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Direct numerical methods for solving the Vlasov equation offer some advantages over macroparticle
simulations, as they do not suffer from the consequences of the statistical fluctuations inherent in using a
number of macroparticles smaller than the bunch population. Unfortunately, these methods are more time
consuming and generally considered impractical in a full 6D phase space. However, in a lower-dimension
phase space they may become attractive if the beam dynamics is sensitive to the presence of small charge-
density fluctuations and a high resolution is needed. In this paper we present a 2D Vlasov solver for
studying the longitudinal beam dynamics in single-pass systems of interest for x-ray FELs, where
characterization of the microbunching instability stemming from self-field amplified noise is of particular
relevance.
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I. INTRODUCTION

Lasing in an x-ray free electron laser (FEL) critically
depends on electron-beam quality. Unfortunately, a num-
ber of effects can spoil transverse emittance and energy
spread as the electron beams are accelerated and com-
pressed before entering the undulator. Of particular con-
cern is the development of microbunching instabilities [1–
5] stemming from the unavoidable irregularities present in
the charge density at injection. Because of self-fields from
radiation or space-charge, these irregularities may create
energy fluctuations, which in turn feed further lumping in
the charge density as the beam travels through a dispersive
region. Minimizing the development of such instabilities is
a significant part in the effort of designing an X-FEL.

Modeling of beam dynamics is currently carried out
using a combination of macroparticle simulations and
semianalytical studies of the solutions of the linearized
Vlasov equation. While these tools are essential they
present some well-known limitations. Macroparticle simu-
lations are vulnerable to statistical fluctuations resulting
from a bunch population smaller than the actual number of
electrons. This noise can be somewhat controlled by a
judicious choice of suitable filters [4] but it remains diffi-
cult to separate from the genuinely physical fluctuations
that one intends to study. On the other hand, the linearized
Vlasov equation fails to capture nonlinear saturation,
which can be important.

A possible third approach, immune to these limitations,
is to solve numerically the complete Vlasov equation.
While direct numerical methods for the Vlasov equations
have enjoyed a certain degree of popularity in plasma
physics after the seminal paper by Cheng and Knorr [6],
they have yet to find widespread application in beam

physics [7–13]. To some extent this is a consequence of
the larger computational cost: indeed, at present an appli-
cation to a 6D phase space would be prohibitive whereas
application to 4D appears feasible only using parallel
computing [14–16]. The use of these methods in 2D phase
space has been very rewarding, however, which encourages
further efforts to develop solution technology both in more
demanding 2D contexts and in higher dimensions.

In this paper we discuss a scheme for a Vlasov solver in
the 2D longitudinal phase space suitable for applications in
single-pass systems of interest for x-ray FELs.

While a more complete treatment of the relevant physics
would require at least a 4D phase space to fully describe
the coupling between horizontal and longitudinal motion, a
2D solver is already physically significant for some appli-
cations and shares some of the algorithmic challenges with
solvers in higher dimensions. Indeed the experience gained
from this study will be very useful for building a 4D solver,
which is in our plans for the future.

Modeling of a beam for FEL applications has to face the
presence of a close correlation between longitudinal posi-
tion and energy, which is deliberately added to achieve
compression in magnetic chicanes. This correlation makes
the simple method [9–11] of gridding the phase space on a
static rectangular mesh ill suited. Two distinct strategies
can be devised involving either grid adaptation or a suitable
coordinate transformation. A combination of the two might
also be profitable. With regard to the first, recent work by
Sonnendrücker and co-workers [17] using multiscale reso-
lution and moving grids is promising, while grid-free
methods proposed in [18] may be worthy of further explo-
ration. Concerning the second strategy a change of varia-
bles to the ‘‘interaction picture’’ was proposed in [13]. In
the present paper we explore a method that involves a
transformation to new dynamical variables that is different
from the one suggested in [13], and uses cell-size adapta-
tion in a Cartesian grid that avoids the complications of
local mesh refinement. The idea for the coordinate trans-
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formation is simply to subtract the energy-position corre-
lation from the energy coordinate, whereas the grid adap-
tation follows the natural beam compression occurring as
the beam travels through a magnetic chicane.

In Sec. II we offer a derivation for a 2D Vlasov equation
for beams with vanishing transverse emittance. We give a
description of the integration method in Sec. III, and a
schematic summary of the algorithm in Sec. IV. In Sec. V
we illustrate an application of the Vlasov solver to the
determination of the gain function for the microbunching
instability and make contact with linear theory. Finally, in
Sec. VI we present a tentative model for the impact of a
finite horizontal emittance on microbunching and, again,
make comparison with linear theory.

II. EQUATIONS OF MOTION FOR BEAMS IN
BUNCH COMPRESSORS AND ACCELERATING

CAVITIES

A beam delivery system for x-ray FELs consists essen-
tially of accelerating structures and magnetic chicanes for
beam compression.

