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In this paper we introduce an optical approximation into the theory of impedance calculation, one valid
in the limit of high frequencies. This approximation neglects diffraction effects in the radiation process,
and is conceptually equivalent to the approximation of geometric optics in electromagnetic theory. Using
this approximation, we derive equations for the longitudinal impedance for arbitrary offsets, with respect
to a reference orbit, of source and test particles. With the help of the Panofsky-Wenzel theorem, we also
obtain expressions for the transverse impedance (also for arbitrary offsets). We further simplify these
expressions for the case of the small offsets that are typical for practical applications. Our final expressions
for the impedance, in the general case, involve two-dimensional integrals over various cross sections of
the transition. We further demonstrate, for several known axisymmetric examples, how our method is
applied to the calculation of impedances. Finally, we discuss the accuracy of the optical approximation
and its relation to the diffraction regime in the theory of impedance.
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I. INTRODUCTION

The calculation of the impedance for the elements of a
vacuum chamber system and the associated calculation of
beam dynamics effects, such as beam instabilities or wake-
field induced emittance growth, are important elements in
the design of a modern accelerator. Sophisticated computer
programs are routinely used for such calculations, and in
many cases they can successfully treat complicated geome-
tries, like those found in real vacuum systems. There are,
however, cases where the simulations are pushed to their
limits in resource requirements of both memory and cpu
time, and in their ability to yield an accurate result.

One example is the case of very short bunches, like those
envisioned in future linear colliders and future light
sources. For example, the final bunch length in the current
design of the International Linear Collider (ILC) [1] is 300
microns; the final (rms) bunch length in the Linac Coherent
Light Source [2] is 20 microns and in the European XFEL
[3] it is 25 microns. Since numerical calculation of the
short-range wake requires a spatial mesh size equal to a
fraction of the bunch length, submillimeter bunches repre-
sent a challenging computational task. Another example
where direct numerical calculation is difficult is related to
long, small-angle tapers which are often used to minimize
the abruptness of vacuum chamber transitions. For ex-
ample, collimators with such tapers will be used in the
post-linac collimation section of the ILC. In such cases, a
numerical solution of Maxwell’s equations requires a large
number of mesh points to fully cover the length of the
transition or collimator. The difficulty becomes especially
pronounced for short bunches.

The difficulty in both examples mentioned above is
associated with a small parameter. For short bunches

such a small parameter is the ratio of bunch length �z to
typical size b of the structure (in the vacuum chamber) that
generates the impedance. If we denote by � the inverse
wave number c=! (c is the speed of light and ! the
characteristic frequency of interest), then �� �z, and the
small parameter for the problem is �=b. It has long been
known that effective utilization of this small parameter
may allow one to simplify the impedance problem, and
several analytical results are available in the literature for
the impedance at high frequencies. They include the im-
pedance of a step transition [4,5] and the diffraction model
for the impedance of a cylindrical pillbox cavity [6–9].
More recently, a parabolic equation method was devel-
oped that provides a simplified treatment of diffraction
effects at high frequencies [10].

In the case of diffraction theory, the calculation takes
into account the fact that radiated electromagnetic fields do
not propagate along straight lines. A Fresnel type integral
from the diffraction theory of light is used to evaluate the
electromagnetic energy that enters into the cavity region
[6,7]. This energy is associated with the energy lost by the
beam and is thus related to the real part of the impedance.
In this paper we will show that in many cases the same kind
of argument can be applied to the calculation of impedance
in an approximation that we call the optical approximation
(or optical regime) in the theory of impedance. In this
approximation we assume that the electromagnetic fields
carried by a short bunch propagate along straight lines
equivalent to rays in the geometric optics. An obstacle
inside the beam pipe can intercept the rays and reflect
them away from their original direction. The energy in
the reflected rays is associated with the energy radiated by
the beam, which can then be related to the impedance. Note
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that this kind of argument has been used in the past in the
case of step-in and step-out transitions in a round pipe,
where the impedance was related to the energy ‘‘clipped
away’’ from the beam by the step [9,11]. In a recent paper
this approach has been extended and applied to the calcu-
lation of impedance for 3D collimators [12].

If l is the length of an obstacle and b is the minimal
cross-section size of the beam pipe, the conditions for the
optical approximation are

 �� b; l�
b2

�
: (1)

The first of these two conditions requires the size of the
obstacle be much larger than the reduced wavelength of the
radiation. The right-hand side of the second inequality has
a meaning of the length over which diffraction effects
become significant, and this relation guarantees that such
effects give only a small correction to those of geometric
optics. Note that even a small-angle taper of angle �� b=l
can be described in the optical approximation for short
enough bunches, if �=b� �. The quantity b2=� can also
be interpreted as a catch-up distance over which radiation,
generated by the head of a beam, reflects from a side wall
of radius b and reaches the beam tail at length �z � �
behind the head. Thus the second condition of Eq. (1) for
the applicability of the optical approximation is that the
object is short compared to the catch-up distance.

An analogous problem in geometric optics would be a
body with transverse size b and length l illuminated by
light, see Fig. 1. The energy reflected by the body can be
simply calculated, in the optical approximation, as the
energy incident upon the cross-sectional area of the body.
Such calculation, however, is only valid if the length of the
obstacle l and the transverse size b obey the second con-
dition in Eq. (1). In the opposite limit (l� b2=�), diffrac-
tion effects become dominant.

