that the agreement is very good.

If we perform the longitudinal impedance calculation
for the flat step-out transition, we find that Zk;long �

4 ln�b=g�=c, which is the same as for the round case, if
we take the half-heights in the flat case to be equal to the
radii in the round one.

For a design orbit that is shifted by �y from the sym-
metry axis, we find, using Eq. (40),

 Z?;m �
�
!

�
1

g
tan
��y
2g
�

1

b
tan
��y
2b

�
: (43)

Note that for a beam close to the wall at e.g. y � g, Z?;m �
2=
!�g��y��, which is twice as large is we found for the

⊥,

⊥,

⊥

⊥/(π ω )

FIG. 13. (Color) For a step-out transition from a flat pipe of
aperture 2g into a flat pipe of aperture 2b, the transverse
impedances Z?, Z?;d, Z?;q as functions of 	 � g=b. Plotting
symbols give ECHO numerical results for comparison.
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close-to-the-wall impedance in the case of an iris [see
Eq. (24)].

B. Rectangular transition (T2)

Consider a rectangular pipe of width 2w and height 2g
that transitions into a large beam pipe, and a design orbit
that follows the symmetry line of the rectangular pipe. The
Green’s function for Poisson’s equation in a rectangular
pipe has been obtained by Gluckstern et al. [14]. Their
result is 1

 

G�x; y; y0� � �4
X1
n�1

e��n�w�=�2g� coshn�x2g

n coshn�w2g

sin
n�
2g
�y� g�

 sin
n�
2g
�y0 � g� � ln

�

x2 � �y� y0�

2�


sinh2 �x

4g � cos2 �
4g �y� y0�

sinh2 �x
4g � sin2 �

4g �y� y0�

�
� ln
x2 � �y� y0�

2�: (44)

The last term contains the singularity. The other terms are
everywhere finite, and the sum in the first term converges
well.

For our calculation we take region B to have the free-
space Green function, i.e., the same as the last term in
Eq. (44). Thus we have no singularities left in our imped-
ances, since they all involve the difference of potentials in
the two regions. Our final result is

 Z?;d �
�2

3!g2

�
1� 24

X1
m�1

m

1� e2�m	

�
;

Z?;q �
�2

6!g2

�
1� 24

X1
m�1

2m� 1

1� e��2m�1�	

�
;

(45)

with 	 � w=g. We perform the sums numerically. The
results, when normalized to �2=�2!g2�, are plotted as
functions of 
 � �w� g�=�w� g� in Fig. 14 (Z? �
Z?;d � Z?;q). Note that when 
 � 1 the results agree
with the leading order behavior for the flat transition, given
above. For 
 � �1 (a step-out transition from an infinitely
high vertical beam pipe) Z?;q � �Z?;d � ��2=�6!w2�

and Z? � 0. For the special case of a square beam pipe
Z? � Z?;d � �0:697��2=�2!g2�, which is 86% of the re-
sult for a round pipe with radius g, 4=�!g2�; and Z?;q � 0.
The plotting symbols in the figure give ECHO numerical
results, and we see good agreement. Finally, note that the
horizontal impedance is obtained from Eq. (45) by ex-
changing w and g.

C. Elliptical transition (T3)

Consider an elliptical pipe of horizontal axis w and
vertical axis g that transitions into a large beam pipe, and

a design orbit that follows the symmetry line of the ellip-
tical pipe. The Green’s function for Poisson’s equation in
an elliptical pipe has been obtained by Gluckstern et al.
[14]. For the case w � g it is given by2

 

G�x; y; y0� � �4
X1
n�1

e�nu0

n

�
ReTn�

x�iy
d �ReTn�

iy0

d �

coshnu0

�
ImTn�

x�iy
d � ImTn�

iy0

d �

sinhnu0

�
� ln
x2 � �y� y0�

2�; (46)

with Tn the Chebyshev polynomials of the first kind, d2 �
w2 � g2, and u0 � arccoth�w=g�. [Note that G, as given
here, is not zero but constant on the elliptical boundary, a
fact, however, that does not affect our results.] The calcu-
lation procedure is the same as for the rectangular step-out
transition. In the elliptical case we find that
 

�̂d�x; y� � 8
X1
m�1

��1�m Im
T2m�1�
x�iy
d ��

e2�2m�1�u0 � 1
;

�̂q�x; y� � �4
X1
m�1

��1�m Re
T2m�
x�iy
d ��

e4mu0 � 1
;

(47)

with �̂ signifying the part of the potential that does not
contain the singularity. Note that the horizontal (x) imped-
ance of a step-out transition is equal to the (vertical)
impedance of the transition after it has been rotated by
90�. Thus to obtain the impedances for an elliptical step-
out transition with w< g we calculate the x impedances
for the rotated case, following the analogous procedure to
what we use for finding the y impedances.