In a bunch compressor we use the following model of a
Hamiltonian for the horizontal and longitudinal particle
dynamics:

 H �
1

2
�p2

x � kxx
2� �

x
R
��

1

p0

Z z

�1
F�z0; s�dz0 (1)

with the last term on the right-hand side (RHS) accounting
for collective effects. In the above equation kx � kx�s� is
the focusing function, R � R�s� the local radius of curva-
ture of the design orbit, � � �p� p0�=p0 an electron
relative energy deviation from the design energy p0 [19],
and z the longitudinal coordinate, assumed to be positive
for particles in the head of the bunch. In writing the above
Hamiltonian, we neglected the term proportional to �2=�2

(with � being the relativistic factor). That is, under the
ultrarelativistic assumption �� 1, we neglect particle
slippage in z not due to dispersive effects.

The collective longitudinal force F�z; s� acting on an
electron at z within a bunch depends on the component of
the electric field parallel to the particle trajectory at that
point. Here, z is the longitudinal distance of the electron
from a synchronous particle following the design orbit. In
our convention z > 0 indicates a particle closer to the
bunch head. If we denote with w�z� z0� the longitudinal
component of the electric field at z generated by a positive
unit charge placed at z0, then the longitudinal electric field
Es�z; s� experienced by an electron at z is

 Es�z; s� � �eN
Z 1
�1

dz0w�z� z0���z0; s�; (2)

where N is the number of electrons in the bunch, �e their
charge, and ��z; s� the longitudinal beam density normal-
ized to unity

R
1
�1 dz��z; s� � 1.

In the case of the field due to synchrotron radiation, this
formula is not strictly correct, even in the one-dimensional
model pursued here. The radiation depends on the bunch
form at past times, whereas the formula purports that it
depends only on the form at the present time. A formalism
to correct this defect, allowing bunch deformation at re-
tarded times, was presented in [20]. A numerical test
indicated that the effect of deformation is tolerably small,
but more work needs to be done since the test was not made
under conditions of severe bunch instability [21].

Adopting the convention that Es is positive if pointing in
the direction of increasing s, the energy change per unit
length induced on a particle by the electric field is

 

d�
ds
� �

eEs�z; s�
p0

�
e2N
p0

Z 1
�1

dz0w�z� z0���z0; s�; (3)

yielding

 F�z; s� � e2N
Z 1
�1

dz0w�z� z0���z0; s�: (4)

To avoid confusion, notice that w�z� z0�, here defined to
denote an electric field per unit charge, is sometimes used
to represent an electric potential per unit charge [22].

Alternatively, we can choose to work in the frequency
domain using instead the impedance per unit length Ẑ�k�
[23] which is defined by ~Es�k� � �Ẑ�k�~I�k�, where ~Es�k�
is the Fourier transform of the longitudinal field Es�z� due
to a steady current I�z�, with ~I�k� � �eN�c~��k� and

 

~E s�k� �
1

2�

Z 1
�1

dze�ikzEs�z�; (5)

 ~��k� �
1

2�

Z
dze�ikz��z�: (6)

By the inverse Fourier transformation of (4) we then have

 F�z; s� � �eEs�z; s� � �e
2N�c

Z 1
�1

dkẐ�k�~��k; s�eikz:

(7)

It follows from (4), (6), and (7) that

 w�z� � �
c�
2�

Z 1
�1

dkẐ�k�eikz: (8)

The minus sign on the RHS of the above equation follows
from our convention that a positive w corresponds to
energy gain for a particle. Incidentally, notice that there
may be models for the impedance in which the integral (8)
does not exist, but where (7) may still be well defined
thanks to the cutoff provided by ~��k; s�. Models of imped-
ance relevant for studying the microbunching instabilities
are reviewed in the Appendix.

The Vlasov equation for the phase space density
f�x; px; z; �; s� with Hamiltonian H takes the form
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�
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R
@f
@z
�
F�z; s�
p0

@f
@�
� 0:

(9)

Next, we are interested in examining beams with van-
ishing transverse emittance. In order to derive a Vlasov
equation governing such beams, it is useful to introduce a
new set of coordinates describing the purely betatron part
of the horizontal motion [24]:

 x� � x� �D; (10)

 px� � px � �D0; (11)

 z� � z� xD0 � pxD; (12)

 �� � �; (13)

whereD � D�s� is the dispersion function satisfyingD00 �
kxD � 1=R. The transformation to the new coordinates has
a generating function of the second kind

 F2 � px��x� ��D� � x��D
0 �

�
z� ��

DD0

2

�
��; (14)

with x� � @F2=@px�, px � @F2=@x, etc. This transforma-
tion yields the new Hamiltonian H� � H � @F2=@s,

 H� �
1

2
�p2

x� � kxx
2
�� �

D
2R

�2
� �

1

p0

Z �

�1
F�z0; s�dz0;

