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We explore a practical approach for designing ionization cooling channels with periodic solenoidal
focusing. We examine the lattice characteristics in terms of the properties of the coils and the cell
geometry. The peak magnetic field in the coils is an important engineering constraint in lattice design. We
examine the dependence of the peak field, momentum passband locations, and the beta function on the
coil parameters. We make a systematic examination of all allowed lattice configurations taking into
account the symmetry properties of the current densities and the beta function. We introduce a unique
classification for comparing cooling lattice configurations. While solutions with a single coil per cell
illustrate most of the effects that are important for cooling channel design, the introduction of additional
coils allows more flexibility in selecting the lattice properties. We look at example solutions for the
problem of the initial transverse cooling stage of a neutrino factory or muon collider and compare our
results with the properties of some published cooling lattice designs. Scaling laws are used to compare
solutions from different symmetry classes.
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I. INTRODUCTION

Ionization cooling [1,2] is an essential feature of most
designs for neutrino factories [3] and muon colliders [4].
The phase space of the muon beam that comes from pion
decays greatly exceeds the acceptance of downstream ac-
celerator systems, so a cooling channel is usually included
to reduce the transverse emittance. For the initial cooling
of the muon beam, the only cooling process that is fast
enough compared to the muon lifetime is ionization cool-
ing. In the process of ionization cooling muons are focused
onto an absorber in the beam path. The particles lose both
transverse and longitudinal momentum while crossing the
absorber. The beam is then passed through an rf cavity that
only restores the lost longitudinal momentum. The net
result is that a particle loses some of its transverse momen-
tum and transverse cooling takes place. The cooling effect
is balanced against multiple scattering, which acts to in-
crease the emittance. The relative effect of multiple scat-
tering is reduced if the beam is strongly focused in the
absorber. Thus, we see that a transverse cooling channel
has three essential ingredients: an absorber, an rf cavity,
and a system of some sort to focus the beam in the absorber
and confine it during its transport through the cavity.

A periodic lattice of solenoid magnets is often used for
focusing in linear cooling channels. One has the freedom
here to place coils in optimal locations to achieve specific
design goals. The use of smaller radius solenoids in spe-
cific locations results in less expensive designs than a
continuous solenoid channel. In addition, if the polarity
of the solenoids alternate along the lattice, there is no
buildup of canonical angular momentum. The chief dis-
advantage of the periodic arrays is the presence of

momentum stop bands, which restrict the usable operating
range.

A number of cooling lattices using periodic solenoid
focusing have been designed over the past decade.
Historically the first system considered had a simple sinu-
soidal dependence of the longitudinal field with axial
position. In analogy with the common FODO channel of
quadrupole lenses, this was designated a focusing-drift-
focusing-drift (FOFO) lattice [5] since each solenoid lens
focuses both transverse planes simultaneously. Later, fol-
lowing a suggestion by Andrew Sessler, it was found that
the performance of these lattices could be improved sig-
nificantly by the addition of higher harmonic terms to the
on-axis fields [6]. Lattices of this type were given the name
‘‘super-FOFO’’ or ‘‘SFOFO.’’ By changing the coil con-
figurations and symmetry properties a number of periodic
lattice configurations were discovered. These were typi-
cally given their own unique names. One problem with this
development was that the relation of these solutions to each
other was not always clear. Another problem was that the
chosen names were often confusing and not uniquely
defined.

Some of the basic properties of a periodic solenoid
lattice can be qualitatively determined with a thin lens
analysis [7,8]. A step beyond this was made by Penn
[9,10], who examined periodic solenoidal lattices in terms
of the addition of second and third harmonics to the
fundamental sinusoidal field. This analysis introduced a
scaling variable � � B0�

p , where B0 is the peak on-axis
field, � is the period of the magnetic field, and p is the
momentum of the particle. Stable lattice configurations
could be located on phase diagrams with � as the abscissa
and the relative amount of harmonic content as the ordi-
nate. This type of analysis was later extended and the stable
regions of the space were more clearly identified [11]. A*fernow@bnl.gov
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limitation with this approach is that the magnetic fields
used in most of the cooling lattices adopted in practice,
such as the lattice for the U.S. Study 2 neutrino factory,
have much more complex Fourier decompositions.

An alternative analysis of lattice stability and beta func-
tion symmetries has been done using recursive solutions of
Hill’s equation [12]. This method uses Fourier coefficients
of the focusing function as input. It produces power series
expansions for the trace of the one-cell transport matrix as
a function of momentum and for the beta function as a
function of position. It was found to produce results in
good agreement with the simpler method that is used in this
paper.

While an analysis of lattice properties in terms of its
leading harmonic content gives some important theoretical
understanding of its characteristics, it is not the most
practical approach for designing a cooling channel. In
this paper we look instead at lattice characteristics in terms
of the properties of the coils and the cell geometry. We use
the number of coils in a geometric cell and the symmetry
properties of the current densities and the beta function to
introduce a unique classification for comparing cooling
lattice configurations. We separate the results presented
here by the number of coils per geometric cell. We first
examine solutions with a single coil per cell. This arrange-
ment illustrates most of the effects that are important for
cooling channel design. Then we examine the changes that
are introduced as additional coils are added to the cell.

II. IONIZATION COOLING LATTICES

The only practical method for initial cooling of muon
beams is ionization cooling. Typical applications such as
neutrino factories [3] require the cooled muon beam to
have �TN � 7 mm rad, while muon colliders [4] need
�TN � 0:05 mm rad.

A. Properties of cooling lattices

In ionization cooling the fractional change in emittance
is proportional to the fractional change in momentum
arising from energy loss. Multiple scattering in the ab-
sorber material is a competing process that acts to increase
the transverse emittance. The balance between the strength
of these two processes determines whether net cooling
takes place.

When the competing processes of energy loss and mul-
tiple scattering become equal, the beam reaches an equi-
librium normalized transverse emittance given by

 �eq
TN �

�TE2
S

2�mc2LRj
dE
dx j
�
�T
�
C; (1)

where �T is the beta function from the focusing system,
ES � 14:1 MeV,� is the relativistic velocity factor,mc2 is
the muon rest mass, and LR and dE=dx are the radiation
length and ionization energy loss rate of the absorber

material. We have collected the material-dependent prop-
erties into the quantity C. One wants to use absorbers
where the product of radiation length and the energy loss
rate is large. Hydrogen and lithium hydride are the best
choices. The only other parameter that is under our control
is the beta function, which we want to keep as small as
possible over the length of the absorber.

Transverse ionization cooling can take place in principle
at any momentum. However, at low momentum the slope
of the dE

dx curve causes lower momentum particles to lose
more energy than higher energy particles. This increases
the energy spread and leads to a blowup in the longitudinal
emittance. Cooling at high momentum is uneconomical
since a lot of rf power is required to replace a fixed fraction
of the initial energy. For these reasons cooling channels are
typically designed with a reference momentum near the
minimum of the dE

dx curve ( � 200 MeV=c). The momen-
tum is sometimes reduced in the final stages of the channel
in order to reduce the value of the beta function and to take
advantage of the higher value of dEdx .

At 200 MeV=c, the energy loss rate in liquid hydrogen
is �0:3 MeV=cm. If the beta function can be kept small
over �30 cm, the total loss of energy is 9 MeV. For a
200 MHz rf cavity with a gradient of 15 MV=m and
operating 30� off the zero crossing, we would need
�1:2 m of cavities to replace the lost energy. Thus most
of the space in a typical cell in a cooling lattice is taken up
with rf cavities.