In this paper we assume perfect conductivity in the
vacuum chamber wall. Our goal is to justify the optical
approximation at high frequencies and to demonstrate how

one can apply it to calculations of both the longitudinal and
transverse geometric impedances. We take two approaches
to the problem. The first one is based on the general energy
balance equation in electromagnetic theory, which relates
the longitudinal impedance to the energy radiated from a
transition in a beam pipe. In the past, calculations of
impedance based on this relation were carried out by one
of the authors in axisymmetric [13] as well as rectangular
[14] geometries. The derivation is similar to the approach
developed in Ref. [15] for the problem of laser acceleration
in vacuum. As it turns out, in the most general case of
unequal offsets of the leading and trailing particles, this
approach gives the sum of the longitudinal impedances
symmetrized over the coordinates of the particles, which
does not provide enough information to obtain the trans-
verse impedance for the transition. Our second approach
uses a so-called indirect integration method developed in
Refs. [16,17]. Although not as physically transparent as the
energy balance method, this method—with some reason-
able assumptions regarding the formation length of the
wakefield—gives a simple expression for the longitudinal
impedance in the most general case.

We want to emphasize here that, although our result is
not derived formally from first principles, it is based on a
combination of exact consequences of Maxwell’s equa-
tions and simple physical arguments that follow from the
geometric optics. Our result is applicable to an arbitrary
three-dimensional transition and allows the incoming and
outgoing beam pipes to have different cross sections.
Practically important examples of impedance in the optical
regime are considered in a companion paper [18] where we
also make a detailed comparison with computer simula-
tions and find excellent agreement between the theory and
simulations.

This report is organized as follows. In Sec. II we derive
equations that relate the longitudinal impedance to the
integrals of the Fourier transformed Poynting vector over
surfaces located far from the transition. In Sec. III we
calculate the contribution to the impedance of the static
fields carried by the charges while they are in the incoming
and outgoing pipes and far from the transition. The deri-
vation in these two sections is general and does not make
any high-frequency assumptions. In Sec. IV the contribu-
tion to the impedance of the radiation field is computed in
the optical approximation. In Sec. V we invoke the indirect
integration method to find the wakefield for unequal offsets
of the particles. In Sec. 2, using the Panofsky-Wenzel
theorem, we derive expressions for the transverse imped-
ance in the optical approximation. Although our results for
the transverse impedance are applicable for arbitrarily
large transverse offsets, we further specialize them for
the case of the small offsets usually assumed in practical
applications. Example impedance calculations are given in
Sec. VII where we compute both the longitudinal and
transverse impedances of a short, round collimator, and

 

FIG. 1. (Color) In geometric optics, light incident on a metallic
object from the left is reflected by the surface creating a shadow
behind the object. The reflected light can be considered as
radiation emitted by the object due to currents induced in the
metal by the incident electromagnetic field.
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round step-in and step-out transitions. We show that our
results for these cases agree with known expressions found
in the literature. In Sec. VIII we discuss the relation
between the optical regime and diffraction theory, and
establish the accuracy of the optical approximation.
Finally, in Sec. IX we summarize the main results of the
paper.

We use a Gaussian system of units throughout this paper;
to convert impedances to SI units, one multiplies them by
the factor Z0c=4�, with Z0 � 377 �.

II. LONGITUDINAL IMPEDANCE AND THE
ENERGY RADIATED BY CHARGED PARTICLES

It is well known that the real part of the longitudinal
impedance is related to the energy loss of the beam [19].
Since we assume perfect conductivity in the metallic walls,
the losses are due to the beam-induced radiation that
propagates away from the transition. In this section we
derive a formula that relates the impedance to integrals of
the field over remote surfaces far from the transition, and
which is valid for a transition of general shape and incom-
ing and outgoing beam pipes of arbitrary cross section.

We consider transitions between two beam pipes of
cross sections SA and SB, respectively, as shown in
Fig. 2. SA and SB are arbitrary, other than their axes are
parallel to each other and also parallel to the so-called
design orbit of the beam. We let the design orbit, in turn,
define the z-axis. We assume that a charge q1 moves at
offset r1 � �x1; y1� with respect to the design orbit, and a
charge q2 moves at offset r2 � �x2; y2� and at distance s
behind (for s > 0) the leading charge; both charges are
assumed to move at the speed of light c. We want to
calculate the longitudinal wake wk�r1; r2; s� given by

 wk�r1; r2; s� � �
c
q1

Z 1
�1

E1;z�r2; z � ct� s; t�dt; (2)

where E1;z�r; z; t� is the z-component of the electric field
generated by the leading particle at the position of the
trailing one. The longitudinal impedance is related to the
wake by the Fourier transform

 Zk�r1; r2; !� �
1

c

Z 1
0
dswk�r1; r2; s�ei!s=c: (3)

Let us denote the electric and magnetic fields of the
leading charge byE1�r; z; t� andH1�r; z; t�, and the electric
and magnetic fields of the trailing charge by E2�r; z; t� and
H2�r; z; t�. The field �E1;H1� is due to the charge density
of the first particle, �1 � q1��z� ct���r� r1�, and the
field �E2;H2� is generated by the charge density of the
second particle, �2 � q2��z� s� ct���r� r2�. The total
field is the sum E � E1 �E2, H � H1 �H2.