(15)

where we set � � z� � x�D0 � px�D. The resulting
Vlasov equation is then
 

@f
@s
�

�
px� �

F��; s�
p0

D
�
@f
@x�
�

�
kxx� �

F��; s�
p0

D0
�
@f
@px�

� ��
D
R
@f
@z�
�
F��; s�
p0

@f
@��

� 0; (16)

where we now regard f as a function of the new variables.
The distribution of a beam with vanishing transverse

emittance can be written as

 f � �̂�x���̂�px��fz�z�; ��; s�; (17)

where �̂ is the Dirac delta function. In the presence of
collective effects, a density function of the form (17) is not
an exact solution of (16). In other words, a beam with
initial vanishing horizontal emittance will see its emittance
grow as a consequence of collective forces. We assume that
such an emittance growth will be sufficiently small that
(17) remains close to the actual solution. If this is the case,
we can obtain a reduced 2D Vlasov equation for the
longitudinal motion by inserting (17) into (16) and inte-
grating over the transverse variables x� and px�:

 

@fz
@s
� ��

D
R
@fz
@z�
�
F�z�; s�

p0

@fz
@��

� 0: (18)

We might say that (17) satisfies (16) in the sense of an
average over transverse phase space, if (18) is satisfied.

For brevity, for the rest of this and the next section we
will drop the subscript � in the notation for the coordinates
and the subscript z from the longitudinal density fz. Also,
we will find it convenient to regard p in � � �p� p0�=p0

as the dynamical variable instead of �. In terms of the
dynamical variables �z; p�, Eq. (18) can be rewritten as

 

@f
@s
�
p� p0

p0

D
R
@f
@z
� F�z; s�

@f
@p
� 0: (19)

For use in the next section, we report the mapping for a
particle trajectory from s to s0 in the absence of collective
effects. Using standard notation this can be written as
Mext:�z; p� ! �z0; p0� with

 z0 � z�
p� p0

p0
�R56�s

0� � R56�s��; p0 � p; (20)

where R56�s� � �
R
s
s0
d�D���=R���, having assumed that

at the entry s � s0 of the bunch compressor R56�s0� � 0.
Incidentally, notice that if D � D0 � 0 at the entrance of a
bend, and assuming that the transverse focusing is negli-
gible, from D00 � 1=R it follows that D�s� and R�s� have
the same sign so that R56�s� is negative over the first dipole
of a chicane. In the next bend the sign of the radius of
curvature R changes and R56 grows positive. A bunch
compressor is designed so that R56 remains positive
through the last dipole of the chicane, see Fig. 6.

This concludes our discussion for particle motion in
bunch compressors. As for longitudinal motion in an ac-
celerating structure, we adopt the following model of the
Vlasov equation:

 

@f
@s
�

�
�Ecav

Lcav
sin��!rfz=c��s� � F�z; s�

�
@f
@p
� 0;

(21)

where �Ecav is the energy gain by a synchronous particle
through a cavity of length Lcav; !rf and �s are the cavity
frequency and phase. According to this model, in the
absence of collective effects the mapping for a particle
trajectory from s to s0 reads Mext:�z; p� ! �z0; p0� with

 z0 � z; p0 � p� �s0 � s�
�Ecav

Lcav
sin��!rfz=c��s�:

(22)

III. SOLVING THE VLASOV EQUATION

The main purpose of this paper is to indicate an efficient
method to solve the Vlasov equations (19) and (21).

A more direct way of stating the local beam density
conservation along the particle trajectories expressed by a
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Vlasov equation is to write f�z0; s0� � f�z; s�, where z0 �
Ms!s0z is the volume preserving map describing particle
trajectories from ‘‘time’’ s to s0. More suggestively the
same equation can be restated as

 f�z0; s0� � f�M�1
s!s0 �z

0�; s�: (23)

This form of the Vlasov equation is appealing in that it
suggests a straightforward and effective method of solution
in which a discretized version of (23) is applied at each
time step using an approximation for the map Ms!s0 . This
method is widely used and known in the literature under
a variety of names: method of characteristics, semi-
Lagrangian, Perron-Frobenius, etc. Typically f is repre-
sented on a static, uniform Cartesian grid with polynomial
or other interpolation schemes at off grid points. To solve
Eq. (19) and (21), we would like to keep the convenience of
using a uniform Cartesian grid. However, because a strong
energy/position correlation is applied to the beam to
achieve the desired compression, this would be quite in-
efficient—the support of the beam density function f is
non-negligible only on a small portion of a full Cartesian
grid, as seen in the top picture of Fig. 1. We sidestep this
difficulty by introducing a new coordinate system in which
the above-mentioned correlation has been removed.

To this end, we need a suitable definition of beam
correlation. Let us define the correlation or ‘‘chirp’’ func-
tion at the entrance s � s0 of a chicane in terms of the
known beam density f0�z; p; s0� at s0:

 	�z; s0� �
Z 1
�1

f0�z; p; s0�pdp
�Z 1

�1
f0�z; p; s0�dp:

(24)

We then define a rule to propagate the correlation function
for s > s0 in terms of the dynamics unperturbed by collec-
tive effects.