−

−

⊥/(π ω )

β

⊥

⊥,

⊥,

FIG. 14. (Color) For a rectangular step-out transition to a large
beam pipe, the leading order dependence of the transverse
impedances Z?, Z?;d, Z?;q, normalized to �2=�2!g2�, as func-
tions of 
 � �w� g�=�w� g�. The plotting symbols give ECHO

numerical results for comparison.

1Note that there is a typo in their Eq. (5.11).

2Note that there is a typo in their version of this equation, their
Eq. (4.36).
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We finally obtain

 Z?;d �
16

!g2�	2 � 1�

X1
m�1

2m� 1

�	�1
	�1�

2m�1 � 1
;

Z?;q �
32

!g2�	2 � 1�

X1
m�1

m

�	�1
	�1�

2m � 1
;

(48)

with 	 � w=g (valid for all 	). We have simplified the
results by using the relation e2u0 � �	� 1�=j	� 1j. The
sums are performed numerically. The results are plotted as
functions of 
 � �w� g�=�w� g� in Fig. 15. The plotting
symbols in the figure give ECHO numerical results, and we
see good agreement. We see that we obtain the expected
results for the round case (
 � 0), Z?;d � 4=�!g2� and
Z?;q � 0; for the flat case (
 � 1), Z?;d � 2Z?;q �
�2=�3!g2�. For the case of a horizontally infinitesimally
narrow elliptical pipe (
 � �1) we find that Z?;d �
�Z?;q � 1=�!w2�, and that the total impedance Z? �
2=�!g2�. Note that in this limit Z? has the same value as
we obtained for any small elliptical iris in a beam pipe [see
Eq. (27)]. Details of how all three limits are arrived at can
be found in the Appendix.

VI. MORE COMPLICATED TRANSITIONS

In this section we give two examples that are neither an
iris/short collimator in a beam pipe nor a step-in or step-out
transition. The examples are: (U1)—misaligned flat beam
pipes, and (U2)—LCLS-type rectangular-to-round transi-
tions. See Fig. 16. A cut-away perspective view of a pair of
the LCLS transitions is also given in Fig. 17.

A. Misaligned flat beam pipes (U1)

Consider first two flat beam pipes with thick walls and
aperture 2g that are perfectly aligned and joined at z � 0.

The design orbit lies in the horizontal symmetry plane.
Now imagine shifting the z > 0 pipe vertically by �y
(j�yj< g) and the z < 0 pipe by ��y, and keeping the
design orbit unchanged. Note that the resulting transition
no longer has a horizontal symmetry plane.

Let us sketch out the calculation of the transverse im-
pedance Z?;m for this structure (for �y > 0). The poten-
tials for this problem are given by

 

�m;A�x; y� � G�x; y��y;�y�;

�d;A�x; y� �
@G
@y0
�x; y� �y; y0�

��������y0��y
;

�m;B�x; y� � G�x; y��y;��y�;

�d;B�x; y� �
@G
@y0
�x; y� �y; y0�

��������y0���y
;

(49)
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FIG. 15. (Color) For an elliptical step-out transition to a large
beam pipe, the leading order dependence of the transverse
impedances Z?, Z?;d, Z?;q, normalized to �2=�2!g2�, as func-
tions of 
 � �w� g�=�w� g�. The plotting symbols give ECHO

numerical results for comparison.

∆ ∆

FIG. 16. (Color) Cross-section view (from upstream end; left
figures) and longitudinal view (right figures) of more compli-
cated transitions: U1, misaligned flat pipes; and U2, LCLS-type
rectangular-to-round transitions. Dimension labels are given; the
design orbit location is indicated by the red dot. Two colors are
used as an aid in visualization.

−

FIG. 17. (Color) A matching pair of LCLS rectangular-to-round
transitions in cut-away perspective view. The distance L between
transitions is much larger than the catch-up distance for the
nominal bunch length.
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with the flat pipe Green function G�x; y; y0� given by
Eq. (28), but with b replaced by g. Note that, for this
geometry, the aperture Sap is the intersection of SA and SB.

