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We present a theoretical formulation for calculating the electromagnetic space-charge fields within a
simplified electron source geometry using time-dependent Green’s function methods. The source
geometry is assumed to be comprised of a flat cathode along with a pipe of arbitrary but uniform cross
section. Under the assumption that the beam currents are parallel to the pipe axis, we derive exact
solutions for the electromagnetic potentials in the Lorentz gauge. In addition, for the special case of a pipe
with rectangular cross section, we present the exact solutions of the electromagnetic potentials for
arbitrary beam currents. Finally, we show the results of an analytical benchmark study in which the
electromagnetic fields that are solved using the Green’s function method are in excellent agreement
(< 1% error) with the benchmark fields.
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I. INTRODUCTION

Modern high-energy electron accelerators require elec-
tron sources, such as photocathode sources, that produce
high-brightness, space-charge dominated beams [1]. Since
the electron beam is typically nonrelativistic near the
source cathode, it has a low relativistic mass factor which
makes space-charge forces significant. In order to predict
relevant beam parameters at the exit of the source, such as
the beam emittance, it is essential that the space-charge
fields be accurately computed.

There are a number of important effects within an elec-
tron source which suggest that a fully self-consistent elec-
tromagnetic theory is necessary to describe the space-
charge fields. For example, in the Brookhaven National
Laboratory 2.856 GHz rf photocathode source [2], the
beam which is generated by a laser pulse is initially
bunched with a bunch length that is small compared to
the wavelength of the rf electric field. Moreover, the bunch
is rapidly accelerated from nonrelativistic energies near the
cathode, to relativistic speeds of order 0:8c–0:9c within a
quarter wavelength of the rf field. Both of these properties
imply that the space-charge fields within an rf photoca-
thode source will be highly time dependent, and the effects
of causality can be extremely important. In addition, these
sources contain metallic conducting surfaces, such as a
cathode, side walls, and irises, which impose nontrivial
boundary conditions on the space-charge fields. Quali-
tatively, any charge near a flat metallic cathode will give
rise to an ‘‘image’’ charge, but the more complicated
boundary conditions such as curved side walls and irises
will yield complicated wave reflections within the system.
Hence, in order to completely model the physics of modern
electron sources, it is necessary to have a self-consistent
electromagnetic field solver, which computes the space-
charge fields in the presence of conducting boundaries. We
note that the space-charge fields which we discuss in this
paper are the electromagnetic fields that are generated by

the beam in the presence of the conducting boundary
conditions of the electron source. In other words, the
space-charge fields which we derive include the effects
of the image charges and image currents on the conductor
boundary of the source. The surface of the electron source
is assumed to be perfectly conducting, i.e., the parallel
electric and the perpendicular magnetic fields at the surface
of the source are assumed to be zero.

The accelerator physics community has developed a
wide range of simulation codes that compute space-charge
fields in a variety of ways. The widely used workhorse
code PARMELA [3] can simulate beam dynamics within a
source for arbitrary external electric and magnetic fields,
but under the assumption that the space-charge fields are
electrostatic. TREDI [4], a fully electromagnetic code, com-
putes the exact space-charge fields using Lienard-Wiechert
potentials. However, TREDI at present can only model the
presence of a flat cathode with no other conductor bounda-
ries present.

Fully electromagnetic particle-in-cell (PIC) codes, such
as MAFIA [5], can calculate space-charge fields in the
presence of arbitrary conducting boundary conditions by
using grid based field solving methods, such as Yee’s
algorithm [6]. However, simulations of electron sources
with PIC codes can incur two difficulties. First, since the
beam bunch length is small, the longitudinal cell length in
the region near the bunch needs to be sufficiently short.
Moreover, the initial electromagnetic fields which are gen-
erated when the bunch is emitted at the cathode will have a
spatial size that is comparable to the bunch length. Since
these fields propagate spherically away from the bunch to
other points in space, it is necessary to maintain a suffi-
ciently small grid size everywhere in space. This typically
requires a large number of cells and intensive computa-
tional requirements for the PIC algorithm. The second
difficulty arises from the fact that solving the fields of a
beam bunch on a grid results in unphysical properties, such
as numerical grid dispersion [7]. This implies that the
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phase velocity of an electromagnetic wave within the
simulation is a function of the angle of propagation relative
to the grid. Numerical grid dispersion can lead to unwanted
effects in beam simulations, such as numerical Cherenkov
radiation.