In a bunch compressor, given 	�z; s� at s as a function of
z, the value at z0 of 	�z0; s0� at a later time s0 > s is

 	�z0; s0� � 	�z; s�; (25)

where z in the RHS is determined for a given z0 as a
solution of the algebraic equation,

 z0 � z�
	�z; s� � p0

p0
�R56�s0� � R56�s��: (26)

We make the assumption that during its evolution 	�z; s�
remains a single-valued function in z. A sketch of the
chirp-function propagation is shown in the top picture of
Fig. 2.

In an accelerating structure, we let the correlation func-
tion evolve according to

 	�z0; s0� � 	�z; s� � �s0 � s�
�Ecav

Lcav
sin��!rfz=c��s�;

(27)

with z0 � z.

The meaning of this rule is clear: in the absence of
collective forces, it implies that the correlation function
	�z; s� at s > s0 still satisfies (24) with f0 replaced by
the beam density f at s. With this definition 	�z; s� be-
comes a known function which we can use to define the
new dynamical variables �ẑ; p̂� by the transformation

 

FIG. 1. (Color) Support of the beam density function in phase
space at the entrance of a bunch compressor in the �z; p�
coordinates (top picture). The beam density of the same beam
is plotted in the �ẑ; p̂� coordinates (bottom picture) where the
beam linear chirp has been subtracted. The phase space in the
bottom picture can be more efficiently gridded by a Cartesian
mesh.
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A:�z; p� ! �ẑ; p̂�

 ẑ � z; (28)

 p̂ � p� 	�z; s�: (29)

As desired, the support of the beam distribution in the new
variables is better matched to a Cartesian grid, as in the
bottom picture of Fig. 1.

Propagation of the density function in (23) requires a
suitable approximation of the mapping for the particle
trajectory M̂s!s��s over the time step �s. The ^ denotes
that the map is in terms of the new variables. A convenient
choice is given by the second order integrator

 M̂ s!s��s ’ M̂c
�s=2M̂

ext
�sM̂

c
�s=2; (30)

where M̂ext
�s represents the mapping under the action of the

external forces from s to s0 � s��s and M̂c
�s=2 yields a

half-kick under the collective force. These elementary
mappings in the new coordinates can be recovered from
the corresponding mappings in the original coordinates
by means of the transformation A: M̂i �AMiA�1,
where i � ‘‘c’’ or ‘‘ext.’’ The maps Mext in a bunch

compressor and accelerating structure were reported in
(20) and (22); Mc is simply z0 � z and p0 � p�
�sF�z; s�, with the collective-force F�z; s� calculated using
the current beam density.

The form of the collective-force half-kick is formally the
same as in the original coordinates, M̂c

�s=2:�ẑ; p̂� !
�ẑ0; p̂0� with

 p̂ 0 � p̂� ��s=2�F�ẑ�; (31)

 ẑ 0 � ẑ: (32)

In a bunch compressor the mapping under the external
forces in the new variables is more involved but still easy to
write, M̂ext:�ẑ; p̂� ! �ẑ0; p̂0� with

 ẑ 0 � z0 � z� �p� p0�dR56

� ẑ� �p̂� 	�ẑ; s� � p0�dR56; (33)

 p̂ 0 � p0 � 	�z0; s0� � p� 	�z� �p� p0�dR56; s
0�

� p̂� 	�ẑ; s� � 	�ẑ� �p̂� 	�ẑ; s� � p0�dR56; s0�;

(34)

where for brevity we have denoted dR56 � dR56�s; s
0� �

�R56�s0� � R56�s��=p0. The inverse of the above map,
which in view of (23) is of more direct interest, reads

 ẑ � ẑ0 � �p̂0 � 	�ẑ0; s� � p0�dR56; (35)

 p̂ � p̂0 � 	�ẑ0; s0� � 	�ẑ0 � �p̂0 � 	�ẑ0; s� � p0�dR56; s�:

(36)

To get a better grasp of this mapping, consider the
simple case of a beam with a linear chirp: i.e.

