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Recent measurements of resonance terms suggested the extension of the existing technique to measure
magnet strengths from turn-by-turn beam position monitor data. This article describes the algorithm to
infer the magnet strength from the variation along the ring of the resonance terms and reports on the first
measurement. Both the algorithm and the software written for the analysis of the data can be particularly
useful in the commissioning period of an accelerator in order to find magnets with wrong strengths or
polarities as well as magnets with large magnetic errors.
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I. INTRODUCTION

Global and local resonance terms were measured in the
Super Proton Synchrotron (SPS) and the Relativistic
Heavy Ion Collider (RHIC) [1,2] from the Fourier spec-
trum of turn-by-turn data. The possibility of extending this
technique to measure magnet strengths was proposed in
[2,3] but could not be applied in the respective accelerators
due to technical reasons.

The SPS, equipped with strong sextupoles, is an ideal
test-bench to prove the feasibility of magnet strengths
measurement. We have used existing beam position moni-
tor (BPM) data acquired in [4]. During this experiment the
beam motion was excited by a single kick in the presence
of seven strong sextupoles. The existing data have been
now reanalyzed using an independent software application
[5]. The newly computed resonance driving terms are in
agreement with those obtained in [4]. For the first time, the
measurement of the strengths of these seven sextupoles
using resonance terms is presented here.

This technique can be particularly useful in the commis-
sioning period of an accelerator in order to find magnets
with wrong strengths or polarities as well as magnets with
large magnetic errors.

In Sec. II the normal form formalism [6,7] is briefly
introduced. The scope of this section is threefold. First, it
provides the basic ingredients (although already derived in
[8]) necessary for the comprehension of the new formulas.
Second, it shows how to compute the Hamiltonian coef-
ficients hjklm directly from the magnet strengths, rather
than from the harmonic analysis of particle tracking data.
Third, as the sign in some exponential terms depends on
the choice of the complex Courant-Snyder coordinates
(q� ipq), we aim to collect all the fundamental relations
making use of a consistent nomenclature. In Sec. III the
new formula that allows the computation of magnet
strengths from BPM data is presented. The experimental
results are presented in Sec. IV, together with a brief
description of the new software application developed for
the analysis of the BPM data.

II. THEORETICAL BACKGROUND

A. Hamiltonian coefficients and magnet strength

The Hamiltonian describing the particle motion at a
generic location of the accelerator b is given by the follow-
ing expression:
 

H�b� �
X
jklm

h�b�jklm�2Jx�
�j�k�=2�2Jy��l�m�=2

� ei��j�k���x��x;0���l�m���y��y;0�	; (1)

where Jq and�q are the action phase variables,�q;0 are the

initial phases, and h�b�jklm are the Hamiltonian terms of order
j� k� l�m � n. These Hamiltonian terms are given by
a summation over the magnetic elements of the accelerator
in the following form:

 h�b�jklm �
X
w

hw;jklme
i��j�k���b

w;x��l�m���b
w;y	; (2)

where ��b
w;q are the phase advances of the magnet number

wwith respect to the location b. The coefficients hw;jklm are
real and proportional to the multipole strengths via (see
Appendix A for the derivation)
 

hw;jklm � �
�Kw;n�1��l�m� � iJw;n�1��l�m� 1�	

j! k! l! m! 2j�k�l�m

� il�m��w;x��j�k�=2��w;y��l�m�=2;

��p� � 1 if p is even; ��p� � 0 if p is odd: (3)

��i� is introduced to select either the normal or the skew
multipoles. According to the above relation, the dimen-
sions of hw;jklm are m1���j�k�l�m�=2	. From the measure-
ment of hw;jklm the magnetic strengths can be directly
inferred using the betatron functions.