Beginning with Eq. (6), and using Green’s identity, we
obtain

 Zk;m �
1

2�c

�Z
CB
�d;Bn 	 r�m;Bdl�

Z
SB
�d;Br

2�m;BdS

�
Z
Cap

�d;Bn 	 r�m;Adl�
Z
Sap
�d;Br

2�m;AdS
�
:

(50)

The first integral above is zero, because �d;B is zero on
boundary CB, and the second and fourth integrals cancel.
We are left with the third integral, which implies a trans-
verse impedance [see Eqs. (5)]:
 

Z?;m � �
1

2�!

Z
Cap

�d;Bn 	 r�m;Adl

� �
1

2�!

Z 1
0

�
�d;B�x; g� �y�


@�m;A

@y
�x; g� �y�

�
dx: (51)

Note that the contribution of the integral at y � �g� �y

is zero because this is a boundary of region B. We obtain,
finally, the analytical result (valid for either sign of �y)
 

Z?;m �
1

!g

�
sgn��y� � �

�
1�
j�yj
g

�
cot
��y
g

� � csc
��y
g

�

j�yj< g�; (52)

with sgn�x� meaning the sign of x. We note that Z?;m is
positive for positive �y, and that it is odd in �y. Also, note
that as �y! g, Z?;m ! 3=
!�g� �y��. The result of
Eq. (52) (for �y > 0) is plotted in Fig. 18. Plotting symbols
give ECHO results; we see excellent agreement with our
results. The function,

 �Z?�approx �
3

!g

�
1

1� �y
g

�
1

1� �y
g

�
; (53)

gives a good approximation to the impedance (see the
dashes in the figure).

Obtaining the longitudinal impedance Zk;long for the
misaligned pipe, one follows a similar procedure. In this
case we find that the solution is given by

 

Zk;long � �
1

�c

Z 1
0
�m;B�x; g� �y�

@�m;A

@y
�x; g��y�dx

� �
2 cos	
�

Z 1
0

ln
�

coshx� sin	
coshx� sin3	

�
dx

coshx� sin	

�y > 0�; (54)

with 	 � 1
2��y=g. We solve the integral numerically. The result, for �y > 0, is plotted in Fig. 19. Note that Zk;long is even

with respect to �y. The plotting symbols give ECHO results, and we see reasonably good agreement with our results.
As a scale comparison the impedance of a round, step-out transition, from radius g to radius g� �y, �Zk;long�round �
4 ln�1� �y=g�=c, is also given in the plot (the dashes).

⊥, /( ω )

∆

⊥

⊥

FIG. 18. (Color) For the misaligned, flat pipe of aperture 2g, the
transverse impedance Z?;m as a function of misalignment pa-
rameter �y=g. Plotting symbols give ECHO results. The approxi-
mation, �Z?;m�approx, is also shown (dashes).

||, /( )

∆

||

||

FIG. 19. (Color) For the misaligned, flat pipe of aperture 2g, the
longitudinal impedance Zk;long as a function of misalignment
parameter �y=g. Plotting symbols give ECHO results. As a scale
comparison, the impedance of a round, step-out transition, from
radius g to radius g��y, �Zk�round � 4 ln�1��y=g�=c, is also
given (dashes).
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B. LCLS rectangular-to-round transition (U2)

In the LCLS undulator region there are 33 pairs of
rectangular-to-round transitions. The rectangular aperture
has horizontal width 2w � 10 mm by vertical height 2g �
5 mm; the round aperture has radius a � 4 mm. The axes
of the two pipes are aligned. The transitions are abrupt. The
bunch length in this region is 20 �m (rms). Thus our
optical regime formulas are applicable. Note that these
transitions are neither step-in nor step-out transitions. In
the LCLS undulator region the longitudinal impedance is
the more important one, and this is the one we calculate
here. A numerical ECHO calculation has found that the
longitudinal impedance of a pair of transitions (one
rectangular-to-round and one round-to-rectangular transi-
tion) equals 1:21=c [9].

Beginning with Eq. (11), and using Green’s first identity,
we obtain

 Zk;long � �
1

2�c

Z
Cap

�m;Bn 	 r�m;Ad‘: (55)

Here Sap is the intersection of SA and SB. The integration
path Cap follows the rectangular boundary at the top and
the bottom, and the circular boundary on the right and the
left (see Fig. 16). In the rectangular-to-round case [or we
can say the rectangular-to-circular (rtc) case] with imped-
ance Zk;rtc region A is the rectangular pipe, region B is the
circular pipe. In the circular-to-rectangular (ctr) case with
impedance Zk;ctr the regions are reversed.