Recently, there have been analytical methods developed
for calculating the space-charge fields in a photocathode
source in the presence of a conducting cathode and circular
pipe [8,9]. These methods expand the potentials using a
Fourier transform for the longitudinal direction and a
Bessel function expansion in the transverse direction. In
Ref. [8], the fields were computed from the electromag-
netic potentials in the Lorentz gauge under the assumption
of uniform density bunches and uniform bunch accelera-
tion in the longitudinal direction. The main advantage of
these techniques is that it is possible to calculate the space-
charge fields to arbitrary accuracy for a given beam charge
and current density when a sufficient amount of eigenfunc-
tion modes and Fourier k-space are included.

In this paper, we develop a similar approach as Ref. [8]
of constructing the electromagnetic potentials using the
Lorentz gauge for a flat cathode and a pipe with an arbi-
trary cross section that is axially uniform. For arbitrary
longitudinal beam currents, we construct the electromag-
netic potentials in this system using time-dependent
Green’s functions. The Green’s functions are expressed
in a compact form such that only integration in real
space-time is required. The Green’s function also features
explicit causality constraints, which allow for highly accu-
rate computation of interesting effects, such as the physics
near the head of the bunch when the bunch is emitted from
the cathode. Since Green’s functions are generated by delta
function sources, it is possible to accurately compute the
space fields of electron bunches with arbitrary bunch
length. In addition, since the electromagnetic fields which
are derived in the Green’s function formalism are defined
everywhere in space, as opposed to a grid based definition
in a PIC code, the electromagnetic fields will be dispersion
free. We also show the more general solution for the
electromagnetic potentials when transverse currents are
present in the special case of a rectangular pipe. Finally,
we show the results of a benchmark study in which the
fields computed within the Green’s function based algo-
rithm are compared to those derived from an analytical
result. The difference between the fields in both cases is
less than 1%.

Our paper is organized as follows. In Sec. II, the 3D
electromagnetic potentials are developed analytically for
the two cases: (a) a pipe which is axially uniform with an
arbitrary cross section that contains longitudinal beam
currents and (b) a rectangular pipe with arbitrary beam
currents. In Sec. II A, we give explicit solutions for the case
of a circular pipe. In Sec. III, we compare the results of the
Green’s function based field solver with an analytical
benchmark case. In Sec. IV, we give a summary of our
results.

II. FORMULATION OF ELECTROMAGNETIC
POTENTIALS AND FIELDS

The electron source that we consider consists of two
perfectly conducting components: a flat cathode which is
located at z � 0 and a surrounding pipe of arbitrary uni-
form cross section that extends to infinity in the positive
z-direction. In addition, the source contains an electron
beam with a charge density ��r; t� and a current density
J�r; t�. Figure 1 shows a schematic of the source. In this
section, we will show the solutions to the electromagnetic
space-charge potentials for the electron source in two
specific cases. First, we will show the solutions to the
potentials and fields for a pipe which is axially uniform
but has arbitrary cross section, assuming that the beam
currents are longitudinal, i.e. J�r; t� � Jz�r; t�êz. As an
example, we will present the potentials for a pipe with a
circular cross section. Second, we will show the solutions
to the electromagnetic potentials for a pipe with a rectan-
gular cross section, under the assumption that the beam
currents are arbitrary. Although most accelerator systems
do not incorporate electron sources of rectangular cross
section, the second case is of theoretical interest since it
represents a completely solvable system for general beam
currents. The solutions to the electromagnetic potentials
for the most general problem of arbitrary beam currents
within a pipe of arbitrary, but uniform, cross section have
not yet been solved. We note that the assumption of the
beam current being solely in the longitudinal direction is
actually a good approximation for computing the space-
charge fields in most photoinjector systems. This approxi-
mation is justified by comparing the ratio of the transverse
beam velocity to the longitudinal beam velocity. When the
beam is nonrelativistic near the cathode, the velocity ratio
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xê