B. Normal form, resonance driving terms, and BPM
spectrum

The Hamiltonian H defined in Eq. (1) depends on
both the actions Jq and the phases �q. Nonresonant
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normal form coordinates can be introduced to obtain a
Hamiltonian that depends only on the action variables
H�Ix; Iy�. This transformation is performed by introducing
a function F, defined as
 

F�b� �
X
jklm

f�b�jklm�2Ix�
�j�k�=2�2Iy�

�l�m�=2

� ei��j�k�� x� x;0���l�m�� y� y;0�	; (4)

where Iq,  q, and  q;0 are the new actions, phases, and
arbitrary initial conditions, respectively. It can be shown
[9] that the terms f�b�jklm at a certain location b, in the first-
order approximation, are related to the Hamiltonian coef-
ficients hw;jklm via

 f�b�jklm �

P
w hw;jklme

i��j�k���b
w;x��l�m���b

w;y	

1� e2�i��j�k�Qx��l�m�Qy	
; (5)

where Qx and Qy are the betatron tunes. f�b�jklm (at any
location) diverge when a resonance occurs, i.e. when

 �j� k�Qx � �l�m�Qy � p p 2 N: (6)

For this reason fjklm are called resonance driving terms
(RDT). The first-order approximation implicit in Eq. (5) is
enough as long as we want to measure the magnet strengths
of quadrupoles and sextupoles. In [8] the complex Courant-
Snyder variable, defined as hx;� � x̂� ip̂x, at turn N and
location b is related to the resonance driving terms as
 

hx;��b; N� �
�������
2Ix

p
ei�2��xN� b;x;0�

� 2i
X
jklm

jf�b�jklm�2Ix�
�j�k�1�=2�2Iy��l�m�=2

� ei��1�j�k��2��xN� b;x;0���m�l��2��yN� b;y;0�	;

(7)

and, equivalently for the vertical plane,
 

hy;��b; N� �
�������
2Iy

q
ei�2��yN� b;y;0�

� 2i
X
jklm

lf�b�jklm�2Ix�
�j�k�=2�2Iy��l�m�1�=2

� ei��k�j��2��xN� b;x;0���1�l�m��2��yN� b;y;0�	:

(8)

Note that neither hx;� nor hy;� are canonical coordinates.
This however does not influence the derivation of our final
results, since all the observables are eventually related to
the canonical coordinates x̂; p̂x (ŷ; p̂y). For a detailed
analysis of the effect of the nonsymplectic transformation,
see [6]. The nonlinear tunes �x;y appear in the above
expression instead of Qx;y since this approach takes into
account possible amplitude dependent detuning. The first
term in the right-hand side of Eqs. (7) and (8) are called
fundamental or tune lines. The secondary lines contained

in the summation are generated by all the magnetic pertur-
bations and are proportional to the RDTs. The amplitude
and phase of the secondary lines in the horizontal spectrum
are given by

 H�1� j� k; l�m� � 2jjf�b�jklmj�2Ix�
�j�k�1�=2�2Iy��l�m�=2;

(9)

 

��1�j�k;l�m� � �f�b�

jklm � �1� j� k� b;x;0 � �m� l� b;y;0

�
�
2
; (10)

where �f�b�

jklm denotes the phase of the RDT fjklm, while
H�p; q� and ��p;q� stand for the amplitude and phase of the
spectral line with frequency p�x � q�y in the horizontal
spectrum. Equivalently for the vertical plane,

 V�k� j; 1�m� l� � 2ljf�b�jklmj�2Ix�
�j�k�=2�2Iy��l�m�1�=2;

(11)

 

��k�j;1�m�l� � �f�b�

jklm � �k� j� b;x;0 � �1� l�m� b;y;0

�
�
2
: (12)

The horizontal and vertical tune lines are represented by
H�1; 0� and V�0; 1�, respectively. Their amplitudes and
phases are

 H�1; 0� �
�������
2Ix

p
; �H�1;0� �  b;x;0; (13)

 V�0; 1� �
�������
2Iy

q
; �V�0;1� �  b;y;0: (14)

Note that from Eqs. (6)–(8), the spectral lines H�1� j�
k; l�m� and V�k� j; 1�m� l� appear only if j � 0 and
l � 0, respectively. In Appendix B the correspondences
between excited spectral lines and RDTs are listed. Note
that the analogous classification concerning the vertical
plane has been rectified in the updated version of Ref. [8].