A solenoidal focusing system in a cooling channel has a
large number of sometimes conflicting requirements. For
example, the minimum value of the beta function should be
small over an axial region longer than the absorber, the
maximum value of the beta function should be small for
reasonable transverse beam apertures, and the momentum
acceptance of the lattice should overlap the reference
momentum and be larger than the momentum spread of
the desired beam (��30% full width). For efficient cool-
ing the channel must have very large angular acceptance.
Field reversals are necessary to prevent the buildup of
canonical angular momentum. Energy straggling and
transverse-longitudinal coupling should not cause loss of
particles from the rf bucket.

There are also engineering constraints on any practical
magnetic configuration. The operating current in a super-
conducting magnet must be smaller than the critical current
corresponding to the peak field in the coil, the arrangement
of coils must allow access to the rf cavities and absorbers,
and there may be constraints on the strength and direction
of the magnetic field in the rf cavities to prevent breakdown
from limiting the useful electric field gradient in the cavity.

Cooling channels differ from most other beam transport
systems because they must transmit large divergence, i.e.,
nonparaxial, particles. In order for the rate of beam heating
to be small, the mean beam divergence should be much
larger than the mean multiple scattering angle. For efficient
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cooling the channel needs to transmit rms angles at least
twice as large as the equilibrium value. If the full accep-
tance required is 3 times the rms value, we find the required
angular acceptance is [13]

 A� � 3

���������
2C

�2�

s
:

For 200 MeV=c (� � 0:89, � � 2:14) and liquid hydro-
gen (C � 4:2� 10�3), we find the required angular accep-
tance is �210 mrad.

Angular momentum is a complication of solenoid chan-
nels that is not encountered in other focusing systems [14].
This effect can be eliminated by placing absorbers at
locations where Bz � 0 or by alternating the direction of
the magnetic field. This can be done most naturally by
using alternating-polarity lattices where the field reverses
in alternate cells.

Solenoid lattice design has traditionally been done by
varying the parameters of a few coils at the boundary
between lattice cells, such that beta function is preserved
over a range of incident momentum values. In practice, a
computer program was used to minimize the beta function
slopes at the cell boundary at, for example, 9 momenta
spaced at 10% intervals around the central value. Although
this method has been very successful in producing useful
lattice designs, there is always the danger that an even
better design may have been overlooked. In addition,
many solenoid lattice designs found this way have had
unacceptably large values of the peak field in the coils.
For that reason we explore a more systematic approach to
solenoid lattice design in this paper. The new optimization
technique places primary emphasis on obtaining a momen-
tum passband for the lattice at a desired reference momen-
tum. Secondary fitting criteria include minimizing the peak
field in the coil, maximizing the momentum acceptance,
and minimizing the beta function at the reference momen-
tum. Results from this analysis are presented in Secs. V, VI,
and VII.

B. Classification of periodic solenoid lattices

One of our goals is to develop a systematic method for
comparing the properties of various periodic solenoid lat-
tices. We define the geometric cell length to be d. We
assume the focusing is done with one or more solenoids
in each cell. We allow the possibility that the current in
these solenoids can have different polarities. We also allow
that the overall polarity of the magnetic field may alternate
between adjacent geometric cells. If � is the period of the
magnetic field, then we either have the case � � d when
the magnetic field is the same in every geometric cell, or
� � 2dwhen the polarity alternates. We will give prescrip-
tions below for defining the boundary (b) locations be-
tween geometric cells, depending on the number of coils
per cell. We define the midpoint (m) of a cell to be the axial
position midway between the boundaries. We will see that

it is useful to maintain this distinction since the lattice
solutions with beta minimums at b and m can have very
different behavior.

The beta function depends on the geometry of the lattice,
the symmetry of the magnetic field, and on the reference
momentum of the particles of interest. For cooling lattices
we are mainly interested in the spatial location and size of
the minimum of the beta function, since these points
determine where the absorbers should be located. We
will see that periodic solenoid lattices have a series of
momentum passbands. We will denote the high momentum
passband as number 1 and then count the other passbands
in order as we decrease the momentum. The spatial loca-
tion of the minimum of the beta function changes for each
passband. We are primarily interested in solutions with the
minimum located either at the cell boundary or at the
midpoint of the cell. Solutions with multiple minima in
the cell interior are also possible, but these do not appear to
offer any particular advantages for cooling purposes.

In order to compare the properties of various lattice
designs, we need a labeling system that uniquely incorpo-
rates this lattice information. We denote cooling lattices
with symbols that show the relative polarity of the coils in
adjacent geometric cells, the location of the minimum of
the beta function, and the number of the momentum pass-
band for the reference momentum. We choose symbols that
have a beta minimum in the center so that the coil arrange-
ment on either side of the minimum is immediately
apparent.

For solutions with the minimum of the beta function at
the cell boundary we arbitrarily choose the first coil to have
positive polarity. The boundary between the two geometric
cells is denoted with a vertical line and we append the
number of the passband as a subscript at the end of the
symbol. Thus, for example, a lattice with 1 coil per geo-
metric cell, alternating polarity in adjacent geometric cells,

FIG. 1. (Color) The four basic lattice configurations for one coil
per cell. (a) h�j�i, (b) h��̂�i, (c) h�j�i, (d) h��̂�i.
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with the beta minimum at the cell boundary, and operation
in the high-energy passband would be denoted h�j�i1.

For solutions with the minimum of the beta function at
the cell midplane, the symbol shows the polarity of the
coils in a complete cell together with the polarity of the
coils up to the center of the two adjacent half-cells. We use
a caret symbol to indicate the location of the minimum of
the beta function. For example, for a lattice with 3 coils of
the same polarity per geometric cell, alternating polarity in
adjacent geometric cells, with the beta minimum at the cell
midplane, and operation in the second passband, the sym-
bol would be h� ���̂ ���i2. For lattices with an odd
number of coils per cell the minimum of the beta function
would be located under one of the coils.

Figure 1 shows the four basic configurations for the case
when there is one coil per cell. In this figure the rf cavities
are colored magenta, the absorbers are gray, and the sole-
noid coils are cyan. The black solid curve is the magnetic
field and the red dotted curve is the beta function.

III. SOLENOID PROPERTIES

We gather here several properties of solenoid magnets
that we will require later in the paper. The focal length f of
a thin solenoid lens is given by [15]

 f �
4p2

e2B2
0L
; (2)

where p is the particle momentum, B0 is the solenoid field
strength, and L is the length of the solenoid. The beta
function of a uniform solenoid channel has the value

 �o �
2p
eB

(3)

inside the solenoid. We note that the beta function can be
reduced by decreasing the operating momentum or by
increasing the solenoid field strength.

For the computer calculations, we use a cylindrical
block description of a solenoidal coil. The coil has a total
length L, inner radius a, outer radius b, and carries the
current density J. If z is the axial position of an observation
point measured from the center of the solenoid, then the
on-axis field is given by
 

B	z
 �
�0J

2

�
	L� z
 ln

�
b�

�����������������������������
b2 � 	L� z
2

p
a�

�����������������������������
a2 � 	L� z
2

p �

� 	L� z
 ln
�
b�

�����������������������������
b2 � 	L� z
2

p
a�

�����������������������������
a2 � 	L� z
2

p ��
: (4)

This description of the solenoidal field will be used later in
determining the beta functions of the lattices.

In order to investigate the peak fields in the coils, we
need off-axis expressions for the solenoid fields. In gen-
eral, both longitudinal and radial field components are

present. The field component for current sheets can be
expressed in closed form in terms of elliptic integrals
[16]. Let us define the functions
 

bz	r; z
 �
�0I

0

�
za

		a� r


�
K	k
 �

a� r
2a
	�	k; c
 � K	k



�

br	r; z
 �
�0I

0

�
	
4r
�2	K	k
 � E	k

 � k2K	k
�;

where I0 is the current per unit length and we use the
auxiliary quantities

 k �

����������������������������
4ar

	a� r
2 � z2

s
	 �

����������������������������
	a� r
2 � z2

q

c � �
4ar

	a� r
2
:

K	k
, E	k
, and �	k; c
 are complete elliptic integrals. The
magnetic field from the solenoidal sheet is given in terms
of these functions by

 Bz	r; z
 � �bz	r; z� L
 � bz	r; z� L


Br	r; z
 � br	r; z� L
 � br	r; z� L
:

We approximate the field of the current block by using the
sum of the fields from 10 current sheets with different radii.