Using the energy balance equation in electrodynamics
[20], we can calculate the energy lost by both charges by
integrating the Poynting vector over remote boundaries SA
and SB located, respectively, far to the left of the incoming
pipe and far to the right of the outgoing pipe

 W �
c

4�

Z 1
�1

dt
Z
SA�SB

n 	 �E
H�dS: (4)

Here n is the unit vector perpendicular to the surface area,
and we use the short-hand notation

R
SA�SB

for the sum of
the integrals over SA and SB. In this equation the vector n is
oriented in the outward direction—it is parallel (antipar-
allel) to the z axis on SB (SA). A positive value of W means
that the charges lose energy. The contribution of such
integrals over the metallic surface of the pipes and the
transition vanishes because we assume that there are no
losses in the wall. It follows from the energy balance
equation that the radiated energy given by Eq. (4) is equal
to minus the energy change of both particles:
 

W � �cq1

Z 1
�1

Ez�r1; z � ct; t�dt

� cq2

Z 1
�1

Ez�r2; z � ct� s; t�dt: (5)

The first term in this equation is the energy loss of the
leading particle, and the second term is the energy loss for
the trailing one. Note that strictly speaking the integration
in Eq. (5) should only be performed over the region be-
tween the surfaces SA and SB; however, assuming that the
surfaces are located sufficiently far from the transition (to

 

FIG. 2. (Color) Geometry of a transition from pipe A to pipe B in 3D and 2D. The aperture area Sap is the minimal cross section that
connects the two pipes. The paths of the source particle 1 and the test particle 2 are shown in the right panel: they move from left to
right along the z-axis. Also shown are unit vectors n used in Eq. (4).
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where the interaction of the charges vanishes), we can
extend the limits of integration to infinity.

The electric field at the location of the leading particle is
equal to E1;z�r1; z � ct; t� � E2;z�r1; z � ct; t�, and the
electric field at the location of the trailing particle is
E1;z�r2; z � ct� s; t� � E2;z�r2; z � ct� s; t�. We can
cast the formula for W as follows:

 W � q2
1U1 � q1q2U2 � q

2
2U3; (6)

where

 U1 � �
c
q1

Z 1
�1

E1;z�r1; z � ct; t�dt

U2 � �
c
q1

Z 1
�1

E1;z�r2; z

� ct� s; t�dt�
c
q2

Z 1
�1

E2;z�r2; z � ct; t�dt

U3 � �
c
q2

Z 1
�1

E2;z�r2; z � ct� s; t�dt:

(7)

Since we assume that the particles move at the speed of
light, due to causality the trailing particle does not affect
the leading one. This means that E1;z�r2; z � ct� s; t� is
not equal to zero only if s > 0, and, similarly, E2;z�r2; z �
ct; t� does not vanish only for s < 0. This observation
allows us to rewrite U2 as

 U2 � h�s�wk�r1; r2; s� � h��s�wk�r2; r1;�s�; (8)

where h�s� is the unit step function.
The next step is to take the Fourier transform in time,

introducing the fields E and H ,

 

�
E�r; z; !�
H �r; z; !�

�
�

1

2�

Z 1
�1

dtei!t
�
E�r; z; t�
H�r; z; t�

�
: (9)

Similarly, we also define the Fourier components
E1�r; z; !� and H 1�r; z; !� for the electromagnetic field
of the first charge. Because the fields E andH are real, we
have the relations
 

E�r; z;�!� � E��r; z; !�;

H �r; z;�!� �H ��r; z; !�;
(10)

with equivalent relations for E1 and H 1. The asterisks in
these equations denote complex conjugation. As for the
Fourier components of the second charge, we define them
in a way that explicitly separates the phase factor intro-
duced by the distance s between the particles:

 

�
E2�r; z; !�
H 2�r; z; !�

�
�

1

2�
e�i!s=c

Z 1
�1

dtei!t
�
E2�r; z; t�
H2�r; z; t�

�
:

(11)

We then have E � E1 � e
i!s=cE2 and H �H 1 �

ei!s=cH 2.
From the linearity of Maxwell’s equations, it follows

that the electromagnetic field �E1;H 1� is generated by the

charge density �̂1 equal to the Fourier image of �1,

 �̂ 1 �
1

2�

Z 1
�1

dt�1ei!t �
q1

2�c
ei!z=c��r� r1�; (12)

and the field �E2;H 2� is generated by the charge density

 �̂ 2 �
1

2�
e�i!s=c

Z 1
�1

dt�2ei!t �
q2

2�c
ei!z=c��r� r2�:

(13)

Note that because of the extra phase factor e�i!s=c in the
definition (11) the Fourier components �̂1 and �̂2 are now
‘‘in phase.’’ Since �̂2 has the property �̂2�!� � �̂�2��!�,
the fields �E2;H 2� satisfy the same relations as Eq. (10).

Using Parseval’s theorem for Fourier transforms we can
express W in Eq. (4) in terms of E�!� and H �!�:

 W �
c
2

Z 1
�1

d!
Z
SA�SB

�E�!� 
H ��!� 	 ndS; (14)

or, equivalently, in terms of the fields of the first and second
particles,
 

W �
c
2

Z 1
�1

d!
Z
SA�SB

�E1�!� 
H �
1�!� 	 ndS

�
c
2

Z 1
�1

d!
Z
SA�SB

�e�i!s=cE1�!� 
H �
2�!�

� ei!s=cE2�!� 
H �
1�!� 	 ndS

�
c
2

Z 1
�1

d!
Z
SA�SB

�E2�!� 
H �
2�!� 	 ndS: (15)

We will now prove that each of the three terms on the
right-hand side of Eq. (6) is equal to the corresponding
term in Eq. (15). The proof is based on the linearity of
Maxwell’s equations and the fact that expressions (6) and
(15) are equal for arbitrary values of q1 and q2. If q2 � 0,
then there are only the first terms in these two equations,
hence they are equal. If q1 � 0, then there are only the
third terms, and they are also equal. Hence the second
terms must be equal, too. Using Eq. (8) we obtain
 

h�s�wk�r1; r2; s� � h��s�wk�r2; r1;�s�

�
c

2q1q2

Z 1
�1

d!
Z
SA�SB

�e�i!s=cE1�!� 
H �
2�!�

� ei!s=cE2�!� 
H �
1�!� 	 ndS

�
c

2q1q2

Z 1
�1

d!e�i!s=c
Z
SA�SB

�E1�!� 
H �
2�!�

� E�2�!� 
H 1�!� 	 ndS: (16)