III. MAGNET STRENGTHS FROM RDT
VARIATION ALONG THE RING

The difference of the resonance driving terms at two
observation locations (BPMs) of the ring, w and w� 1,
depends only on the multipoles placed between these two
locations, exactly,

 ĥ w;jklm � f�w�jklme
�i��j�k���w;w�1

x ��l�m���w;w�1
y 	 � f�w�1�

jklm ;

(15)

where ��w;w�1
q are the phase advances between the two

locations and f�w�jklm is the RDT measured at the BPM
number w. An illustrative proof of this relation is given
in Appendix C. The left-hand side (lhs) of the above
equation is therefore an observable given by
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 ĥ w;jklm �
X
�

h�;jklme
i��j�k���w�1

�;x ��l�m���w�1
�;y 	: (16)

The sum runs over all the multipoles between the BPMs
number �w� 1� and w, while ��w�1

�;q are the phase ad-
vances between those multipoles and the BPM number
�w� 1� (see Fig. 6). h�;jklm are the Hamiltonian coeffi-
cients defined in Eq. (3). Equation (15) reveals the most
important feature of this approach: the amplitudes of the
RDT at two BPMs change only if there are multipoles in
between. Vice versa from the difference between the two
RDTs a total strength of the multipoles in between ĥw;jklm
is inferred.

In general, it is not possible to derive directly the
strengths K and J from ĥw;jklm. Nevertheless, in the case
that there is only one multipole in between two consecutive
BPMs, Eq. (15) simplifies to
 

hw;jklme�i��j�k���
w
x��l�m���w

y 	

� f�w�jklme
�i��j�k���w;w�1

x ��l�m���w;w�1
y 	 � f�w�1�: (17)

If the betatron phase and the beta functions at the multipole
are known, using Eqs. (3) and (17), the strengths Kw;n�1

and Jw;n�1 can be inferred.

IV. MAGNET STRENGTH MEASUREMENT FROM
SPS DATA

During 2002 a measurement campaign aimed to mea-
sure the RDTs was carried out in the SPS at CERN [1,4].
Seven strong sextupoles were connected to introduce large
nonlinearities. Their locations and the model parameters
are listed in Table I.

Other 108 sextupoles used for the chromaticity correc-
tion where also powered. These sextupoles are grouped in
four families, whose parameters are listed in Table II.

The new software application bpm2rdt has been devel-
oped for the analysis of BPM data and is available with
documentation [5]. Despite the complex formalism, the
input consists only of the number of turns to analyze, the
tunes Qx;y, and of two external files with the BPM turn-by-
turn data and the lattice model (magnet strengths and Twiss
parameters), respectively. While the first file is used for the
analysis of the experimental data, the second is used to

compute all the observables predicted by the model. Note
that in general the Twiss parameters at the locations of the
multipoles cannot be extracted directly from the BPM data.
The code first constructs the observables hq;��N� at each
BPM. Then it performs the fast-Fourier-transform (FFT) of
these variables, finds automatically the peaks of the Fourier
spectra, and calculates the corresponding RDTs fjklm, the
strengths ĥjklm, and the local terms �jklm introduced in [2].
All these observables are printed out together with the
prediction from the model for a direct comparison.

Note that the relations listed in Table IV are derived
assuming turn-by-turn oscillations without decoherence
and properly calibrated BPMs. To take into account the
decoherence of the SPS data, the measured f3000 has been
multiplied by the decoherence factor 2. In Ref. [1] it is
indeed proved how the decoherence of the BPM signal
reduces the amplitude of each secondary spectral line by a
factor that depends on both the excited resonance and the
amplitude detuning �0. The decoherence factor of a generic
horizontal spectral line �1� j� k;m� l� is defined as
j1� j� k� �m� l��0yx=�0xxj and represents the reduction
factor when compared to the single-particle case (our
model).

In Fig. 1 the measured f3000 is plotted around the ring
together with the prediction from the model. Model and
measurement are in good agreement as in [4]. However, the

TABLE I. Parameters of the seven strong sextupoles.

Name Location [m] K2 [m�1] �x [m] h3000 [m�1=2]

LSE.1060 766.2 0.446 29 96.335 8.7913
LSE.1240 1342.2 0.446 29 92.238 8.2365
LSE.2060 1918.2 0.446 29 100.542 9.3734
LSE.2240 3646.1 �0:446 29 100.210 �9:3271
LSE.4060 4222.0 �0:446 29 90.488 �8:0032
LSEN.424 4798.0 �0:446 29 97.020 �8:8852
LSE.5240 5373.9 �0:446 29 94.413 �8:5300

TABLE II. Parameters of the 108 chromaticity sextupoles.