IV. PERIODIC SOLENOID LATTICES

For the remainder of this paper we will consider lattices
with periodically varying solenoidal fields. If we consider a
particle whose energy is high enough, the period of the
particle’s betatron oscillations � is longer than the geo-
metric cell length of the lattice d. As the momentum of the
particle is reduced, we will eventually reach the point when
� � d. At this point the particle sees the same radial kick
at the corresponding locations in each oscillation and a
resonance causes the amplitude of the motion to grow.
Under these conditions the particle has a phase advance
of �, so we call this the � resonance. If the momentum
continues to be reduced, we will reach the condition that
the particle makes two betatron oscillations while travers-
ing each cell of the lattice and a second (2�) resonance
occurs. In general resonances occur whenever � � nd,
where n is an integer.

A. Mathieu analysis

Stable solutions for the motion of charged particles in
lattices with sinusoidally varying magnetic fields can be
found from the eigenvalues of the Mathieu equation [17–
20]. The radial and azimuthal equations of motion of a
charged particle are given in cylindrical coordinates as

 �r� r _
2 �
er _
Bz
m�

m�
r
	r2 �
� 2r _r _

 � �q _rBz;
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where the dots are time derivatives and we neglect any
changes in �. If we assume that the azimuthal acceleration
can be neglected, the azimuthal equation reduces to

 

_
 � �
qBz
2m�

:

Requiring this constraint decouples the radial and azimu-
thal motions. This is known as the Larmor frame of refer-
ence. In a constant solenoid field in the laboratory frame
the Larmor frame rotates with a constant angular velocity.
In the case here with a periodically reversing field the
Larmor frame oscillates back and forth. The radial equa-
tion becomes

 �r�
r
4

�
eBz
m�

�
2
� 0:

If we now assume that near the axis

 Bz	z
 � B0 sin	kz
;

we find the radial equation

 �r� r
�
eB0

2m�

�
2
sin2	kz
 � 0:

This equation can be transformed into the canonical form
of the Mathieu equation

 

d2y

d�2
� �a� 2q cos	2�
�y � 0:

The parameter

 q �
�
eB0�
8�p

�
2
;

where � is the period of the magnetic field and p is the
momentum of the particle. For the case considered here the
parameter a � 2q. Stable, periodic solutions of the
Mathieu equation only exist for certain values of the pa-
rameter q.

The first five stop bands for particle momentum in a
sinusoidally varying solenoid field are given in Table I. We
will use these results in the following section to check the
accuracy of our computer calculations of the lattice
properties.

B. Symplectic integrator method

We can examine the properties of finite size, i.e., nonthin
lens, coils by evaluating the one-cell transport matrix
numerically using a second order symplectic integration
algorithm [21]. We break the cell up into a large number of
parts, each part consisting of a half-step of drift, a thin lens
and another half-step of drift. The focusing strength K of
the thin lens is determined from the local value of the on-
axis solenoid field from

 K	z
 �
�
eBz	z


2p

�
2
:

The accuracy of this method is very good as we demon-
strate below in comparisons of the tracking results with the
predictions of the Mathieu theory for lattices with sinusoi-
dal magnetic fields.

Note that the focusing strength is proportional to B2.
Unlike quadrupoles, solenoids focus the beam regardless
of the direction of the field. There are, however, differences
in angular beam dynamics since reversing the field causes
the particles to rotate in opposite directions, or equivalently
it reverses the direction of the angular momentum. These
differences affect the radial dynamics only if transverse
fields are introduced, e.g., to obtain dispersion.

C. Peak field

The range of allowed coil parameters is strongly con-
strained by the field enhancement on the solenoid coil. The
peak field on the coil usually occurs near the inner surface.
In the design work here, we try to keep the engineering
current density at or below 100 A=mm2 at 4.2 K. This
limits the peak field to �8 T for NbTi coils and �17 T
for Nb3Sn coils [22]. In addition there are stress limitations
that constrain the coil parameters [23]. A rule of thumb in
solenoid design is that the criterion

 �p�MPa� � Bz�T� r�m� J
�

A

mm2

�
< 350

should be satisfied for all locations in the coil, where �p is
the peak stress, Bz is the field in the coil at the radius r, and
J is the current density. If this criterion is violated, it is
likely that the conductor will not be able to support the
magnetic stresses without the addition of high-strength
nonconducting support layers.

Purely sinusoidal field lattices have a severe problem
with peak fields in large-radius solenoid coils [24]. An
exact solution of the field using Maxwell’s equations in
cylindrical coordinates can be written as

 Bz	r; z
 � A cos
�
2�z
�

�
I0

�
2�r
�

�

Br	r; z
 � A sin
�
2�z
�

�
I1

�
2�r
�

�
;

where I0 and I1 are modified Bessel functions. For ex-

TABLE I. Mathieu stop bands.

Stop band q (low) q (high)

1 0.3290 0.8898
2 1.8582 3.0391
3 4.6270 6.4259
4 8.6316 11.0480
5 13.8711 16.9047
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ample, at a radius equal to the cell length (half the period of
the magnetic field �), the value of the function I0 is 5.5, the
value of the function I1 is 4.5, and the peak field is �7
times the desired field value A on the axis.

D. Representative lattices

The lattice configurations considered in this paper are
illustrated in Fig. 2. The cell boundaries are marked b. For
one coil per cell, we use L for the coil length, a for the
inner radius, and t for the radial thickness. This also applies
to the two symmetric coils nearest the boundaries in the
two and three coil per cell cases. The distance across the
boundary to the corresponding coil in the next cell is g. For
the three coil per cell lattice the additional coil is denoted c.
It is centered between the boundaries and can have differ-
ent dimensions than the other coils. The length of the c coil
is denoted h.

In order to examine specific examples of the various
classes of possible lattices, we need to select a particular
cooling objective. In the following we look for solutions
that would be suitable for the early stages of a neutrino
factory or muon collider. A typical reference momentum is
200 MeV=c. We will try to provide as large a momentum
acceptance as possible. The beam radius is typically 30 cm,
so we set a lower limit on the inner radius of the coil of
35 cm. Examples of this type of channel use rf cavities with
frequency around 200 MHz, which has a radius �60 cm.
We take the length of the cavity to be at least 50 cm. We

can satisfy these conditions either by using short coils of
small radius located between cavities, or by using longer
coils with large radius located around the rf cavity.

V. LATTICES WITH ONE SOLENOID PER CELL

We now consider cooling lattices with one solenoid coil
in each geometric cell. The four characteristic designs of
this type were illustrated in Fig. 1. There are five continu-
ous parameters and one symmetry factor {d; L; a; t; J; feg
that determine the properties of these lattices. We will use
the external symmetry parameter 	fe
 to indicate whether
the polarity of the current in the coils alternate in neighbor-
ing geometric cells. We use fe � �1 if the polarity flips
and fe � �1 if the polarity remains the same. Solutions
must obviously satisfy the constraint L< d. We define the
cell boundary (b) to be the axial location midway between
the coils and the cell midplane (m) to be the axial position
through the center of the coil.