In the last integral we changed the integration variable
!! �! in the second term of the integrand and used
the relations E2��!� � E�2�!� and H �

1��!� �H 1�!�.
Taking the Fourier transform of this equation and using
Eq. (3) gives
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Z�r1; r2; !� � Zk�r1; r2; !� � Zk�r2; r1; !�

�
�c
q1q2

Z
SA�SB

�E1�!� 
H �
2�!� � E�2�!�


H 1�!� 	 ndS: (17)

The quantity Z in this equation is the sum of the imped-
ances symmetrized with respect to the offsets of the lead-
ing and trailing particles. If r1 � r2, then the left-hand side
is equal to 2Zk�r1; r1; !� and this equation gives the lon-
gitudinal impedance for particles that have the same offset.
However, for the general case of unequal offsets, the
equation gives only the sum of the impedances Z.

Note that up to this point we did not use any approxi-
mation in our derivation—our result is valid not only in the
optical regime, but for arbitrary frequency !. Equa-
tion (17) relates the sum of two longitudinal impedances
to the interference term between the electromagnetic fields
of charges 1 and 2 in the energy flow through the remote
boundaries SA and SB. In the next sections we will split the
right-hand side of Eq. (17) into several distinct parts and
then calculate the parts individually in the optical regime.

III. CONTRIBUTION TO IMPEDANCE OF STATIC
AND RADIATION FIELDS

There are several contributions to the integral in
Eq. (17). The first one comes from the field that is carried
by particles when they cross the surface SA on their way to
the transition, and the second one arises when they pass
through the surface SB after leaving the transition. We call
these fields the static fields because they do not vary in
time in the beam frame and they can be calculated from a
time independent system of equations after a trivial change
of variables z� ct! � in the laboratory frame. We em-
phasize here that these are not radiation fields; neverthe-
less, they need to be included into the original energy
balance in Eq. (4).

We begin calculation of the static field contributions
from pipe A. The electric fields E1;A and E2;A in the straight
pipe can be represented in terms of the potential function
�,
 

E1;A � �
q1

2�c
ei!z=cr�1;A�r�;

E2;A � �
q2

2�c
ei!z=cr�2;A�r�;

(18)

where r � x̂@=@x� ŷ@=@y. The potential � satisfies
Poisson’s equation with source terms given by the charge
densities of Eqs. (12) and (13):

 r2�1;A�r� � �4���r� r1�;

r2�2;A�r� � �4���r� r2�;
(19)

with boundary conditions �1;A � �2;A � 0 on the wall of
pipe A. The magnetic field in pipe A is H 1;A � ẑ
 E1;A

and H 2;A � ẑ
 E2;A. We denote by ZA the contribution

of these fields, when integrated over the surface SA, to the
integral Eq. (17):

 ZA � �
2�c
q1q2

Z
SA
E1�!� 	 E

�
2�!�dS

� �
1

2�c

Z
SA
r�1;A 	 r�2;AdS: (20)

The minus sign in this equation is due to the fact that the
normal vector to SA is oriented in the direction opposite to
the z axis.

In the same way we calculate the contribution ZB to
Eq. (17) from the remote boundary SB. The electric field on
this surface E1;B and E2;B is given by the same equations
(18) and (19) with the index A replaced by B, and the
boundary conditions for �1;B and �2;B being zero on the
metallic surface of beam pipe B. However, because the
direction of the normal vector to SB is along the z axis, ZB
has a positive sign:

 ZB �
1

2�c

Z
SB
r�1;B 	 r�2;BdS: (21)

Note that, strictly speaking, the integrals in Eqs. (20) and
(21) diverge because the field has a singularity at the
location of charges q1 and q2. However in the sum ZA �
ZB the singular contributions cancel, and the result is finite.

In addition to the terms ZA and ZB there will be a
contribution to the impedance due to the radiation field
emitted in the transition region. We will denote this con-
tribution Zrad, so that

 Z � ZA � ZB � Zrad: (22)

The quantity Zrad will be evaluated in the next section using
the optical approximation.

IV. RADIATION FROM THE TRANSITION IN THE
OPTICAL APPROXIMATION

In the optical regime the radiated energy has several
terms. The first term is the energy that is radiated by
reflection from the narrowing part of the pipe in the aper-
ture area1 Sap (see Fig. 2). We denote the cross section of
the transition that complements Sap to SA by SA � Sap (and,
similarly, the cross section that complements Sap to SB by
SB � Sap). The incident energy flux within this area will be
‘‘clipped away’’ from the beam and converted into a ra-
diation field. This radiation may go in the backward direc-
tion if the narrowing region is steep enough (e.g., a
diaphragm, or a 90-degree, abrupt step-in pipe radius),
or, for a small-angle taper, it may go in the forward

1For a 3D transition with a complicated geometry the general
rule for finding the aperture area Sap is the following. Assume
that the transition is illuminated by a set of parallel rays of light
that propagate from pipe A along the z axis. Then the cross
section of the illuminated area in pipe B gives Sap.
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direction. Since the incident energy is the static field in
pipe A, the contribution Zrad;1 of the clipped energy is given
by the same Eq. (20), but with the integration now carried
out over the ‘‘clipping’’ area SA � Sap,

 Zrad;1 �
1

2�c

Z
SA�Sap

r�1;A 	 r�2;AdS: (23)

The sign in this equation is positive because the radiation
propagates from the transition region to infinity.