Family name Number K2 [m�1] �x [m]

LSFA/C 36 �0:022 45 
100
LSFB 18 �0:044 96 
100
LSDA 18 0.084 17 
22
LSDB 36 0.066 41 
22
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(R. Tomas, M. Hayes, F. Schmidt)

FIG. 1. (Color) RDT f3000 along the ring. The vertical lines
indicate the location of the seven extraction sextupoles. Error
bars correspond to 1�. Only the values from BPMs providing
error bars smaller than 20% are shown.
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measured f3000 shows small jumps at locations where
they were not expected. This is due to an intrinsic error
in constructing the complex variable hq;� � q� ipq.
Indeed to compute the momentum pq at a given BPM,
the position (in normalized coordinates) measured at the
next BPM is used [10]:

 p̂ i;q � �q̂i�1 � q̂i cos��q�= sin��q; (18)

where ��q is the phase advance between the two BPMs.
This formula however applies only in the absence of non-
linearities or coupling sources between the two monitors. If
this condition is not satisfied because the computation of
pq contains an intrinsic error, whose estimation is given in
[2], that may reveal in artificial jumps.

To avoid this problem, a new observable was defined in
[2] using data from three consecutive BPM. This new
signal does not require any momentum reconstruction
and the local terms �jklm that are computed from its
spectrum have the same physical meaning as the
Hamiltonian terms ĥjklm, although the measurement of
�jklm is more accurate. In Fig. 2 �3000 measured from the
SPS data is plotted and, as expected, no term is visible in
the region with the unexpected jump of f3000. Despite the
fact that �jklm is an observable more robust than ĥjklm, it
exists an additional difference that needs to be stressed for
a correct interpretation of the measurement, �jklm being
defined as

 �jklm �
X
q

ei��1�j�k��xq��m�l��yq	SEN��xq�hq;jklm: (19)

The above summation extends over the multipoles in be-
tween the three BPMs, hq;jklm are the Hamiltonian coef-
ficients defined in Eq. (3) of the multipole number q, whose
phase advances with respect to the first BPM are �xq and
�yq. SEN��xq� is defined as

 

8><
>:

sin�xq

�������������������������
1� tan2�x;1

q
; if �xq < ��x;1

sin��xq � �x;1 � �x;2�
�������������������������
1� tan2�x;2

q
; if �xq > ��x;1;

where �x;1 � ��x;1 � �=2, and �x;2 � ��x;2 � �=2.
��x;1 and ��x;2 are the phase advances between the first
and the second BPM and between the second and the third,
respectively. If the BPMs are 90 degrees apart (and this is
the case for the SPS BPMs), �jklm and ĥjklm are equivalent,
while the first one diverges if the distance is close to 180
degrees. Hence, when measuring large �jklm, one has to
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FIG. 2. (Color) Measured and expected absolute value of �3000.
Error bars correspond to 3�. Only the values providing error bars
smaller than 20% are shown.
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FIG. 3. (Color) Measured and expected absolute value and phase of ĥ3000 corresponding to the seven excited extraction sextupoles.
Error bars correspond to 3�.
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look at the BPM phase advances before extrapolating any
information on the local sources of nonlinearities.

Because of the BPM distribution, the sextupoles
LSE.1240, LSE.2240, and LSEN.424 (see Table I) fulfill
the condition of being the only source of nonlinearities
between the two adjacent BPMs. The other four extraction
sextupoles have at least another chromaticity sextupole in
between the two adjacent BPMs. However, the extraction
sextupoles are much stronger than the chromaticity sextu-
poles and as first approximation the chromaticity sextu-
poles might be neglected.

In Fig. 3 the measured ĥ3000 are plotted together with the
predictions from the model. The agreement for jĥ3000j
varies from 3% (LSEN.424) to 28% (LSE.4060). Error in
the phases is of about 10%, confirming the correct setting
of the polarities. Because of the lattice configuration of the
SPS, the phases of ĥ3000 provide a direct measurement of
their polarities as shown in the figure.