A. Thin lens approximation

Let us start by examining the lattice using the thin lens
approximation. This analysis is applicable to the solutions
with minimums of the beta function at the cell boundary.
Consider the case where we begin the matrix calculation in
the center of one of the solenoids. Then the one-cell
transport matrix M is the product

 M � F
�
f
2

�
D	d
 F

�
f
2

�
;

where F is the 2� 2 matrix for a thin lens of focal length
f=2 and D is the matrix for a drift space of length d. This
matrix is then compared to the standard form of the
Courant-Snyder matrix

 

�������� cos � 
 sin � sin 
�� sin cos � 
 sin 

��������:
This allows us to immediately determine the relations for
the phase advance per cell and the maximum value of the
beta function

 cos � 1�
d
2f

�max �
d

sin 
:

The minimum value of �max occurs when the phase ad-
vance is �=2. The scale of the magnitude of the beta
function is set by the cell length d. We can find an ex-
pression for the minimum value of the beta function by
calculating a new matrix beginning midway between the
solenoids

 M � D
�
d
2

�
F	f
 D

�
d
2

�
:

This gives

b b

d

c

a
t

L

h

g

2
g

2

FIG. 2. (Color) Basic configuration of lattices with one, two, and
three coils per cell.
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 �min �
d

2 sin 
	1� cos 
:

If we now use the expression for the focal length of the thin
solenoid lens from Eq. (2), we find that the phase advance
per cell is given by

 cos � 1�
e2B2

0Ld

8p2 : (5)

For very high momentum particles the phase advance is
�0. As p decreases the phase advance reaches a maximum
value of � when

 p� �
eB0

4

�������
Ld
p

: (6)

Below this momentum, Eq. (5) for the phase advance
becomes unphysical and there is a stop band in the mo-
mentum spectrum. The minimum value of the beta func-
tion approaches 0 at the edge of the stop band. This type of
analysis fails when real solenoids have lengths that are a
significant fraction of the cell length d.

B. Sinusoidal field approximation

In order to compare the results of our lattice calculations
using the symplectic integrator with the Mathieu theory,
we first found the single coil configuration that gave the
best approximation to a pure sine field on-axis. The results
from an optimization program produced a very pure sine
wave field. The stability of a solution can be found from the
trace of the one-cell transport matrix. Solutions are stable
provided the absolute value of the trace is less than 2.
Figure 3 shows a plot of the trace versus momentum for

the sine wave solution. We see that as predicted by the thin
lens theory the lattice transmits high momentum particles.
As the momentum drops we reach the upper edge of the �
resonance at 116 MeV=c, whereas the thin lens prediction
from Eq. (6) is 173 MeV=c. However, Fig. 3 also shows
additional momentum passbands below 70 MeV=c, which
were not present in the thin lens theory.

The momentum passband structure from this coil con-
figuration are quantitatively compared with the Mathieu
theory results in Table II. The momentum values for
Mathieu theory come from the relation

 p �
eB0�

8�
�������
qM
p ; (7)

where B0 � 2:78 T, � � 2 m, and the qM values for the
passbands are taken from Table I. The agreement with
theory is excellent. The high-energy passband has
h�j�i1 symmetry while the second band has h��̂�i2
symmetry. Each of the additional lower momentum bands
has an additional minimum of the beta function in the
interior of the cell.
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FIG. 3. Trace of the one-cell transport matrix versus momen-
tum. The parameter values were d � 100 cm, L � 67:1 cm,
a � 43:6 cm, t � 12:6 cm, J � 40 A=mm2, and alternating po-
larity.

TABLE II. Momentum passband locations [MeV=c].

q One-coil passband Mathieu theory

0.329–0 116–1 116–1
1.86–0.890 49–70 49–70
4.63–3.04 31–37 31–38
8.63–6.42 23–26 23–26
13.87–11.05 18–19 18–20

FIG. 4. (Color) Minimum and maximum values of the beta
function as a function of p. The parameter values were d �
100 cm, L � 40 cm, a � 40 cm, t � 10 cm, J � 100 A=mm2,
and constant polarity.
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C. Lattice properties

The minimum and maximum values of the beta function
are shown as a function of p in Fig. 4. At the edge of every
stop band, the minimum value of the beta function in the
cell approaches 0, while the maximum value of the beta
function becomes very large. This general behavior of the
beta function as a function of momentum does not depend
on the polarity of the magnetic field in alternate cells. In
some lattices the axial position where the beta minimum
occurs in a given passband changes as the momentum is
varied. We define the lower edge of the high-energy pass-
band to be p�. We are also interested in the possibility of
using the second passband for cooling. The beta function is
flatter and the maximum value of �min is limited in this
passband. We define p2 to be the center of this passband
and �p2 to the full width of the band. The dashed line in
the figure shows the linear dependence of the beta function
on momentum for a continuous solenoid expected from
Eq. (3). Note how the minimum and maximum beta func-
tions in each passband approach the value for the continu-
ous solenoid.

1. Location of the momentum passbands

The momentum of the � resonance increases with the
length of the cell if the coil dimensions remain fixed. The
dependence is stronger for the alternating-polarity case.
The center of the second passband increases for alternating
polarity, but is insensitive to cell length for constant
polarity.

Figure 5 shows the momentum dependence as a function
of the coil length L. The length of the solenoid has a strong
effect on the value of p�, and on the location and width of
the second, lower momentum passband for constant polar-

ity. As L=d increases, the second passband moves up in
momentum and expands in acceptance. At L=d � 0:9 the
one-cell transport matrix at the low momentum edge of the
second passband just reaches a trace of 2 and the stop
bands below this have disappeared. In the limit when
L=d � 1, we have a continuous solenoid and there are no
resonances or stop bands. The effect of changing L is
somewhat weaker for alternating polarity. The location of
p� and p2 grows at first, but then saturates for the limit
L=d � 1. The width of the second passband �p2 never
becomes very large.

We next consider changes in the passbands as we vary
the radius of the coil. Figure 6 shows the location of the �
resonance, and the midpoint and width of the second band
as a function of the coil radius. Increasing the radius
decreases the location of the � resonance, especially in
the flip case. It also decreases the midpoint of the second
band for the flip case. Note, however, that p2 is indepen-
dent of radius for the no-flip case. The width of the second
band is largest for large radius coils in the no-flip case.

The location of the � resonance, and the midpoint and
width of the second band grow linearly with the current
density. These quantities also grow approximately linearly
with coil thickness.

The location of the � resonance can be estimated for
alternating-polarity lattices from the Mathieu theory. Since
qM � 0:329 at p� and qM � 1:375 at p2, we can use
Eq. (7) to find that

 p� � 20:8B0� p2 � 10:2B0�; (8)

where the units are {MeV=c, T, m}. This expression should
become more accurate as the field in the lattice approx-
imates a pure sine wave. We have found that p2 only scales
approximately with B0 and that �p2 does not scale with B0

FIG. 5. (Color) Location of the � resonance, and the midpoint
and width of the second band as a function of L. The other
parameter values were d � 100 cm, a � 40 cm, t � 10 cm, and
J � 100 A=mm2.

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

200

250

300

350

400

450

 

∆p
2
 (no flip)

∆p
2
 (flip)

p
2
 (no flip)

p
2
 (flip)

pπ (no flip)

pπ (flip)

p 
 [ 

M
eV

/c
 ]

a  [ m ]

FIG. 6. (Color) Location of the � resonance, and the midpoint
and width of the second band as a function of the coil radius. The
other parameter values were d � 100 cm, L � 50 cm, t �
10 cm, and J � 100 A=mm2.
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at all. B0 and p� have similar dependences on the coil
parameters. For very nonsinusoidal fields, e.g., lattices
with small a=d and L=d and constant polarity, p� is still
approximately linearly related to Bo, but not to Bod.

2. Beta function

For the high-energy passband, the minimum value of the
beta function is determined mainly by the separation of the
reference momentum from p�. This can be seen in Fig. 7.
This figure shows the beta functions for two different coil
configurations designed to have p� at 100 MeV=c. One
solution (A1) is a no-flip case, while the other solution
(A2) is a flip case. We will discuss the properties of these
solutions later in Sec. V E. It is possible to reduce the beta
function by moving the reference momentum closer to p�,
but this reduces the momentum acceptance.