Through the aperture Sap connecting pipes A and B,
charges carrying the static potential �A enter into pipe B
(for brevity, we momentarily drop indices 1 and 2). The
fields will eventually change in such a way that at a large
distance from the transition the particles will carry the
potential �B. In the course of this restructuring, there
will be additional radiation emitted in the forward direc-
tion. We denote the contribution of this radiation to the
impedance by Zrad;2 and calculate it in the following way.
We represent the potential of the charges immediately after
passing through the aperture as a sum of the potential �B
occupying area SB, the potential ��B over the area SB �
Sap, and the potential �A ��B over the area Sap. From the
linearity of Maxwell’s equations, the first field proceeds
with the charges as a new static field in pipe B, and the last
two transform into radiation. The energy integral of the
interference fields carrying this radiation is similar to
Eqs. (20) and (21) with the difference that over the area
Sap one needs to use �A ��B, and outside of it, the
potential ��B:
 

Zrad;2 �
1

2�c

Z
Sap

r��1;A ��1;B� 	 r��2;A ��2;B�dS

�
1

2�c

Z
SB�Sap

r�1;B 	 r�2;BdS: (24)

A slightly different view of the derivation of Eqs. (23)
and (24) is illustrated by Fig. 3. According to this view,
since the length of the transition is short [to satisfy
Eqs. (1)], it can be treated as an infinitely short protrusion
located at z � 0. The incident electromagnetic field in pipe
A, given by potential �A, generates a radiation field which
will be reflected back into pipe A. The radiation field
satisfies the boundary conditions � � ��A on the left
side of the protrusion, at z � �0, indicated in Fig. 3.
This condition follows from the requirement that the tan-
gential electric field on the surface of the metal is zero. The
boundary conditions on the side of pipe B, at z � �0, are
also indicated in the figure. The radiation field that satisfies
these boundary conditions, when summed with the static
field corresponding to potential �B, gives a field equal to
zero on the metallic surface of the protrusion, and equal to
�A over the aperture Sap. The interference terms between
the radiation fields of the first and the second charges lead
to the integrals Eqs. (23) and (24) on the left and the right
side of the transitions, respectively.

Collecting now all contributions in Eqs. (20), (21), (23),
and (24) we arrive at the final result:
 

Z �
1

�c

Z
SB
r�1;B 	 r�2;BdS

�
1

2�c

Z
Sap

�r�1;A 	 r�2;B �r�1;B 	 r�2;A�dS;

(25)

where the first integral is carried out over the cross section
of pipe B, and the second integral over aperture Sap. Note
that the impedance given by Eq. (25) is real and does not
depend on frequency !.

As was emphasized above, the energy balance equation
which was used to derive Eq. (25) gives the summed
impedance Z�r1; r2; !� � Zk�r2; r1; !� � Zk�r1; r2; !�,
which is symmetrized over the offsets of the leading and
trailing particles. This suffices to give us the longitudinal
impedance for the case when leading and trailing particles
follow the same path. However, for the transverse imped-
ance (which we will discuss below), we will need to first
find Zk�r1; r2; !� alone (Z is not sufficient). To find
Zk�r1; r2; !� in the optical approximation, we will, in the
next section, invoke a more formal approach based on a so-
called indirect integration method.

V. INDIRECT INTEGRATION METHOD

The indirect integration method developed in
Refs. [16,17] reduces the calculation of the wakefield to
the integration along a straight path up to some point z0

located in the exit pipe B. The contribution from the
remaining path z > z0 is expressed through the solution
of an auxiliary problem at the cross section z � z0.

By choosing z0 in pipe B immediately after the transi-
tion, we note that, in the optical regime, the contribution of

 

FIG. 3. The transition of Fig. 2, represented schematically as
an infinitely thin protrusion. Also given are the boundary con-
ditions for the potentials connected to the radiation fields on both
the A and B sides of the protrusion.
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path z < z0 can be neglected. Indeed, the wake accumu-
lates over the catch-up distance �b2=�, which, according
to Eqs. (1), is much larger than the transition length l. This
observation greatly simplifies the problem and allows us to
compute the impedance from the part of path with z > z0

only. This contribution is [16]

 w�r1; r2; s� � �
1

q1
��r2; s�; (26)

where � satisfies the equation

 r2��r; s� �
�
@
@z
� c�1 @

@t

�
Esc

1;z�r; z � 0; t � s=c�; (27)

with the boundary condition � � 0 on the wall of pipe B.
The quantity Esc

1 is (according to the terminology of
Ref. [16]) the ‘‘scattered’’ electric field of the leading
charge—it is obtained by subtracting from the total field
of this charge its static field in pipe B. In Eq. (27) we set
z0 � 0 and suppress the argument r1 in the function �—
the dependence on this argument is clear from Eq. (27)
where the electric field E1;z is generated by the leading
particle moving with offset r1.

We now transform Eq. (27) in a way that eliminates the
longitudinal component Ez. Using @Esc

z =@z�r 	E
sc
? � 0

and c�1@Esc
z =@t � �r
Hsc�z, we obtain

 

@Esc
1;z

@z
� �r 	Esc

1? c�1
@Esc

1;z

@t
� �r
Hsc

1?�z; (28)

where the symbol ? refers to the components of the field
perpendicular to the z axis (we also remind the reader that
r is a two-dimensional operator in the x� y plane).