V. CONCLUSION

A beam based method to measure the magnet strengths
and polarities has been presented. The method is based on
the harmonic analysis of multi-BPM turn-by-turn data of a
transversally kicked beam. Both the new algorithm and the
software application bpm2rdt have been successfully
tested by using existing SPS data.
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APPENDIX A: FROM MAGNET STRENGTH TO
HAMILTONIAN COEFFICIENTS

In this Appendix we derive Eq. (3), starting from the
Hamiltonian describing a multipole of order n:

 H�n� � �Re
�
�Kn�1 � iJn�1�

n!
�x� iy�n

�
: (A1)

According to the binomial theorem, the Hamiltonian can
be expanded in series as

 H�n� � �Re
�Xn
p�0

�Kn�1 � iJn�1�

�n� p�!p!
xp�iy�n�p

�
: (A2)

Defining p � j� k and n� p � l�m (note that n �
j� k� l�m), the above equation reads

 H�n� � �Re

8><
>:

Xn
j�k�0

l�m�n�j�k

�Kn�1 � iJn�1�

�l�m�!�j� k�!
xj�k�iy�l�m

9>=
>;:
(A3)

Introducing the complex Courant-Snyder coordinates q ������
�q
p

2 �hq;� � hq;��, where hq;� �
��������
2Jq

p
e�i��q��q;0�, and q

stands for x or y, we obtain

 

H�n� � �Re

8><
>:
Xn
j�k
l�m

�Kn�1 � iJn�1�

�l�m�!�j� k�!
��j�k�=2
x ��l�m�=2

y

�
il�m

2j�k�l�m
�hx;� � hx;��

j�k�hy;� � hy;��
l�m

9>=
>;:

(A4)

The binomial theorem can be invoked again to expand
�hq;� � hq;��

 

H�n� � �Re

8><
>:
Xn
j�k
l�m

�Kn�1 � iJn�1�

�l�m�!�j� k�!
��j�k�=2
x ��l�m�=2

y

�
il�m

2j�k�l�m
Xj�k
s�0

Xl�m
t�0

�j� k�!�l�m�!
�j� k� s�!�l�m� t�!s!t!

� hsx;�h
j�k�s
x;� hty;�h

l�m�t
y;�

9>=
>;: (A5)

Renaming the indexes s! j and t! l and simplifying the
factorials, the Hamiltonian reads

 

H�n� � �Re

8<
:

Xn�j�k�l�m

j;k;l;m�0

�Kn�1 � iJn�1�

j!k!l!m!2j�k�l�m

� ��j�k�=2
x ��l�m�=2

y il�mhjx;�hkx;�h
l
y;�h

m
y;�

9=
;: (A6)

It can be easily shown that the real part of the sum selects
the normal termsKn�1 if the power of y (i.e. l�m) is even,
whereas the skew terms Jn�1 are selected when l�m is
odd (See Table III). This selection can be expressed in-
troducing a function � such that

 ��p� � 1 if p is even; ��p� � 0 if p is odd; (A7)

which can be included in the Hamiltonian according to
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H�n� �
Xn�j�k�l�m

j;k;l;m�0

�
�Kn�1��l�m� � iJn�1��l�m� 1�	

j!k!l!m!2j�k�l�m

� ��j�k�=2
x ��l�m�=2

y il�mhjx;�hkx;�h
l
y;�hmy;�: (A8)

From the above relation, one derives Eq. (3).

APPENDIX B: RESONANCE CLASSIFICATION
AND NOMENCLATURE

The starting points for a complete classification (up to
the first order) of RDT, spectral lines, and resonances are
the following relations:

 �j� k�Qx � �l�m�Qy � p 2 N excited resonance;

(B1)

 H�1� j� k;m� l� horiz: line; if j � 0; (B2)

 V�k� j; 1� l�m� vert: line; if l � 0: (B3)

The generic potential term xsyq selects the index j�
k � s and m� l � q, as shown in Eq. (A2). The relations
between the RDTs and the excited spectral lines are given
in Table IV, where the line amplitudes jajklmj and the
phases �a

jklm are derived from Eqs. (9)–(12). In Fig. 4
some typical BPM spectra obtained by single-particle
tracking are also shown.

Table V shows how to compute the RDT from the
spectral lines, i.e., how to remove the dependences from
Ix;y and �x;y;0, assuming that the BPMs are properly
calibrated.