 	�z; s� � 	1�s�z� p0: (37)

We can determine the chirp function at a later s0 > s by
solving Eqs. (25) and (26). We find that the chirp function
at s0 is still a linear function of z: 	�z0; s0� � 	1�s

0�z0 � p0

with

 	1�s0� �
	1�s�

1� 	1�s�dR56�s; s
0�
: (38)

By using Eqs. (33) and (34) we find

 ẑ 0 � ẑ�1� 	1�s�dR56�s; s0�� � p̂dR56�s; s0�; (39)

 p̂ 0 �
p̂

1� 	1�s�dR56�s; s
0�
: (40)

Observe that, unlike the canonical momentum p, the
coordinate p̂ expressing the uncorrelated energy spread is
not invariant. In particular, the p̂-direction stretches [in a
bunch compressor the number 1� 	1�s�dR56�s; s0� is gen-
erally smaller than unity] while ẑ is compressed. Moreover,
as indicated in the last term in (39), the degree of com-

 

z

p
s’ s

s

α z,s

α z',s'

z z’

z

p

FIG. 2. (Color) Schematic for the evolution of the chirp function
in a bunch compressor (top figure) and dynamics in the �ẑ; p̂�
phase space for a beam with linear chirp (bottom figure).
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pression on ẑ depends, albeit weekly, on p̂. A graphical
illustration of the action of the linear transformation (39)
and (40) is presented in the bottom picture of Fig. 2.

Finally, in an accelerating structure the mapping
M̂ext:�ẑ; p̂� ! �ẑ0; p̂0� is simply the identity p̂0 � p̂ and
ẑ0 � ẑ.

IV. ALGORITHM

We represent the density function in the variables (ẑ; p̂)
on a Cartesian grid with a fixed number of �2Nẑ � 1� 	
�2Np̂ � 1� nodes but with varying cell sizes �k

ẑ and �k
p̂ (the

index k refers to the time step). Grid adaptation follows the
support of the beam density function in phase space as the
beam contracts in position ẑ and expands in the canonical
momentum p̂. Following the time-splitting method out-
lined in the previous section, we first advance the density
function by �s under the mapping M̂ext

�s for the unper-
turbed lattice defined in (33) and (34), and then advance the
density function under the collective-force kick M̂c

�s=2

defined in (31) and (32). The mappings for two adjacent
half kicks can, of course, be lumped together into a single
�s collective kick.

Suppose that at time s � k�s the density function fij �
f�ẑi; p̂j� is known on the grid nodes ẑi; p̂j specified as ẑi �
i�k

ẑ ; with i � �Nẑ;�Nẑ � 1; . . . ; Nẑ and p̂j � j�k
p̂ with

j � �Np̂;�Np̂ � 1; . . . ; Np̂. Assume that the chirp func-
tion 	�ẑi; s� on the grid ẑi is also known.

To propagate the density from previous time s � k�s to
current time s0 � s� �s � �k� 1��s we undertake the
following steps [25].

(i) Adapt the new grid sizes according to

 �k�1
ẑ � �k

ẑ=C; (41)

 �k�1
p̂ � �k

p̂C; (42)

where the compression factor C � �1� dR56�s; s
0� 	

d	�ẑ;s�
dẑ jẑ�0�

�1 depends on the slope of the chirp function
	�ẑ; s� at ẑ � 0. The slope is calculated from the coeffi-
cients of the spline interpolation of 	�ẑi; s�.

(ii) Advance the chirp function from s to current time s0

according to (25) and (26). If (25) and (26) apply, first find
the images of the grid points ẑi under the map (26); these
images in general will not fall on grid points of the grid at
current time s0 but can be used to create a cubic spline
representation for 	 at s0. The chirp function is then
evaluated on the grid points of the current grid at s0 by
spline interpolation.

(iii) Determine the backward images of the nodes (ẑ0i �

i�k�1
ẑ ; p̂0j � j�k�1

p̂ ) under the inverse of the map M̂ext

defined in (35) and (36):

 ẑ � ẑ0i � �p̂
0
j � 	�ẑ

0
i; s� � p0�dR56; (43)

 

p̂ � p̂0j � 	�ẑ
0
i; s
0� � 	�ẑ0i � �p̂

0
j � 	�ẑ

0
i; s� � p0�dR56; s�:

(44)

Notice that to evaluate this mapping we make use of the
chirp function 	 both at present s0 and previous time s. In
(44) we use spline interpolation when the argument of 	
falls between grid points.

(iv) In the grid at s identify the nodes neighboring the
point (ẑ; p̂) calculated in (43) and (44). Use the values of
the density function at time s on these nodes to determine
f�ẑ; p̂; s� by interpolation. We found a local 16-point in-
terpolation scheme using bicubic polynomials quite effec-
tive. Identify the value f�ẑ0i; p̂

0
j; s
0� of the density function

at current time s0 on the node �ẑ0i; p̂
0
j� as f�ẑ0i; p̂

0
j; s
0� �

f�ẑ; p̂; s�.
(v) Integrate the phase density f�ẑ0i; p̂

0
j; s
0� with respect

to canonical momentum to obtain the longitudinal charge
density.

(vi) Calculate the Fourier transform of the charge den-
sity and combine it with the impedance to determine the
collective force and the corresponding kick at ẑ0i.

(vii) Advance the beam density function under the
collective-force kick. Because the kick depends only on
the position (not the canonical momentum) coordinate,
only 1D interpolations are necessary to determine the
density function [6]. This interpolation is done by cubic
splines.