Because we now use the time domain representation for
the fields, we need to take the inverse Fourier transform of
Eq. (18) (and of a similar equation for pipe B) to find the
static fields of the particle. This gives for E1

 

E1;A�r; z; t� � �
q1

c
��t� z=c�r�1;A�r�;

E1;B�r; z; t� � �
q1

c
��t� z=c�r�1;B�r�;

(29)

with the magnetic fields given by H1;A � ẑ
E1;A and
H1;B � ẑ
E1;B.

The crucial step in the derivation is to notice that, in the
optical regime, after passage through the transition region,
the static field of particle 1 is ‘‘scraped off’’ outside the
aperture Sap. The field left with the charge is equal to E1;A

but only within the area of Sap (the field in SB � Sap is
zero). To find the scattered field we need to subtract from
the ‘‘truncated’’ field E1;A the static field E1;B of charge 1
in pipe B, which gives

 E sc
1?�r; z; t� �

�
��q1=c�r��1;A�r� ��1;B�r���t� z=c� in Sap;
��q1=c�r�1;B�r���t� z=c� in SB � Sap;

(30)

with the corresponding magnetic field given by

 H sc
1? � ẑ
E

sc
1?: (31)

We substitute Eqs. (30) and (31) into Eq. (28) and use the
result as the right-hand side in Eq. (27) for �. It follows
from Eq. (31) that �r 
Hsc

1?�z � r 	E
sc
1?, which gives

 r2��r; s� � �2r 	Esc
1?�r; z � 0; t � s=c�: (32)

This equation is solved by first noting that ��4���1�B�r�
is the Green function in SB [�B satisfies Eqs. (19) in which
A is replaced by B] and then using the symmetry of the
Green function with respect to its two arguments [21]. The
result is
 

��r2; s� �
1

2�

Z
SB
dS�2;B�r�r 	E

sc
1?�r; z � 0; t � s=c�

� �
1

2�

Z
SB
dSr�2;B�r� 	E

sc
1?�r; z � 0; t � s=c�

� �
q1

2�
��s�

�
�
Z
Sap

dSr�2;B 	 r��1;A ��1;B�

�
Z
SB�Sap

dSr�2;B 	 r�1;B

�
; (33)

where in the second integral we integrated by parts and

used the fact that �2;B vanishes on the wall of pipe B. Our
final result for the wake becomes

 w �
1

2�
��s�I; (34)

where
 

I �
Z
SB
r�1;B�r� 	 r�2;B�r�dS

�
Z
Sap
r�1;A�r� 	 r�2;B�r�dS: (35)

The impedance corresponding to this wake is

 Z�r1; r2� �
1

2�c
I: (36)

It is easy to see that this impedance is consistent with the
symmetrized formula Eq. (25).

VI. TRANSVERSE IMPEDANCE AND SMALL
OFFSET OF PARTICLES

Knowledge of the longitudinal impedance allows one to
compute the transverse impedance using the Panofsky-
Wenzel theorem [22]. In the general case, the transverse
impedance is represented by a vector Z? perpendicular to
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the particle’s orbit, and is given by

 Z? �
c
!
rr2

Zk; (37)

where rr2
is the operator ‘‘nabla’’ that differentiates with

respect to the coordinates r2 of the trailing particle, rr2
�

x̂@=@x2 � ŷ@=@y2, with x̂ and ŷ being the unit vectors in x
and y directions.2

In applications, it is typically assumed that there is a
symmetry axis in the system and the beam has a small
offset relative to this axis compared to the transverse size
of the pipe. In this case, one can expand the impedance in
Taylor series. The leading terms in the transverse imped-
ance in this case are linear in offsets of the leading and
trailing particles.3 We will now derive expressions for the
transverse impedance in this approximation.

For small offsets of the leading and trailing particles we
can expand the delta functions in Eqs. (19)

 ��r� r1� � ��r� � r1 	 r��r� �
1
2�r1 	 r�

2��r�;

��r� r2� � ��r� � r2 	 r��r� �
1
2�r2 	 r�

2��r�;
(38)

and represent each potential as a sum of a monopole part
��m�, a dipole part ��d�, and a quadrupole part ��q�:

 �1 � ��m� ���d�1 ��
�q�
1 ; �2 � ��m� ���d�2 ��

�q�
2 ;

(39)

where the parts satisfy the equations
 

r2��m� � �4���r�;

r2��d�1 � 4�r1 	 r��r�;

r2��d�2 � 4�r2 	 r��r�;

r2��q�1 � �2��r1 	 r�
2��r�;

r2��q�2 � �2��r2 	 r�
2��r�:

(40)

Representation (39) generates many terms in Eq. (36).
The linear term in r2 after substitution into the Panofsky-
Wenzel equation (37) gives rise to a transverse impedance
which corresponds to a kick on particle 2 when both
particles travel along the reference orbit without offset.
We will call this impedance the transverse monopole im-
pedance and denote the corresponding longitudinal imped-

ance by Zk;m, where
 

Zk;m �
1

2�c

Z
SB
r��m�1;B 	 r�

�d�
2;BdS

�
1

2�c

Z
Sap

r��m�1;A 	 r�
�d�
2;BdS: (41)

In many practical cases the structure geometry has both up-
down and right-left symmetry and the design orbit is on the
symmetry line. In such a case the transverse monopole
impedance vanishes. The longitudinal impedance which
gives the usual transverse wake then has a term that is
proportional to the product of vector components of r2 and
r1 and one that is quadratic in r2 (no dependence on r1).
According to accepted terminology, we will call the former
(in the case of impedance) the dipole component, Zk;d, and
the latter the quadrupole component, Zk;q. The total im-
pedance, the sum of the two components, is given by

 Zk � Zk;d � Zk;q; (42)

where
 

Zk;d �
1

2�c

Z
SB
r��d�1;B 	 r�

�d�
2;BdS

�
1

2�c

Z
Sap

r��d�1;A 	 r�
�d�
2;BdS; (43)

and
 

Zk;q �
1

2�c

Z
SB
r��m�1;B 	 r�

�q�
2;BdS

�
1

2�c

Z
Sap

r��m�1;A 	 r�
�q�
2;BdS: (44)

Note that for the special case of cylindrically symmetric
structures the quadrupole component is identically equal to
zero.