APPENDIX C: CALCULATION OF THE MAGNET
STRENGTH FROM THE RDTS

In this Appendix we provide an illustrative proof of
Eq. (15). First we consider the case with only one magnet
between two consecutive BPMs (see Fig. 5).

It is convenient to define some quantities as follows:

 B b � i��j� k��BPM
b;x � �l�m��

BPM
b;y 	; (C1)

 W w � i��j� k��M
w;x � �l�m��M

w;y	; (C2)

 Q � 2�i��j� k�Qx � �l�m�Qy	; (C3)

 h�b�jklm �
X
w�b

hw;jklmeBb�Ww �
X
w>b

hw;jklmeBb�Ww�Q: (C4)

�M
w and �BPM

b;q are the betatron phases of the magnet
number w and the BPM number b, respectively, both
calculated with respect to a starting point. Each time b <
w a factor Q must be added to take into account the
crossing of this point. With the above nomenclature,
Eq. (5) reads

 f�b�jklm �
h�b�jklm

1� eQ
: (C5)

hw;jklm are calculated inverting the linear system (C5). For
the sake of clarity, we show a case with W � 3 (the
generalization to any number is straightforward) and
omit the subscript jklm,

 h�1� � eB1�W1h1 � eB1�W2�Qh2 � eB1�W3�Qh3;

h�2� � eB2�W1h1 � eB2�W2h2 � eB2�W3�Qh3;

h�3� � eB3�W1h1 � eB3�W2h2 � eB3�W3h3:

In the matrix notation the system reads ~H � A ~h,

 

h�1�

h�2�

h�3�

0
B@

1
CA �

eB1�W1 eB1�W2�Q eB1�W3�Q

eB2�W1 eB2�W2 eB2�W3�Q

eB3�W1 eB3�W2 eB3�W3

0
B@

1
CA

h1

h2

h3

0
@

1
A:
(C6)

A can be factorized as A � A1A2,

 A �
eB1 0 0
0 eB2 0
0 0 eB3

0
B@

1
CA

e�W1 e�W2�Q e�W3�Q

e�W1 e�W2 e�W3�Q

e�W1 e�W2 e�W3

0
B@

1
CA:

A2 is inverted according to A2 � �A3A4�
�1,

 A 2 � �
eW1 0 �eW1�Q

�eW2 eW2 0
0 �eW3 eW3

0
B@

1
CA

1
1�eQ

0 0

0 1
1�eQ

0

0 0 1
1�eQ

0
B@

1
CA

2
664

3
775
�1

:

TABLE III. Selection of index relative to the main corrector
magnets.

Multipole kind n
Potential

term Index relations

Normal quadrupole x 2 x2 j� k � 2 m� l � 0
Normal quadrupole y 2 y2 j� k � 0 m� l � 2
Skew quadrupole 2 xy j� k � 1 m� l � 1
Normal sextupole 1 3 x3 j� k � 3 m� l � 0
Normal sextupole 2 3 xy2 j� k � 1 m� l � 2
Skew sextupole 1 3 y3 j� k � 0 m� l � 3
Skew sextupole 2 3 x2y j� k � 2 m� l � 1
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The linear system eventually reads

 

~H � A1�A3A4�
�1 ~h! ~h � A3A4A�1

1
~H;

providing the solution

 

h1

h2

h3

0
@

1
A � 1

1� eQ

eW1�h�1�e�B1 � h�3�eQ�B3�

eW2�h�2�e�B2 � h�1�e�B1�

eW3�h�3�e�B3 � h�2�e�B2�

0
B@

1
CA:

From Eq. (C5) we obtain

TABLE IV. List of spectral lines driven by resonances and corresponding RDTs.