Evaluation of the Fourier transform of the charge density
in item (vi) and determination of the collective force is
done by a fast-Fourier-transform algorithm (FFT) along the
lines of Ref. [11].

 

FIG. 3. (Color) Beam density function in the �ẑ; p̂� phase space
at the exit of a bunch compressor and in the presence of CSR.
The head of the bunch is at ẑ > 0.
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An example of numerical solution obtained using this
integration method is shown in Fig. 3. This is a snapshot of
the beam density at the end of the first bunch compressor of
the free electron laser radiation for multidisciplinarity in-
vestigations (FERMI) linac [26] starting from the beam
density shown in Fig. 2. The only collective effect present
here is coherent synchrotron radiation (CSR).

V. VALIDATION OF ALGORITHM AND CODING

We ran a number of tests to check the validity of the
algorithm and its implementation in a numerical code. We
typically considered a model of ‘‘smooth’’ flattop beam
with Gaussian energy spread f�z; p� � h�z; p� p0 �

	1z�, where h�z; p� � �flt�z� exp��p2=2
2
p�=

�������
2�
p


p and
�flt�z� � ftanh��z� lb�=fr� � tanh��z� lb�=fr�g=4lb. In
the above equation 2lb is the bunch length and fr a pa-
rameter controlling the roll-off of the density profile at the
beam ends. We also added a sinusoidal perturbation to the
charge density ��z� � �1� Ai sin�kz���flt�z� with small
amplitude perturbation Ai.

In the numerical examples shown in this section, we
adopted the parameters for the first bunch compressor of
the FERMI FEL complex [26], consisting of four bends of
0.5 m length and R � 7:38 m radius of curvature. The
electron beam passes the bunch compressor with energy
p0 � 233 MeV. We considered a beam with uncorrelated
energy spread 
p � 10 keV, corresponding to 
� �

p=p0 � 4:3	 10�5, and linear chirp 	�z� � 	1�s0�z�
p0. At the entrance of the first bunch compressor
	1�s0�=p0 � �27:5 m�1, resulting into a 3.5 compression
factor, and lb is about lb � 1:5 mm. A typical mesh size (as
in Figs. 1 and 3) is 400	 400.

In one test we compared the beam density propagated to
the end of the bunch compressor in the absence of collec-
tive effects with the exact solution (which is easy to
determine because the dynamics is linear). This helped
us decide in favor of a 16-point bicubic interpolation
scheme rather than a less efficient 4-point interpolation.
In other tests we turned on the collective effects and
specifically CSR to make contact with the linear theory
by looking at the amplification of initial small sinusoidal
perturbations. If we denote with �i and �f the peak longi-
tudinal beam densities at the start and end of the bunch
compressor [27] the gain function for the given wavelength
is conventionally defined as g � �Af=�f�=�Ai=�i�, where
Ai and Af are the initial and final amplitude of the charge-
density perturbation at wavelength �. The good agreement
with the theory [2] as shown in Fig. 4 was achieved with a
choice of the integration step �s of about 5% of the dipoles
length. Finally, in Fig. 5 we report a comparison between
numerical calculation and the analytical formula [3],

 g�k; s� � exp��1
2k

2
2
�R

2
56�s�C�s��; (45)

for the gain function in the absence of collective effects. In
the equation above, C�s� � 1=�1� 	1�s�R56�s�=p0� is the
compression factor at s for a beam with linear chirp.

VI. APPROXIMATE ACCOUNT OF TRANSVERSE
MOTION EFFECTS ON LONGITUDINAL

DYNAMICS

The most important limitation to a purely 2D model of
dynamics is neglect of a smearing effect on microbunching
caused in a bunch compressor by a finite horizontal emit-
tance, which may result in substantially smaller gain
curves for the microbunching instability [1–3]. While a
fully accurate account requires solving the equations of
motion in 4D, in this section we propose a heuristic model
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FIG. 4. (Color) Gain function through the FERMI first bunch
compressor at finite current, as determined from numerical
solutions of the Vlasov equation (dots) and linear theory (solid
line). The peak current before compression is I � 95:5 A (I �
336:2 A after compression). CSR is the only collective effect
included in the calculation.
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FIG. 5. (Color) The exact (solid line) gain function through the
FERMI first bunch compressor at vanishing current is compared
to that determined from numerical solutions of the Vlasov
equation (dots).
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that appears to yield some acceptable degree of approxi-
mation when compared to linear theory. We suppose,
without strong justification, that a solution of the 4D
Vlasov equation expressed in terms of the ‘‘beta’’ coordi-
nates of Sec. II, maintains an approximate factorization
between longitudinal and transverse motion:

 f 
 g�x�; px��fz��z�; ���: (46)

For the horizontal distribution, we assume a Gaussian
density matched to the lattice,

 g�x�; px�� �
1

2�"x
exp

�
�
I��x�; px��

2"x

�
; (47)

where I��x�; px�� � �xx
2
� � 2	xx�px� � �xp

2
x� is the

familiar Courant invariant. Notice that the factorization
(46) would be exactly preserved in the absence of collec-
tive effects.