We turn now to the minimum value of the beta function
evaluated at the center (p2) of the second passband. We
examine the dependence of the solutions on the geometri-
cal parameters under the constraint that p2 is fixed.
Figure 8 shows the value of the beta function at the cell
boundary and cell midplane and the momentum accep-
tance of the band as we vary the cell length for the no-
flip case. The other coil dimensions were kept constant. We
adjusted the current density in the coils in order to keep p2

fixed at 200 MeV=c. Note that as the cell length is in-
creased the beta function at the cell boundary increases, but
the value of the beta function at the midplane and the
momentum acceptance both decrease. The beta function
is always smaller at the midplane than at the cell boundary.
Similar behavior can be seen for the flip case in Fig. 9.
Again we see that as the cell length is increased the beta
function at the cell boundary increases, but the value of the
beta function at the midplane and the momentum accep-

tance both fall. The beta function is much smaller at the
midplane than at the cell boundary.

There is little dependence of the lattice parameters on
the coil length if we require p2 to be fixed. The peak field
decreases slightly for longer coils. In the limit when L=d �
1, the value of the beta function for the no-flip case agrees

FIG. 7. (Color) Minimum beta function in the high-energy pass-
band versus momentum. The minimum value occurs at the cell
boundary. FIG. 8. (Color) Lattice parameters as a function of the cell

length for the no-flip case. The beta function at the cell boundary
and midplane, momentum acceptance, and current density to
keep p2 fixed at 200 MeV=c are shown. The other parameter
values were L � 20 cm, a � 40 cm, and t � 24 cm.

FIG. 9. (Color) Lattice parameters as a function of the cell
length for the flip case. The beta function at the cell boundary
and midplane, momentum acceptance, and current density to
keep p2 fixed at 200 MeV=c are shown. The other parameter
values were L � 40 cm, a � 35 cm, and t � 24 cm.
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with Eq. (3) for the continuous solenoid. We show the
dependence of the lattice parameters on the inner radius
of the coil in Fig. 10 for the no-flip case. Note that the
momentum acceptance can be increased by increasing a,
although the beta function under the coil also increases.

In the case when p2 is kept fixed, the values of the beta
function at the boundary and midplane are insensitive to
changes in the coil thickness. As the current density and the
resulting magnetic field is varied, the location of the sec-
ond passbands changes, as we saw in the previous section,
but the minimum value of the beta function in the center of
the passband remains constant.

For the cases considered here, the minimum value of the
beta function at the center of the passband is proportional
to the width of the band. For a given coil length the no-flip
configuration generates much wider passbands than the flip
configuration. In general, it is difficult to find solutions that
have both a low beta function and a wide momentum
acceptance.

D. Peak field enhancement

The peak field decreases with increasing cell length for
the no-flip case if the coil dimensions remain the same. The
peak field for both cases increases with the length of the
coil. Figure 11 shows the dependence of the peak field
enhancement on the length of the coil. The peak field
enhancement decreases as the coil is made longer if the
other dimensions remain the same. The enhancement is
larger when the polarity flips in alternate cells. The peak
field for both cases decreases with increasing radius of the
coil. The peak field for a given radius is smaller for the case
where the polarity flips in alternate cells.

The central field and the peak field in the coil grow
linearly with the current density. For a given current den-
sity, the central and peak fields are larger for the no-flip
case. The central field and the peak field in the coil also
grow approximately linearly for coil thicknesses for the
parameter range considered here. For a given radial thick-
ness the central and peak fields are larger for the no-flip
case.

E. Representative lattices

We first look at solutions that use the high-energy pass-
band. All momenta greater than p� are transmitted by the
lattice. We see from Fig. 7 that the minimum beta function
increases steadily as the momentum increases. Since we
want a reference momentum (p0) around 200 MeV=c and
a momentum acceptance �100 MeV=c, our primary fit-
ting criterion is to find solutions with p� � 100 MeV=c.
Solution A1 uses large-radius coils that could fit outside
the rf cavities and that have constant polarity. This is an
example of an h�j�i1 lattice. Both the minimum values of
the beta function and the magnetic field occurs at the
boundaries of the cell. The beta function is very flat with
a minimum value of 65 cm and a maximum value of 67 cm.
Solution A2 also uses large-radius coils, but has alternating
polarity. It is an example of an h�j�i1 lattice. Both the
minimum values of the beta function and the magnetic field
occur at the boundaries of the cell. The minimum value of
the beta function is 72 cm and the maximum value is
87 cm.

Solutions that make use of the second passband produce
much smaller values of the beta function than those in the
first passband. For the same application described earlier,
our primary fitting criterion now is to find solutions with

FIG. 10. (Color) Lattice parameters as a function of the solenoid
inner radius for the no-flip case. The beta function at the cell
boundary and midplane, momentum acceptance, and current
density to keep p2 fixed at 200 MeV=c are shown. The other
parameter values were d � 120 cm, L � 40 cm, and t � 24 cm.

FIG. 11. (Color) Peak field enhancement as a function of the
length of the coil. The other parameter values were d � 100 cm,
a � 40 cm, t � 10 cm, and J � 100 A=mm2.
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the center of the band around 200 MeV=c. Ideally we
would like the total width of the band to also be
�200 MeV=c, so the accepted momentum range would
be 100–300 MeV=c, but this has not been achieved in
practice.

Solution A3 has a constant polarity lattice and is an
example of a h��̂�i2 lattice. Since the field does not
change polarity, we would eventually have to stop this
lattice when the canonical angular momentum builds up.
A polarity-reversing matching section would need to be
provided and then the same type of lattice could be con-
tinued with the opposite sign of the field. The minimum
value of the beta function, which is 16 cm, occurs in the
middle of the cell. The beta function rises to 80 cm at the
cell boundaries. Solution A4 has an alternating-polarity
lattice and is an example of a h��̂�i2 configuration.
The minimum value of the beta function, which is 9 cm,
occurs in the middle of the cell. The beta function rises to
75 cm at the cell boundaries.

Typical parameters are shown in Table III. The quantity
�abs is the beta function at the absorber location, which can
be either at the boundary or the midplane depending on the
solution. The quantity Lrf is an approximation of the space
available for a 200 MHz rf cavity. The last column shows
the parameters for a single coil per cell design that was
used for the cooling channel in U.S. Study 2a for a neutrino
factory [25]. For this and other examples from the literature
in the following sections, the fields and lattice parameters
are the results of the calculations described here and some-
times differ slightly from the results presented in the
original papers.

VI. LATTICES WITH TWO SOLENOIDS PER CELL

We now consider cooling lattices with two solenoid coils
in each geometric cell. In the most general case, the two
coils could be totally different and this would introduce
many more parameters than were available with one coil

per cell. However, we will restrict our consideration to
cases where the two coils have the same length and radii
and have the same magnitudes of current density. In this
case we allow an additional internal symmetry factor fi
that specifies whether the two coils internal to the unit cell
have the same (fi � 1) or opposite (fi � �1) polarity.
There is also one additional continuous parameter g that
specifies the gap separation of the coils from their nearest
symmetric neighbor coil across the cell boundary, as shown
in Fig. 2. Thus in this section we will examine the proper-
ties of lattices based on the eight parameters in the set
fd; L; a; t; J; g; fe; fig. Solutions must satisfy the constraint
g� 2L < d.