Quadrupole term / x2; y2

n jklm Resonance H-line V-line jajklmj �a
jklm

2 1100 �2; 0� �1; 0� �2Ix�
1=2  x;0

2 2000 �2; 0� ��1; 0� 4jf2000j�2Ix�
1=2 �f

2000 �  x;0
2 0011 �0; 2� �0; 1� �2Iy�1=2  y;0
2 0020 �0; 2� �0;�1� 4jf0020j�2Iy�1=2 �f

0020 �  y;0

Skew quadrupole term / xy
n jklm Resonance H-line V-line jajklmj �a

jklm

2 0110 �1;�1� �1; 0� 2jf0110j�2Ix�1=2 �f
0110 �  x;0 �

�
2

2 1001 �1;�1� �0; 1� 2jf1001j�2Iy�1=2 �f
1001 �  y;0 �

�
2

2 1010 �1; 1� �0;�1� ��1; 0� H: 2jf1010j�2Iy�
1=2 H: �f

1010 �  y;0 �
�
2

V: 2jf1010j�2Ix�
1=2 V: �f

1010 �  x;0 �
�
2

Normal sextupole term / x3

n jklm Resonance H-line V-line jajklmj �a
jklm

3 1200 (1,0) �2; 0� 2jf1200j�2Ix� �f
1200 � 2 x;0 �

�
2

3 2100 (1,0) �0; 0� 4jf2100j�2Ix� �f
2100 �

�
2

3 3000 (3,0) ��2; 0� 6jf3000j�2Ix� �f
3000 � 2 x;0 �

�
2

Normal sextupole term / xy2

n jklm Resonance H-line V-line jajklmj �a
jklm

3 0111 (1,0) �1; 1� 2jf0111j�2Ix2Iy�
1=2 �f

0111 �  x;0 �  y;0 �
�
2

3 0120 �1;�2� �1;�1� 4jf0120j�2Ix2Iy�
1=2 �f

0120 �  x;0 �  y;0 �
�
2

3 1002 �1;�2� �0; 2� 2jf1002j�2Iy� �f
1002 � 2 y;0 �

�
2

3 1011 (1,0) �0; 0� ��1; 1�
H: 2jf1011j�2Iy� H: �f

1011 �
�
2

V: 2jf1011j�2Ix2Iy�
1=2 V: �f

1011 �  x;0 �  y;0 �
�
2

3 1020 (1,2) �0;�2� ��1; 1�
H: 2jf1020j�2Iy� H: �f

1020 � 2 y;0 �
�
2

V: 4jf1020j�2Ix2Iy�
1=2 V: �f

1020 �  x;0 �  y;0 �
�
2

Skew sextupole term / y3

n jklm Resonance H-line V-line jajklmj �a
jklm

3 0012 (0,1) �0; 2�
3 0021 (0,1) �0; 0� 4jf0021j�2Iy� �f

0021 �
�
2

3 0030 (0,3) �0;�2� 6jf0030j�2Iy� �f
0030 � 2 y;0 �

�
2

Skew sextupole term / x2y
n jklm Resonance H-line V-line jajklmj �a

jklm

3 1101 (0,1) �1; 1� 2jf1101j�2Ix2Iy�
1=2 �f

1101 �  x;0 �  y;0 �
�
2

3 2001 �2;�1� ��1; 1� 4jf2001j�2Ix2Iy�
1=2 �f

2001 �  x;0 �  y;0 �
�
2

3 0210 �2;�1� �2; 0� 2jf0210j�2Ix� �f
0210 � 2 x;0 �

�
2

3 1110 (0,1) �1;�1� �0; 0�
H: 2jf1110j�2Ix2Iy�

1=2 H: �f
1110 �  x;0 �  y;0 �

�
2

V: 2jf1110j�2Ix� V: �f
1110 �

�
2

3 2010 (2,1) ��1; 1� ��2; 0�
H: 4jf2010j�2Ix2Iy�

1=2 H: �f
2010 �  x;0 �  y;0 �

�
2

V: 2jf2010j�2Ix� V: �f
2010 � 2 x;0 �

�
2
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TABLE V. Formulas to calculate fjklm from the secondary lines assuming properly calibrated BPMs and turn-by-turn oscillations
without decoherence.