zê
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FIG. 1. Schematic of an electron source showing a planar
cathode at z � 0, a surrounding pipe which has an arbitrary
cross section but is axially uniform for z > 0, and an accelerating
electron bunch.
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is of the order jv?=vzj � jE?=Ezj. The longitudinal com-
ponent of the electric field, Ez, is approximately given by
the external rf electric field, and the transverse component
of the electric field, E?, is due to both the transverse rf
electric field, as well as the transverse space-charge
electric field. For the BNL 2.856 GHz photoinjector [2],
the longitudinal rf electric field is on the order of
(� 90–100 MV=m). The transverse rf electric field mea-
sured at the beam radius is approximately 3% of the
longitudinal electric field in this experiment, and using
the beam parameters, such as bunch charge Q �
0:96 nC, beam radius rb � 1 mm, and bunch length L �
3 mm, one can roughly compute the magnitude of the
transverse space-charge field to be 6%–10% of the longi-
tudinal rf electric field near the cathode. Of course, the
velocity ratio will be further reduced by a factor of 1=�,
where � is the relativistic beam factor, as the beam is
accelerated by the longitudinal rf electric field. Since the
velocity ratio is less than 10% for typical photoinjector
systems, it is sufficient to approximate the beam currents
for electromagnetic field calculations as J�r; t� �
Jz�r; t�êz.

A. Arbitrary pipe cross section with longitudinal
currents

We assume that the cross section of the pipe is arbitrary,
but uniform for z > 0. For this system, the electromagnetic
potentials ��r; t� and A�r; t� � Az�r; t�êz, which yield the
fields E�r; t� � �r�� @A=@t and B�r; t� � r�A, can
be solved in the Lorentz gauge for a given charge density
��r; t� and longitudinal current density J�r; t� � Jz�r; t�êz,
i.e.

 

�
r2 �

1

c2

@2

@t2

�
��r; t� � �

��r; t�
"0

(1)

and

 

�
r2 �

1

c2

@2

@t2

�
Az�r; t� � ��0Jz�r; t�: (2)

As an aside, we note that the potentials satisfy the Lorentz
gauge condition, i.e.

 

1

c2

@�
@t
�r 	A � 0; (3)

and the beam charge and current densities satisfy the
continuity equation, i.e.

 

@�
@t
�r 	 J � 0: (4)

At the perfectly conducting boundaries the fields must
satisfy the conditions:

 E �r; t� � n̂jsurf � B�r; t� 	 n̂jsurf � 0; (5)

where n̂ denotes the normal vector on the conductor sur-
face. Equation (3) can be satisfied by specifying the bound-

ary conditions for the potentials to be

 �jsurf � 0; (6)

 A � n̂jsurf � Azj
z>0
surf � 0; (7)

 �n̂ 	 r��A 	 n̂�jsurf �
@Az
@z

��������z�0

surf
� 0: (8)

We note that Eqs. (6) and (7) yield the correct boundary
conditions for the fields, and Eq. (8) is obtained from
Eqs. (6) and (7) along with the gauge condition in Eq. (3).

The electromagnetic potentials may be written in terms
of two electromagnetic Green’s functions G��r; t; r0; t0�
and Gz�r; t; r0; t0� as

 ��r; t� �
1

"0

Z t

�1

Z
G��r; t; r0; t0���r0; t0�d3r0dt0; (9a)

and

 Az�r; t� � �0

Z t

�1

Z
Gz�r; t; r0; t0�Jz�r0; t0�d3r0dt0; (9b)

where in the regime z > 0 both Green’s functions satisfy
the inhomogeneous wave equation with a delta function
source, i.e.

 

�
r2 �

1

c2

@2

@t2

�
G�;z � ���r� r0���t� t0� (10)

but are subject to different boundary conditions, namely
 

G�jsurf � 0; (11a)

Gzj
z>0
surf � 0; (11b)

@Gz

@z

��������z�0

surf
� 0: (11c)

Since the Green’s functions which are defined by Eq. (10)
are generated by delta functions in both space and time, it
is possible to calculate the electromagnetic potentials, and
hence, the electromagnetic fields for arbitrary beam charge
and current densities as shown in Eqs. (9a) and (9b).