Equations (37), (41), (43), and (44) allow one to calcu-
late all the components of the transverse impedance for a
transition of arbitrary geometry.

VII. EXAMPLE IMPEDANCE CALCULATIONS IN
THE OPTICAL REGIME

In this section we will show how to calculate the longi-
tudinal and transverse impedances for several simple cases
of axisymmetric systems using the results of Sec. 2.

We first calculate the longitudinal impedance for a short,
round collimator shown in Fig. 4(a), with pipe radius a and
collimator radius b (b < a). In this case both charges are
located on the axis of the pipe, and the solution to
Eqs. (19), in cylindrical coordinates, is

 �1;2 � �2 ln
r
a
: (45)

Substituting this solution into Eq. (36) yields

2In this paper we use the following definitions of the transverse
wake w?
 

w?�r1; r2; s� �
c
q1

Z 1
�1
�E1;?�r2; z � ct� s; t� � ẑ


H1�r2; z � ct� s; t�dt;

and the transverse impedance Z?�r1; r2; !� � ��i=c�
R
1
0 dsw?�r1; r2; s�ei!s=c.
3As is well known, for axisymmetric systems the transverse

impedance does not depend on the offset of the trailing particle.
This however is not true for systems which are not axisymmetric.
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 Zk �
1

2�c

Z
SB
�r�1�

2dS�
1

2�c

Z
Sap

�r�1�
2dS

�
1

2�c

Z
SB�Sap

�r�1�
2dS �

4

c
ln
a
b
: (46)

This is a well-known result for the collimator impedance in
the high-frequency limit.

The longitudinal impedance for step-in and step-out
transitions shown in Figs. 4(b) and 4(c) can easily be
obtained from the previous equations. In both cases the
potential � is �2 ln�r=a� and �2 ln�r=b� for pipes of
radius a and b, respectively. However, for the step-in
transition, the cross section SB coincides with Sap, and
the two integrals in Eq. (35) cancel, giving a total imped-
ance of zero. For a step-out transition, the difference of
these integrals is the same as given by the first line in
Eq. (46), and the impedance is equal to that of a collimator
with the aperture equal to the radius of pipe B. Again, both
these results are known in the literature, and we have
derived them here to demonstrate that the optical approxi-
mation agrees with previously obtained results.

For the transverse impedance of a round collimator and a
step-in and a step-out transition, we first note that only the
dipole term in Eq. (42) contributes to the impedance. The
quadrupole term in this equation vanishes because the
monopole potential ��m� in Eq. (44) has no angular depen-
dence while the quadrupole potential ��q� has an angular
dependence / cos2� (here � is the azimuthal angle in
cylindrical coordinates).

For a round collimator, pipe A and pipe B have the same
radius a, hence, ��d�1;A � ��d�1;B and ��d�2;A � ��d�2;B. This re-
duces the integration in Eq. (43) to one over the collimator
area,

 Zk;d �
1

2�c

Z
SB�Sap

r��d�1;A 	 r�
�d�
2;AdS: (47)

We assume now that both leading and trailing particles are
offset in the direction of the x axis and define function  

such that

 ��d�1;A � x1 A; ��d�2;A � x2 A: (48)

The function  A satisfies the following equation:

 r2 A � 4��0�x���y�; (49)

where the prime denotes derivative with respect to the
argument, with the boundary condition  A � 0 at r � a.
The solution is

  A � �2x
�

1

a2 �
1

x2 � y2

�
� �2r cos�

�
1

a2 �
1

r2

�
: (50)

The expressions (48) are next substituted into Eq. (47) and
integrated over the cross-sectional area of the collimator.
The calculation can be simplified if one uses the identity

 

Z
SB�Sap

r A 	 r AdS �
Z
SB�Sap

r 	 � Ar A�dS

�
Z
SB�Sap

 Ar2 AdS: (51)

The second integral on the right-hand side vanishes be-
cause r2 A � 0 in any region that does not include the
point x � y � 0, and the first one can be cast into an
integral over the edge of the collimator r � b,

 

Z
SB�Sap

r 	 � Ar A�dS � �b
Z 2�

0
 A
@ A
@r

d�

�
4�

b2 �1�
b4

a4�; (52)

which gives for the longitudinal dipole impedance

 Zk;d � x1x2
2

cb2

�
1�

b4

a4

�
: (53)

Using now the Panofsky-Wenzel relation Eq. (37) we find
the x component of the transverse impedance

 

FIG. 4. (Color) A short collimator (a), a step-in (b), and a step-out (c) transition in axisymmetric geometry. The particles move in the
�z direction. For the collimator a denotes the pipe radius and b the collimator radius, with b < a. For the step transitions, a denotes
the radius of the incoming pipe and b the radius of the outgoing pipe, with b < a for the step-in and b > a for the step-out transition.
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Z?;x
x1
�

2

!b2

�
1�

b4

a4

�
: (54)

The right-hand side of this equations defines the transverse
impedance per unit offset x1 —this quantity is traditionally
referred to as the transverse impedance. The result
[Eq. (54)] agrees with Ref. [12].