RDT fjklm RDT amplitude jfjklmj RDT phase �f
jklm

f0110 V�1; 0�=�2H�1; 0�	 �V�1;0� ��H�1;0� �
�
2

f1001 H�0; 1�=�2V�0; 1�	 �H�0;1� ��V�0;1� �
�
2

fH1010 H�0;�1�=�2V�0; 1�	 �H�0;�1� ��V�0;1� �
�
2

fV1010 V��1; 0�=�2H�1; 0�	 �V��1;0� ��H�1;0� �
�
2

f0111 V�1; 1�=�2H�1; 0�V�0; 1�	 �V�1;1� ��H�1;0� ��V�0;1� �
�
2

f0120 V�1;�1�=�4H�1; 0�V�0; 1�	 �V�1;�1� ��H�1;0� ��V�0;1� �
�
2

f1002 H�0; 2�=�2V�0; 1�2	 �H�0;2� � 2�V�0;1� �
�
2

f1011 V��1; 1�=�2H�1; 0�V�0; 1�	 �V��1;1� ��H�1;0� ��V�0;1� �
�
2

fH1020 H�0;�2�=�2V�0; 1�2	 �H�0;�2� � 2�V�0;1� �
�
2

fV1020 V��; 1� 1�=�4H�1; 0�V�0; 1�	 �V��1;�1� ��H�1;0� ��V�0;1� �
�
2

f1200 H�2; 0�=�2H�1; 0�2	 �H�2;0� � 2�H�1;0� �
�
2

f3000 H��2; 0�=�6H�1; 0�2	 �H��2;0� � 2�H�1;0� �
�
2

f1101 H�1; 1�=�2H�1; 0�V�0; 1�	 �H�1;1� ��H�1;0� ��V�0;1� �
�
2

f2001 H��1; 1�=�4H�1; 0�V�0; 1�	 �H��1;1� ��H�1;0� ��V�0;1� �
�
2

f0210 V�2; 0�=�2H�1; 0�2	 �V�2;0� � 2�H�1;0� �
�
2

f1110 H�1;�1�=�2H�1; 0�V�0; 1�	 �H�1;�1� ��H�1;0� ��V�0;1� �
�
2

fH2010 H��1;�1�=�4H�0; 1�V�0; 1�	 �H��1;�1� ��H�1;0� ��V�0;1� �
�
2

fV2010 V��2; 0�=�2H�1; 0�2	 �V��2;0� � 2�H�1;0� �
�
2

f0012 V�0; 2�=�2V�0; 1�2	 �V�0;2� � 2�V�0;1� �
�
2

f0030 V�0;�2�=�6V�0; 1�2	 �V�0;�2� � 2�V�0;1� �
�
2
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FIG. 4. (Color) Examples of BPM spectra from single-particle tracking simulation with betatron coupling driven by skew quadrupoles
(left plot) and nonlinearities driven by normal sextupoles (right plot). Q and � denote the bare tunes and the nonlinear tunes,
respectively.
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h1

h2

h3

0
@

1
A �

eW1�f�1�e�B1 � f�3�eQ�B3�

eW2�f�2�e�B2 � f�1�e�B1�

eW3�f�3�e�B3 � f�2�e�B2�

0
B@

1
CA: (C7)

The general expression for the above equations reads
 

hw � eWw�f�w�e�Bw � f�w�1�e�Bw�1�; for 2 � w � W

h1 � eW1�f�1�e�B1 � f�W�eQ�BW �: (C8)

Reinserting the index jklm and making explicit Ww, Bw,
and Q, we obtain

 hw;jklme
�i��j�k���wb

x ��l�m���wb
y 	

� f�w�jklme
�i��j�k���w;w�1

x ��l�m���w;w�1
y 	 � f�w�1�; (C9)

where ��wb
q are the phase advances between the magnet

number w and the BPM number �w� 1�, whereas
��w;w�1

q the phase advances between the two consecutive
BPMs.

The most general case with T sources between two
consecutive BPMs introduces a modification in the lhs of
the above equation, namely, the replacement of the single
Hamiltonian coefficient with a sum of all the contributions,

 hw;jklme
�i��j�k���wb

x ��l�m���wb
y 	 ! ĥw;jklm; (C10)

where

 ĥ w;jklm �
XT
��1

h�;jklmei��j�k���
w�1
�;x ��l�m���w�1

�;y 	: (C11)

The sum is over all the T multipoles between the BPMs
number �w� 1� and w, ��w�1

�;q are the phase advances
between those multipoles and the BPM number �w� 1�
(see Fig. 6).
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FIG. 6. Schematic view of a section of the ring when several
multipoles are placed between two BPMs.
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FIG. 5. Schematic view of a ring taking into account the
distribution of BPMs and multipoles.
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