Next, insert the ansatz (46) into the 4D Vlasov equation
(16) and find

 g
@fz�
@s
� ��

D
R
g
@fz�
@z�

� F��; s�g
@fz�
@��

� T� � 0; (48)

where as in Sec. II, � is shorthand for � � z� � x�D
0 �

px�D and
 

F��; s� � e2N
Z 1
�1

dz0w�� � z0�

	
Z
dxdpxd�f�x; px; z0; �; s�

� e2N
Z 1
�1

dz0w�� � z0�

	
Z
dxdpxd�g�x� �D; px � �D0�

	 fz��z0 � xD0 � pxD; �; s�

with

 T� � �F���fz�

�
D
@g
@x�
�D0

@g
@px�

�
: (49)

In writing (48), we exploited the invariance of I� under
the unperturbed dynamics: dI�=ds � 0. Finally, we re-
move the dependence of (48) on the transverse coordinates
by averaging and obtain
 

@fz�
@s
���

D
R

@fz�
@z�
�
@fz�
@��

Z
dx�dpx�F��;s�g�x�;px��� 0:

(50)

In (50) we made use of the fact that the average of T� over
the transverse phase space vanishes, as can be seen after
integration by parts. In Eq. (50) the term

 Fsm�z�� �
Z
dx�dpx�F�z� � x�D

0 � px�D�g�x�; px��

(51)

is an effective longitudinal collective force accounting for
the smearing from the horizontal emittance.

Upon carrying out some judicious changes of integration
variables, one can verify that (51) reduces to

 Fsm�z; s� � e2N
Z 1
�1

dz0w�z� z0��sm�z
0; s�; (52)

where the smeared longitudinal density �sm�z; s� is given
by

 �sm�z; s� �
Z 1
�1

dt
exp��t2=2
2

?��������
2�
p


?
��z� t; s�; (53)

with the amplitude of the smearing 
? �
��������������
2"xH

q
de-

pending on the transverse lattice through the ‘‘curly H’’
function H � �xD2 � 2	xDD0 � �x�D0�2. In the fre-
quency domain, the smearing has the form of a low-pass
filter

 Fsm�z; s� � �e2Nc
Z 1
�1

dkẐ�k�~��k; s�eikze�k
2
2
?
=2; (54)

with a cutoff wavelength �c defined by k2
2
?=2 ’ 1 yield-

ing �c � 2�
������������
"xH

q
. A plot of H in the FERMI first

bunch compressor is shown in Fig. 6.
That the smearing induced by a finite transverse emit-

tance is related to the H �s� function is not surprising but it
appears to have escaped notice. For example, after some
simple manipulations involving the transfer matrix entries
R51 and R52 the expression for the gain function in the
absence of collective effects reported in [3] can be cast in
the form
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FIG. 6. (Color) R56�s� and H �s� functions in FERMI first bunch
compressor.
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 g�k; s� � exp
�
�
k2C�s�

2
�
2

�R
2
56�s� � "xH �s��

�
; (55)

where C�s� is the compression factor defined at the end
of V.

To test our model against linear theory [2], we evaluated
the gain function through the FERMI first bunch compres-
sor BC1 in the presence of CSR only (i.e. space-charge was
not included) for a beam current I � 191 A (before com-
pression); this value is twice the FERMI design specifica-
tion. We considered two values of horizontal emittance.
The results are reported in Fig. 7 as dots. The solid lines are
from linear theory. We observe some discrepancy at larger
emittance with the agreement becoming better at smaller
emittance.

In a second set of calculations shown here, we included
the L1 section of the FERMI linac preceding BC1 and
turned on space-charge in L1 (but CSR was the only
collective effect present in the bunch compressor). At the
entrance of the L1 section, the beam is at an energy of
about E � 96 MeV and is accelerated to E � 233 MeV as
it enters BC1 after traveling through five radio frequency
(RF) structures. The length of L1 is about 36 m. Space-
charge kicks as determined using impedance (A1) were
applied once at the end of each drift and quadrupole, and

10 times within each cavity. The additional number of
kicks applied in the cavities is required by the strong
dependence of space-charge on beam energy.

In the calculation we defined the rb parameter [see (A1)]
as rb � 1:3��
2

x � 
2
y�=2�1=2, where 
2

x � �x"x, 
2
y �

�y"y are the local values of the transverse rms beam sizes
(where we assumed �"x � �"y � 1 �m). The factor 1:3 is
an attempt [28] to adjust the space-charge model to account
for the actual transverse density distribution of the physical
beam, which is closer to Gaussian than uniform (recall that
the impedance (A1) presupposes a beam with uniformly
transverse density and circular cross-section).