In order to uniquely specify the distance g, we start by
picking any coil C. Call the distance from C to the nearest
coil on the left dL and the distance from C to the nearest
coil on the right dR. Then we define the gap (g) as g �
minfdL; dRg. The maximum value of the gap is then

TABLE III. Summary of the one-cell lattice solutions

sine A1 A2 A3 A4 Study 2a

Class h�j�i1 h�j�i1 h�j�i1 h��̂�i2 h��̂�i2 h�j�i1
d [cm] 100 100 100 200 200 75
L [cm] 67.1 30 40 74 80 15
a [cm] 43.6 70 70 50 50 35
t [cm] 12.6 6 14 25 35 15
J [A=mm2] 40 90 91 27 26 107
p� [MeV=c] 116 100 100 85
p2 [MeV=c] 200 201
�p2 [MeV=c] 87 64
p0 [MeV=c] 200 200 200 200 200 220
�abs	p0
 [cm] 58 65 72 16 9 73
Lrf [cm] 32 100 100 126 120 60
B0 [T] 2.8 2.1 2.4 4.7 5.5 2.8
Bp [T] 4.1 4.3 7.9 6.0 7.1 7.5

FIG. 12. (Color) An example of a h� � j � �i2 lattice.
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gmax � d=2� L. We define the cell boundary (b) to be the
axial location that bisects the gap, i.e. b is at g=2. In the
case of equally spaced coils where dL � dR, there is an
ambiguity in the definition of the lattice notation. For
example, the sequence of coils ������ could be
denoted either by h� � j ��i or by h� � j ��i.
However, both of these lattice classes produce the same
result in this limit. This special case does not reduce to a
lattice with one coil per geometric cell.

In order to make the meaning of this notation clearer, we
show in Fig. 12 the coil locations, magnetic field, and beta
function for one of the example lattices (B8) that we will
discuss later. The boundary locations of the unit cell are
marked with b. There is a� and a� polarity coil inside the
unit cell. The coil polarity remains constant across the cell
boundaries.

Having two coils per cell allows more flexibility in
cooling lattice design. As we discuss below, it is often
possible to change the momentum acceptance in the sec-
ond passband by varying g. This also changes the location
of the passband, but J can then be adjusted to recenter the
band.

A. Thin lens matrix analysis

Consider first the thin lens analysis of the two-coil cell.
If we break the cell down to

 M � D
�
g
2

�
F	f
D	d� g
F	f
D

�
g
2

�
;

we find that the phase advance per cell is given by

 cos � 1�
d
f
�
gd

2f2 �
g2

2f2 : (9)

Note the quadratic dependence of the phase advance on the
distance g. The minimum value of the beta function is

 �min �
1

sin 

�
d�

gd
f
�
g2

2f
�
g2d

4f2 �
g3

4f2

�
:

If we instead break the cell down as

 M � F
�
f
2

�
D	d� g
F	f
D	g
F

�
f
2

�
;

we find the maximum value of the beta function is

 �max �
1

sin 

�
d�

gd
f
�
g2

f

�
:

B. Lattice properties

In general, a rich variety of behavior is seen in the two-
coil configuration making it more difficult to specify sim-
ple rules for predicting the lattice properties. The location
of the � resonance increases for all symmetry classes for

increasing L, t, and J when the other dimensions are
held constant, while it decreases for increasing a. For
changes in d the location of the � resonance increases
when fi � �1 and is approximately constant when fi �
�1. The dependence on d is particularly strong for the
h� � j ��i symmetry class.

The dependence of the � resonance on the distance g is
shown in Fig. 13. Varying the gap between the coils across
the boundary has little effect on the locations of the �
resonance for the symmetry classes with fe � �1, but it

FIG. 13. (Color) Location of � resonance as a function of g. The
other parameter values were d � 150 cm, L � 40 cm, a �
50 cm, t � 10 cm, and J � 70 A=mm2.

FIG. 14. (Color) Width of the second passband, and beta func-
tion at the cell boundary and cell midplane as a function of g for
the h� � j ��i symmetry class. The other parameter values
were d � 275 cm, L � 50 cm, a � 35 cm, and t � 11 cm.
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has a very strong effect for the other two classes. Note the
degenerate behavior of the h� � j ��i and h� � j ��i
symmetry classes at gmax.

We now look at the behavior of the properties of the
second passband under the constraint that p2 is fixed at
200 MeV=c. Figure 14 shows the width of the passband,
and the beta functions at the cell boundary and at the cell
midplane as a function of g for the h� � j ��i symmetry
class. We also show the value of the current density re-
quired to keep p2 constant. The distance g can be used to
adjust the momentum acceptance of the band. As g de-
creases the beta function at the boundary also decreases,
while the beta function at the midplane increases. Note that
�b is smaller than �m here, unlike the case for one coil per
cell. The effects of varying g on the momentum acceptance
can be seen more clearly in Fig. 15. For small g the
acceptance is symmetric around p2. For larger g the ac-
ceptance increases. However, as the value of g approaches
gmax the focusing becomes too weak, the acceptance be-
comes distorted, and the beta function becomes very large
at the upper end of the band. This distortion also occurs
when a is made large.

C. Peak field

The peak field in the coil increases for all symmetry
classes for increasing L, t, and J when the other dimen-
sions are held constant. The peak field decreases for in-
creasing a. For changes in d the peak field increases when
fi � �1 and decreases when fi � �1. The peak field for
all cases goes up as g is decreased, which corresponds to
the case where the two neighbor coils across the cell
boundary come close together.

D. Representative lattices

We have used the example initial cooling problem from
the previous section to search for representative two-coil
solutions. We try to find small radius solutions with the
coils located between the rf cavities. For solutions with the
minimum value of the beta function at the cell boundary
we would locate the rf cavity at the cell midplane, whereas
for solutions with the minimum of the beta function at the
midpoint of the cell we would locate the rf cavity across the
cell boundary between adjacent cells.

A summary of characteristic solutions for the high-
energy passband is given in Table IV. All of the B solutions
in Table IV have the � resonance located around
100 MeV=c, so the half-width of the momentum accep-
tance is also 100 MeV=c. Note that solutions for a given
passband and given coil current density polarities can have

TABLE IV. Summary of the two-cell high-energy passband
characteristic solutions.

B1 B2 B3 B4 B5 Study 1

Class a b c d e c

d [cm] 150 150 150 150 150 110
L [cm] 20 25 20 20 20 30
a [cm] 37 35 37 37 36 68
t [cm] 5 10 10 10 6 35
J [A=mm2] 66 77 81 92 79 49
g [cm] 20 15 30 20 45 30
p� [MeV=c] 97 100 101 100 100 156
p0 [MeV=c] 200 200 200 200 200 200
�abs	p0
 [cm] 124 112 94 100 118 42
Lrf [cm] 90 85 80 90 65 80
B0 [T] 1.5 1.9 1.9 1.8 1.6 3.4
Bp [T] 2.7 5.0 4.8 5.7 3.4 8.4

ah� � ^��i1. bh� � ^��i1. ch� � j ��i1.
dh� � ^��i1. eh� � ^��i1.

FIG. 15. (Color) Beta function at the cell boundary as a function
of p for the h� � j ��i symmetry class. The value of g starts at
10 cm, then increases in increments of 10 cm. The other
parameter values were d � 275 cm, L � 50 cm, a � 35 cm,
and t � 11 cm.

TABLE V. Summary of the two-cell characteristic solutions
for the second momentum passband.

B6 B7 B8 B9 RFOFO

Class a b c d b

d [cm] 200 200 200 200 275
L [cm] 34 47 47 46 50
a [cm] 40 40 40 40 77
t [cm] 16 20 16 20 11
J [A=mm2] 42 47 40.5 36.8 95.3
g [cm] 44 27 27 40 60
p2 [MeV=c] 200 199 201 200 198
�p2 [MeV=c] 97 84 74 97 88
p0 [MeV=c] 200 200 200 200 200
�abs	p0
 [cm] 24 24 13 30 40
Lrf [cm] 82 79 79 68 215
B0 [T] 3.6 3.9 4.1 3.6 2.7
Bp [T] 5.3 6.5 5.5 5.4 7.4

ah� � j � �i2. bh� � j ��i2. ch� � j ��i2. dh� � ^��i2.
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different beta function symmetries. Most of these solu-
tions, other than B3, have the wrong natural symmetry
for optimal cooling. Nevertheless in the table we assume
the absorber is located at the cell boundary, which is the
center of the intercell gap. The quantity �abs is the beta
function at the absorber. In most cases this is not the
minimum value of the beta function in the cell. Here the
quantity Lrf is the larger intercoil spacing in the cell, which
is centered on the cell midplane. The B3 solution appears
best for cooling purposes. It has a beta function at the
absorber location of 94 cm at the reference momentum.
There is an 80 cm gap available for locating the rf cavity.
The peak field in the coil is less than 5 T. The last column
shows the parameters for the baseline cooling lattice from
the U.S. Feasibility Study I for a neutrino factory [26,27].