For the step-in and step-out transitions, Eqs. (48) and
(50) define the dipole potentials for pipe A; the potentials
for pipe B are obtained from these formulas by exchanging
b and a,

 ��d�1;B � x1 B;

��d�2;B � x2 B B � �2x
�

1

b2 �
1

x2 � y2

�

� �2r cos�
�

1

b2 �
1

r2

�
:

(55)

Note that the difference � �  A �  B corresponds to a
uniform electric field in the x direction

 � � 2x
�

1

b2 �
1

a2

�
: (56)

For the step-in transition Sap � SB, and after a simple
transformation, Eq. (43) can be reduced to

 Zk;d � �
x1x2

2�c

Z
SB
�r� 	 r B�dS: (57)

Using the same integration by parts as in Eq. (51), we
obtain

 

Z
SB
�r� 	 r B�dS �

Z
SB
r 	 �� r B�dS

�
Z
SB
�� r2 B�dS

� b
Z 2�

0
� 

@ B
@r

��������r�b
d�

� 4�
Z
SB

� �0�x���y�dS

� 0; (58)

which means that the longitudinal dipole impedance, and
hence the transverse impedance, is equal to zero for the
step-in transition. We remind the reader that the longitudi-
nal impedance for this case also vanishes.

For the step-out transition Sap � SA. We represent the
integral over Sap in Eq. (43) as the difference of the
integrals over SB and the integral over SB � Sap. Then
the first term in this equation combined with the integrals
over SB gives zero, as follows from the calculations for the
step-in transition. Hence,

 Zk;d �
x1x2

2�c

Z
SB�Sap

�r A 	 r B�dS

�
x1x2

2�c

Z
SB�Sap

r 	 � Ar B�dS

�
x1x2

2�c
b
Z 2�

0
 A
@ B
@r

��������r�b
d� �

4x1x2

c

�
1

a2 �
1

b2

�
:

(59)

For the transverse impedance in this case we find

 

Z?;x
x1
�

4

!a2

�
1�

a2

b2

�
; (60)

which agrees with the result of Ref. [5].
Note that sum of the step-in and step-out impedances

can be considered as an impedance of a long collimator.
Our result here shows that such impedance, given by
Eq. (60), differs from the impedance of a short collimator,
given by Eq. (54). The fact that the impedances of short
and long collimators are not equal was previously dis-
cussed in Ref. [12].

VIII. PILLBOX CAVITY AND RELATION
BETWEEN OPTICAL AND DIFFRACTION

REGIMES

Let us consider now the pillbox cavity shown in Fig. 5.
Diffraction theory gives the longitudinal impedance for a
cavity as (see, e.g. [19])

 Zk;diffraction �
2�1� i�

�1=2

������������
l

cb2!

s
; (61)

where b is the pipe radius and l is the length of the cavity.
The optical theory predicts zero impedance for the pill-

box cavity. Indeed, in this case, all the three cross sections
SA, Sap, and SB are equal (regarding the determination of
Sap in this case see footnote 1), and Eq. (35) immediately
gives a zero result. The reason for the optical approxima-
tion not reproducing the result of the diffraction theory is
that Eq. (61) corresponds to the next order approximation
in the small parameter �l=b2, which is beyond the appli-
cability limit of the optical regime. Indeed, if we take the
ratio of the impedance Eq. (61) to a typical optical imped-
ance Zk;optical � 1=c [see, e.g., Eq. (46)], we obtain

 

FIG. 5. An axisymmetric pillbox cavity.
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Zk;diffraction

Zk;optical
�

���������
lc

b2!

s
�

�����
l�

b2

s
: (62)

Hence the parameter
�������������
l�=b2

p
indicates the accuracy of the

optical approximation: one can expect that corrections to
the optical regime due to diffraction effects will be on the
order of this parameter.4

Of course, an axisymmetric pillbox cavity is not the only
example with zero impedance in the optical approxima-
tion. Any transition connecting two identical pipes without
protruding inside them (that is, when SA � SB � Sap) has a
vanishing impedance in the optical regime. In such cases,
diffraction effects need to be taken into account to obtain a
nonzero result.

Note that one can find in the literature references to the
impedance of the collimator given by Eq. (46) as a diffrac-
tion impedance (the authors of this paper have also used
this terminology in the past). The terminology introduced
in this paper distinguishes the optical regime from the
diffraction regime, and we believe that it better describes
the physics involved.

IX. CONCLUSION

In this paper we have introduced an optical approxima-
tion into the theory of impedance calculation, valid in the
limit of high frequencies. This approximation neglects
diffraction effects in the radiation process, and is concep-
tually equivalent to the approximation of geometric optics
in electromagnetic theory. Using this approximation, we
have derived equations for the longitudinal impedance for
arbitrary offsets of the source and test particles with respect
to a reference orbit. With the help of the Panofsky-Wenzel
theorem we have also obtained expressions for the trans-
verse impedance (also for arbitrary offsets). We further
simplified these expressions for the case of the small off-
sets that are typical for practical applications. Our final
expressions for the impedance, in the general case, involve
two-dimensional integrations over various cross sections of
the transition.

We have, in addition, demonstrated for several simple
examples how our method is applied to the calculation of
impedances for simple axisymmetric geometries that have
been studied in the past. Finally, we discussed the accuracy

of the optical approximation and its relation to the diffrac-
tion regime in the theory of impedance.
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