The calculation was done for a peak current I � 95:5 A
(before compression). The gain functions through L1�
BC1 are shown in the two pictures in Fig. 8 as red dots and
contrasted with the gain curves from linear theory (solid
lines) for two values of the normalized horizontal
emittance.

In the linear theory calculation, we used the same model
of space-charge with the beam radius parameter rb set to
rb � 0:28 mm, a value resulting the average of the rb
defined above over the length of the linac L1. The energy
was assumed to increase linearly over L1.

By comparing the two pictures in Fig. 8 we can appre-
ciate the considerable impact that a horizontal emittance
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FIG. 7. (Color) Comparison between model of smearing from horizontal emittance discussed in this section (dots) and linear theory
(lines). The gain curves are for the FERMI first bunch compressor and are shown for two values of normalized horizontal emittance.
The beam peak current (before compression) is I � 191:1 A (twice the design value). The beam energy is E � 233 MeV, the energy
spread 
p � 10 keV.
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FIG. 8. (Color) Gain curves through FERMI L1 and BC1 as determined from linear theory (solid line) and numerical solutions of the
Vlasov equation, with nonvanishing (left picture) and vanishing (right picture) transverse emittance. Space-charge was included in L1
but not in BC1 and calculated based on the beam sizes resulting from �"x � �"y � 1 �m in both pictures. CSR was included in BC1.
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"xn � 1 �m has on softening the gain function. The agree-
ment with linear theory is satisfactory but, we should
emphasize, this is for a case where the overwhelming
contribution to the gain function results from space-charge
in the linac trailing the bunch compressor.

VII. DISCUSSION AND CONCLUSIONS

The direct Vlasov methods discussed in this paper are
ideally suited to study short-scale phenomena, like the
microbunching instability, that are more difficult to access
using other simulation techniques. A systematic applica-
tion of our solver to the study of microbunching in the
overall FERMI linac, as well as a close comparison with
macroparticle simulations and a more thorough assessment
of the applicability of the model presented in Sec. VI, is
currently underway and will be reported elsewhere.

We end by pointing to a limitation of our Vlasov solver
in its current form. Beam features of a scale larger than that
involved with microbunching (including large energy
spread developing at the ends of flattop beams or curva-
tures of the beam densities due to the RF wave nonlineari-
ties and RF structure wakefields) may be handled but not in
full generality by the algorithm presented here.

A difficulty would arise if collective forces substantially
affected the beam position/energy correlation in the longi-
tudinal phase space. This would make it necessary to
redefine the rule for the evolution of the chirp function 	
(24) so as to include to some extent the effect of the
collective force and maintain the support of the beam
density centered in the grid used to represent the beam
density. Implementing this poses no problem in principle.

A further problem could appear if during its evolution
the correlation function 	 became multivalued or had an
infinite slope, making the coordinate transformation (28)
and (29) ill defined (e.g. see Fig. 6 in [29]). An obvious
solution would be to distinguish between the regions of
phase space where the transformation can be uniquely
defined and apply the method of Sec. V to each region
separately. It remains to be seen whether this prescription
would be practical and efficient.
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APPENDIX

The main sources of machine impedance relevant for the
microbunching instability are space-charge and CSR. RF
structure wakefields can be very significant but are gener-
ally effective on a length scale longer than the one relevant
for microbunching. For the examples shown in this paper

we used the following model [3,30] of space-charge im-
pedance (per unit length):

 Ẑ�k� �
iZ0

��rb

1� xK1�x�
x

��������x�krb=�
; (A1)

where K1�x� is a modified Bessel function and Z0 �
120� �, the vacuum impedance. This formula applies to
a bunch with transversally uniform density and circular
cross section of radius rb in free space and yields the
electric field on the beam axis. This expression is valid
for wavelengths small compared to b=� [22], where b is
the radius of the vacuum chamber (� is the relativistic
factor).

For CSR we used the impedance model [2] for radiation
in free space,

 Ẑ�k� � Z0
��2=3�

31=34�R
�
���
3
p
� i��kR�1=3; (A2)

where � is the Euler function. Because we are mostly
interested in the evolution of high frequency components
of the bunch spectrum, this is adequate for our study:
shielding from the vacuum chamber [11] becomes notice-
able for wavelengths longer than about b�2b=R�1=2. For the
FERMI chicane parameters (b ’ 4 mm and radius of cur-
vature R ’ 7:4 m), this number is about 130 �m—larger
than wavelengths of interest for microbunching. An addi-
tional approximation is to neglect transient effects at dipole
ends, as the impedance (A2) properly applies to particles in
uniform motion on a circular orbits: the criterion [1] for the
validity of (A2), � � R�3=24, where � is the dipole bend
angle, yields a 100 �m critical wavelength (for R ’ 7:4 m
and � � 70 mrad).

The expressions (A1) and (A2) are understood to be
valid for k > 0. For negative wave numbers, the complete
expressions are recovered by the rule Z��k� � Z��k�.
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