A summary of characteristic solutions for the second
momentum passband is given in Table V. All of the B
solutions in Table V have the center of the second passband
located around 200 MeV=c. Three of these B solutions
have the beta minimum at the cell boundary, which is the
correct natural symmetry for optimal cooling. These solu-
tions have smaller beta functions at the absorber and less
momentum acceptance than the solutions in Table IV.
Solution B6 would be suitable for cooling, provided that
occasional field-flip matching sections are added. The B8
solution appears best for cooling purposes. It has a beta
function at the absorber location of 13 cm at the reference
momentum, although the full momentum acceptance is
only 74 MeV=c. There is a 79 cm space available for
locating the rf cavity. The peak field in the coil is 5.5 T.
The B9 example shows that two-coil solutions also exist
for the second passband with the minimum of the beta
function at the cell midplane. The last column shows the
parameters for the transverse cooling lattice that was used
as the basis for the RFOFO cooling ring [28].

VII. LATTICES WITH THREE SOLENOIDS PER
CELL

We next consider cooling lattices with three solenoid
coils in each geometric cell. In the most general case, the
three coils could be totally different and this would intro-
duce many more parameters than were available with two
coils per cell. However, a simpler way to make use of the
new coil is to use the current in the third coil as a means of
adjusting the lattice properties without modifying the ge-
ometry. Thus, we will restrict our consideration to sym-
metric cases where the two outer coils have the same
length, radii, and current density. We will denote these as
the focusing coils. We assume the third coil, which we call
the coupling coil, is located symmetrically between the
focusing coils. We will place no restrictions on the length,
radii, or current density of the coupling coil. The relative
polarity of the current density between the focusing and
coupling coils will be specified using an internal symmetry
factor fi. As before we use fe to indicate whether the

overall polarity flips (fe � �1) or not (fe � 1) in alternate
cells. The layout of the geometric cell is shown in Fig. 2.
There is one additional axial parameter h that specifies the
length of the coupling coil. Thus, in this section we will
examine the properties of lattices based on the 12 parame-
ters in the set fd; L; a; t; J; g; h; ac; tc; Jc; fe; fig. Solutions
must satisfy the constraint 2L� g� h < d. We define the
cell boundary (b) to be the axial location that bisects the
gap, i.e. b is at g=2. We define the cell midplane (m) to be
the axial position midway between cell boundaries, i.e., m
is at the center of the coupling coil. There is no ambiguity
in the definition of the cell boundary in the case of equally
spaced coils with the same dimensions and the same mag-
nitude of the current density since we are requiring both
focusing coils to have the same polarity.

Having two adjustable currents in each cell gives us a
‘‘tunable’’ lattice for the second passband. One can use the
coupling coil Jc to set the momentum acceptance and beta
function at the absorber. Then the band can be recentered at
the desired momentum by adjusting the focusing J. In this
way the properties of the lattice can be adjusted without
changing the size or location of the coils. For example, the
beta function can be tapered to follow the reduction in
beam emittance from cooling.

The thin lens analysis for this case contains many addi-
tional terms containing the focal length of the coupling coil
and is not particularly enlightening. The peak field in these
configurations can occur in either the focusing or the
coupling coil. In terms of the new variables the peak field
is not very sensitive to changes in g or ac. The peak field

FIG. 16. (Color) Location of the center of the second passband
p2, the width of the band, the beta function at the cell boundary
�b, and the beta function at the cell midplane �m as a function of
the distance h. The other parameter values were d � 2:5 m, L �
18 cm, a � 35 cm, t � 17 cm, J � 73 A=mm2, g � 54 cm,
ac � 70 cm, tc � 12 cm, and Jc � 75 A=mm2.
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does however grow approximately linearly with h for all
the symmetry classes. In general, the peak fields for
200 MeV=c reference momentum solutions are smaller
with three coils per cell than the corresponding solutions
with one coil per cell.

A. Lattice properties

With the large number of available parameters, it is
difficult to make completely general statements about the
properties of the three-coil lattice configurations. The lo-
cation of the � resonance can be changed by varying the
gap distance g or the coupling coil length h. The �
resonance increases in momentum for increasing h for all
symmetry classes when the coupling coil is long.

The dependence of some properties of the second pass-
band on the coupling coil length for the h� ��j ���i
symmetry class are shown in Fig. 16. The location and
width of the band increase with increasing h. The mini-
mum value of the beta function occurs at the cell boundary
for h up to �30 cm for this example and then switches to
the cell midplane for longer coils. This shows that the
character of the solution can be changed by varying the
length of the coupling coil. In this example we can only
obtain a low value of �b by also accepting a low momen-
tum acceptance. The dependence of some properties of the
second passband on the current density in the coupling coil
for the h� ��j ���i symmetry class is shown in
Fig. 17. For this figure the current density in the focusing

coils was adjusted to keep p2 fixed at 200 MeV=c. The
width of the band tends to grow for increasing coupling
current. The minimum value of the beta function occurs at
the cell boundary for h up to�95 A=mm2 for this example
and then switches to the cell midplane for higher current
densities. This shows that the character of the solution can
also be changed by varying the relative currents in the
coupling and focus coils.

FIG. 17. (Color) The current density J in the focusing coils, the
width of the second passband, the beta function at the cell
boundary �b, and the beta function at the cell midplane �m as
a function of the current density Jc in the coupling coil. The
other parameter values were d � 2:5 m, L � 18 cm, a �
35 cm, t � 17 cm, g � 54 cm, h � 20 cm, ac � 70 cm, and
tc � 12 cm.

TABLE VI. Summary of the three-cell characteristic solutions
for the first passband.

C1 C2 C3 C4

Class a b c d

d [cm] 200 200 200 200
L [cm] 10 25 16 30
a [cm] 40 75 39 76
t [cm] 5 5 6 8
J [A=mm2] 69 50 70 46
g [cm] 50 50 38 30
h [cm] 30 67 30 65
ac [cm] 70 35 70 35
tc [cm] 5 5 6 5
Jc [A=mm2] 63 50 65 49
p� [MeV=c] 99 100 101 101
p0 [MeV=c] 200 200 200 200
�abs	p0
 [cm] 129 152 130 154
Lrf [cm] 130 133 130 135
B0 [T] 1.1 1.5 1.1 1.5
Bp [T] 2.4 2.0 2.9 2.6

ah� ��j � ��i1. bh� ��j ���i1. ch� ��j ���i1.
dh� ��j ���i1.

TABLE VII. Summary of the three-cell characteristic solu-
tions for the second passband.