The circular monopole potential is given by �m;c �
� ln
�x2 � y2�=a2�; and the rectangular monopole poten-
tial, by �m;r � G�x; y; 0�, with G given by Eq. (44). Then
we have as rectangular-to-circular impedance

 Zk;rtc � �
2

�c

Z ����������
a2�g2
p

0
�m;c�x; g�

@�m;r

@y
�x; g�dx: (56)

The contribution from the circular part of the boundary is
zero, since�m;c is zero on this boundary. In the circular-to-
rectangular case
 

Zk;ctr � �
2a
�c

Z arctan�g=
����������
a2�g2
p

�

0
�m;r�a cos�; a sin��


@�m;c

@r
�a cos�; a sin��d�; (57)

where @�m;c=@r�x; y� � �2=
����������������
x2 � y2

p
. The contribution

from the rectangular part of the boundary is zero, since
�m;r is zero on this boundary. These integrals can easily be
solved numerically, and the sums coming from �m;r con-
verge well.

To do a small parameter study, let us keep the shape of
the rectangular pipe fixed, with w � 2g, and let us vary a
from g to w. In Fig. 20 we plot the results, giving the
impedance of a rectangular-to-circular transition, Zk;rtc, of
a circular-to-rectangular transition, Zk;ctr, and the sum of

one of each type, �Zk�total, as functions of a=g. We see that
each of the single transition curves goes to zero exactly
where that transition becomes a step-in transition. For the
actual design of the LCLS transition (a=g � 1:6), the rtc
transition has 7.5 times the impedance of the ctr transition.
In Fig. 20 the black dot gives �Zk�total as obtained by ECHO,
and we see good agreement: our calculation gives 1:24=c
and the ECHO result is 1:21=c.

VII. CONCLUSIONS

We have used a method, that we derived in a companion
report [3], to find impedances in the optical regime, and
applied it to various 3D beam pipe transitions that one
encounters in vacuum chambers of accelerators. The
method is applicable to high frequencies and transitions
that are short compared to the catch-up distance. Our
examples are of four types: an iris/short collimator in a
beam pipe, a step-in transition, a step-out transition, and
more complicated transitions. (Note that a long collimator
with ends that are short transitions has an impedance that is
the sum of the impedances of a step-in and a step-out
transition, and is thus also included.) Most of our results
are analytical, with a few given in terms of a simple one-
dimensional integral. We believe that all of our results are
new. We have also compared (most of) our results with
numerical simulations with the computer program ECHO, a
finite-difference program that solves Maxwell’s equations
of an ultrarelativistic bunch within metallic boundaries of
3D geometry, and the agreement is excellent. Note that our
method is a much simpler way of obtaining impedances
than the simulations.

We have focused on transverse impedances. For bi-
symmetric (horizontal and vertical mirror symmetric) ex-
amples, a bunch moving at a small offset from the sym-
metry axis will excite a transverse impedance composed of

||, /( )

||

||

||

FIG. 20. (Color) Longitudinal impedance for transitions of the
LCLS rectangular-to-circular type, giving Zk;rtc, Zk;ctr, and their
sum �Zk�total as functions of circular radius a. The rectangle
width 2w � 4g. The ECHO result for �Zk�total, from Ref. [9], is
given by the black dot.
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both a dipole and a quadrupole component. For such
problems we give both components. The iris/short-colli-
mator-in-a-beam-pipe examples we solve include irises
with small aperture that are (I1) flat, (I2) rectangular, (I3)
elliptical; also included is (I4) a flat iris (not necessarily
small) in a flat beam pipe. An interesting result is that the
vertical impedance of an elliptical iris is independent of the
horizontal axis of the ellipse.

For a step-in transition of any shape we find that all
impedances (transverse and longitudinal) are zero. For a
step-out transition (which in the optical regime has the
same impedance as a long collimator) we give the solution
for (T1) a flat step-out transition to a flat beam pipe, (T2) a
rectangular step-out transition, and (T3) an elliptical step-
out transition. We find, for example, that the transverse
impedance of a flat, long collimator in a flat beam pipe is
�2=8 times the impedance of the inscribed round, long
collimator in a round beam pipe. The more complicated
transitions examples we solve are (U1) misaligned flat
pipes and (U2) the LCLS rectangular-to-round transitions.