C5 C6 C7 C8 C9 Study 2

Class a b c d e d

d [cm] 250 250 250 250 250 275
L [cm] 30 15 30 18 30 16.7
a [cm] 75 35 75 35 35 33
t [cm] 10 25 10 17 14 17.5
J [A=mm2] 49 72 49 73 70 75.2
g [cm] 30 88 30 54 70 35
h [cm] 80 42 80 20 20 33
ac [cm] 35 74 35 70 70 77
tc [cm] 10 5 14 12 10 8
Jc [A=mm2] 56 �70 55 75 65 98
p2 [MeV=c] 201 199 199 199 201 194
�p2 [MeV=c] 52 69 36 103 70 117
p0 [MeV=c] 200 200 200 200 200 200
�abs	p0
 [cm] 7 19 4 38 22 49
Lrf [cm] 170 132 170 160 120 205
B0 [T] 5.3 3.5 6.2 3.1 3.6 2.8
Bp [T] 6.0 7.1 7.2 6.4 6.5 6.4

ah� ���̂ ���i2. bh� ��j � ��i2. ch� ���̂ ���i2.
dh� ��j ���i2. eh� ��j ���i2.
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B. Representative lattices

We have used the example initial cooling problem from
the previous sections to search for representative three-coil
solutions. We try to find solutions where either the focusing
coils or the coupling coil have small radius and are located
between rf cavities. The other coil then has to have a large
radius and be located outside the rf cavity. The most
desirable solution with small focusing coil radius has the
minimum of the beta function at the cell boundary, while
solutions with small coupling coil radius want the mini-
mum to occur at the cell midplane.

A summary of characteristic solutions for the high-
energy passband is given in Table VI. The maximum
length available for the rf cavity is d� g� 2L for solu-
tions with small focusing coil radius and d� h for solu-
tions with small coupling coil radius. None of these
solutions offer any obvious advantage over lattices with
one or two coils per cell.

A summary of characteristic solutions for the second
passband is given in Table VII. Solution C8 is an attractive
solution for early cooling. It is an h� ��j ���i2 con-
figuration with a minimum beta function of 38 cm and a
band width of 103 MeV=c. The last column shows the
parameters for the second U.S. feasibility study for a
neutrino factory [3,29,30].

VIII. SCALING RELATIONS

Any of the lattice solutions discussed in the previous
sections can be scaled geometrically to produce additional
lattices that may be more satisfactory for other conditions.
Suppose we scale all the cell dimensions by the same factor
f. Then it follows from Eq. (4) that we can obtain the same
on-axis field by scaling the current density by 1=f.
However, we have seen in Eq. (8) that the passband loca-

tions scale like Bod. Thus we need to scale the current
density like 1=f2 to keep the passband locations fixed. This
is illustrated in Fig. 18 where the scale factor of 1 corre-
sponds to the A4 example. The current density was ad-
justed to keep p2 fixed at 200 MeV=c. The peak field in the
coil falls with increasing scale factor. The maximum on-
axis field is proportional to the peak field in the coil. Both
the beta function at the boundary and at the midplane grow
linearly with increasing scale factor. However, note that the
magnitude of the beta function at the midplane is still quite
small (� 13 cm for a 3 m cell length). The momentum
acceptance (not shown) is independent of the scale factor.

In the previous sections we have systematically exam-
ined the characteristics of a large number of cooling latti-
ces. In order to compare solutions with different numbers
of coils per cell and different symmetry classes, it is useful
to introduce another scaling variable. We have seen that
there is often a direct relationship between the magnitude
of the beta function and the momentum acceptance. Since
the beta function depends on the scaling parameter f,
we can define a normalized beta function corresponding
to a fixed maximum axial field. We then examine how
this scaled beta function depends on the momentum
acceptance.

We define the scaled momentum acceptance as

 � � �
p� p�
p

for the first passband

� � �
�p2

2p2
for the second passband:

We define the scaled beta function F1 as the actual beta
function for some lattice normalized to the value of the

FIG. 18. (Color) Geometrical scaling of the A4 example lattice.

FIG. 19. (Color) Scaled beta function as a function of scaled
acceptance. The solid lines show first passband results for the flip
(A2) and no-flip (A1) example lattices. Symbols show second
passband solutions with p2 � 200 MeV=c; 
: 1 coil per cell, *:
2 coils per cell, 4: 3 coils per cell.
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beta function for the continuous solenoid evaluated with
the same value of the maximum on-axis field. Using Eq. (3)

 F1 �
�
�o
� �

eBo
2p

:

The scaled behavior of some of the example lattices dis-
cussed previously are shown in Fig. 19. Large regions of
the first passband solutions and most of the second pass-
band solutions have F1 smaller than 1 and thus produce
more efficient cooling than a continuous solenoid. In the
first passband alternating-polarity lattices are more advan-
tageous for small momentum acceptance. At the beginning
of cooling the momentum spread of the beam is large. In
this case, one would use a lattice operating in the first
passband because any value of the momentum acceptance
is possible in principle by operating far enough away from
p�. However, the beta functions for these lattices are also
large. After a sufficient amount of longitudinal cooling
reduces the momentum spread to �� 30% full width,
one can switch to a lattice that uses the second passband
and has smaller beta functions at the absorbers. The scaled
behavior of some of the example lattices discussed previ-
ously are shown in Fig. 20. For each of these example
solutions the radius was changed to vary the momentum
acceptance and the current density was adjusted to recenter
the band at 200 MeV=c. The strong correlation between
the minimum beta function and the momentum acceptance
can be clearly seen in this figure.

One can proceed through a number of these stages,
leading finally to a lattice with small acceptance and very
small beta function. For � � 10%, using current 25 T high
temperature superconductor technology, the smallest beta
function using solenoid focusing appears to be �1 cm.

IX. SUMMARY

Ionization cooling channels play an important role in the
design of neutrino factories and muon colliders. In this
paper we have summarized the status of cooling lattice
design using periodic solenoid focusing. There is consid-
erable flexibility in the design of these channels and they
exhibit a great variety of interesting properties. The de-
tailed behavior of the lattice properties is strongly influ-
enced by the symmetries exhibited by the polarities of the
currents in the coils in the periodic channel. In order to
describe this behavior, we introduced a new system for
classifying the symmetry properties of periodic solenoid
cooling lattices. A method using symplectic integration of
the one-cell transport matrix was used to calculate momen-
tum stop bands and beta functions. This integration used
the on-axis field calculated from solenoid coil blocks. We
found this method was accurate by showing that a sinus-
oidally varying magnetic field gave results in good agree-
ment with predictions from solutions of the Mathieu
equation. The peak field in the coil was an important design
constraint. We showed how the peak field in the coil and
the lattice properties depend on the geometric properties of
the coils.

We introduced a new optimization procedure that em-
phasizes obtaining a desired momentum band and mini-
mizing the peak field in the coil. We used this method to
systematically search for lattice configurations that could
be used in a neutrino factory or muon collider. We saw that
most features of the lattice dynamics could be seen even in
the simplest case of a single coil per geometric cell. There
are two momentum passbands that have been used for
cooling lattices. The beta function in the high momentum
band is determined mainly by the amount of momentum
acceptance that is required. The location of the � reso-
nance scales with the maximum value of the on-axis mag-
netic field. The minimum value of the beta function and the
momentum acceptance are typically much smaller in the
second passband. The momentum acceptance can be ad-
justed by varying the radius and length of the coil.

Adding a second coil per geometric cell adds consider-
able flexibility for cooling channel design. The gap be-
tween the two coils across the cell boundary is an
important design parameter that can have strong effects
on the momentum acceptance and other lattice properties.
In addition, the number of possible symmetry classes is
doubled. With three coils per cell it is possible to design a
tunable lattice with fixed coil positions and radii. The
focusing coil current is used to set the acceptance and the
beta function value at the absorber, while the coupling coil
current is used to center the location of the passband. The
properties of different lattice types were compared using a
scaled value of the beta function. The value of the beta
function is directly related to the momentum acceptance.
For all the coil configurations we have produced sample
solutions for each of the symmetry classes. Several of these

FIG. 20. (Color) Scaled beta function as a function of scaled
acceptance for example lattices for the second passband centered
at 200 MeV=c.
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lattice designs have interesting properties and might be
suitable for further investigation for the transverse cooling
channel of a neutrino factory or muon collider.
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