The method of Ref. [3] is powerful; it allows one to
calculate the impedance in the optical regime of a truly
large class of transitions. We have demonstrated this with a
small number of relatively simple examples, compared to
what is possible.
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APPENDIX: LIMITING VALUES OF THE
IMPEDANCE OF ELLIPTICAL TRANSITIONS

The solution for the elliptical step-out transition with
axes w by g (horizontal by vertical), Eqs. (48), can be
written as

 Z?;d �
4�1� 
�2

!g2


X1
m�1

2m� 1


��2m�1� � 1
;

Z?;q �
8�1� 
�2

!g2


X1
m�1

m


�2m � 1
;

(A1)

where 
 � �w� g�=�w� g�. We derive here the limits for

 � 0 (a step-out transition from a round beam pipe), 
 �
1 (from an elliptical pipe with infinitesimal height), and

 � �1 (from an elliptical pipe with infinitesimal width).

1. The limit for � � 0

In this limit, only them � 1 term contributes to Z?;d and
no term contributes to Z?;q. We obtain the round step-out
transition results

 Z?;d �
4

!g2 ; Z?;q � 0: (A2)

2. The limit for � � 1

Let us consider the dipole impedance first. For 
 � 1�
�, with � a small positive number, the sum peaks when
2m� � lnm, i.e., for a large value of m. Thus the sums can
be replaced by integrals,

P
m !

R
dm. Changing variables

to x � 
��2m�1�, dx � �2�ln
�xdm, we obtain

 Z?;d � lim

!1

2

!g2

�1� 
�2


�ln
�2
Z 1

1

lnx
�x� 1�

dx
x
: (A3)

The integral equals �2=6, and

 lim

!1

�1� 
�2


�ln
�2
� 1: (A4)

The calculation for Z?;q is similar. Our final result is the
same as for the flat pipe step-out transition

 Z?;d �
�2

3!g2 ; Z?;q �
�2

6!g2 ; Z? �
�2

2!g2 :

(A5)

3. The limit for � � �1

Let � � �
. Then our equations become

 Z?;d �
4�1� ��2

!g2�

X1
m�1

2m� 1

���2m�1� � 1
;

Z?;q � �
8�1� ��2

!g2�

X1
m�1

m

��2m � 1
:

(A6)

To find the leading order behavior of Z? we need to go to
second order in the calculation. To do this we will use the
Euler-Maclaurin formula relating sums to integrals [15]:

 

X1
m�1

f�m� �
f�1�

2
�
Z 1

1
f�x�dx�

1

12
f0�1�; (A7)

where 0 denotes taking the derivative of a function. The
formula is valid if the sum converges. The approximation is
good if

R
1
1 jf

000�x�jdx is small.
Let us consider first the dipole part. We want the solution

for � � 1� �, with � a small, positive parameter that we,
in the end, let go to zero. For the dipole part

 f�m� �
16

!g2

2m� 1

���2m�1� � 1
: (A8)

There are three terms on the right side of Eq. (A7) that we
need to calculate. The first term f�1�=2 � 4=�!g2�. The
integral term, done like before, is

 

Z 1
1
f�x�dx � lim

�!1

8

!g2

1

�ln��2
Z 1

1=�

lnx
�x� 1�

dx
x
: (A9)
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Note that for this order of calculation, in the integral on the
right, the lower limit of integration is 1=� instead of 1. This
integral
 Z 1

1=�

lnx
�x� 1�

dx
x
�
�2

6
� ln

�
1� �
�

�
ln��

1

2
�ln��2

� Li2��1=��; (A10)

with Li2�x� the polylogarithmic function of order 2. We
combine this result with the terms in front of the integral in
Eq. (A9), expand around � � 1, and substitute � � �g�
w�=�g� w�; we find that the second, integral contribution
to Eq. (A7) equals

 

1

!

�
�2

6w2 �

�
�2

18
� 2

�
1

g2

�
:

The third term in Eq. (A7),�f0�1�=12 � �4=�3g2�. We
sum all three contributions to obtain Z?;d. Exactly the
same technique is used for Z?;q [note, however, that the
equation corresponding to Eq. (A9) will have an integral
with lower limit 1=�2, not 1=�]. We finally obtain

 Z?;d �
1

!

�
�2

6w2 �

�
2

3
�
�2

18

�
1

g2

�

Z?;q �
1

!

�
�
�2

6w2 �

�
4

3
�
�2

18

�
1

g2

�
:

(A11)

The leading order behavior of these impedances, in this
limit, is Z?;d � �Z?;q � �2=�6!w2�. Summing the two
impedances together, we find that the total impedance
equals Z? � 2=�!g2�. This value of total impedance is
the same as we found for any small elliptical iris in a beam
pipe. This result appears to agree with the numerical
calculation of the original sums, which is plotted in Fig. 15.
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