The solutions to G�;z can be constructed from the ho-
mogeneous solutions of Eq. (10), i.e.
 

G� �
c��t� t0�

2

X
mn

 mn�r?� 
mn�r0?� � ��� � ��� (12a)

Gz �
c��t� t0�

2

X
mn

 mn�r?� 
mn�r0?� � ��� � ���; (12b)

where r? � r� zêz and r0? � r0 � z0êz are transverse
vectors, the normalized eigenfunctions  mn�r?� are the
Dirichlet solutions of the transverse 2D Helmholtz equa-
tion with eigenvalues k?mn, i.e.
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�r2 � k2
?mn� mn�r?� � 0; (13a)

 mn�r?�jsurf � 0; (13b)Z
j mn�r?�j2d2r? � 1; (13c)

and

 � �
1

�

Z 1
�1

dk
eik�zz

0� sin�c
����������������������
k2
?mn � k

2
q

�t� t0������������������������
k2
?mn � k

2
q : (14)

The Green’s functions defined by the eigenfunction ex-
pansions in Eqs. (12a) and (12b), as well as the associated
�� and �� defined by Eq. (14), can be readily obtained in
the following manner. First, by using the fact that ��t �
t0� mn�r?�eikz�Cmn cos�!�t � t0�� � Smn sin�!�t � t0���
forms a complete set of eigenfunctions which are solutions
to the homogeneous 3D Helmholtz equation, where Cmn

and Smn are constants and ! � c
����������������������
k2
?mn � k

2
q

, we can
expressG�;z as a sum over these eigenfunctions. The factor
��t� t0� is included to ensure causality. By inserting the
expansion for G�;z into Eq. (10) and then integrating both
sides by

R
t0�"
t0�" dt in the limit "! 0, it can be easily shown

that Cmn � 0 and G�;z and � are given by Eqs. (12a),
(12b), and (14). To be specific, the terms in G�;z corre-
sponding to �� yield an extra term proportional to ��z�
z0� on the right-hand side of Eq. (10). However, since
z; z0 > 0, this term is zero. The factor �� in Eqs. (12a)
and (12b) is necessary to satisfy the cathode boundary
conditions at z � 0 given by Eqs. (11a) and (11b). From
a physical point of view, �� and ��, represent the con-
tributions of the real charge and image charge (due to the
cathode at z � 0), respectively, on the electromagnetic
fields. We note that the method of constructing Green’s
functions from eigenfunctions is a well-known method that
is used extensively for solving nonhomogeneous scalar
wave equations [10].

The integral in Eq. (14) may be simplified [11] to

 � � J0�k?mn�����2
�; (15)

where J0�x� is the zeroth order Bessel function of the first
kind, ��x� is the step function, and

 �2
 � c2�t� t0�2 � �z z0�2: (16)

Using Eq. (4) and integration by parts, one can readily
check that the solutions given by Eqs. (9) and (12) satisfy
the Lorentz gauge condition. We note that the factors
���2

�� and ���2
�� enforce a causality condition on the

electromagnetic waves emanating from the beam charge
and induced image charges, respectively. When analyzing
the potentials near the front of the bunch, these factors
allow for rapid numerical convergence since only sources
‘‘sufficiently close’’ to the point of observation need to be
considered.

The electromagnetic fields E�r; t� and B�r; t� can be
computed from the potentials in Eq. (9). In general, the
electric field will have components in both the longitudinal
and transverse directions, but under the assumption of only
longitudinal beam currents, the magnetic field will only
have components in the transverse directions. The trans-
verse electric and magnetic fields follow immediately from
Eq. (9), and are given by
 

E?�r; t� � �
c

2"0

X
mn

r? mn�r?�
Z t

�1

Z
 
mn�r0?�

� ��� � �����r0; t0�d3r0dt0 (17)

and
 

B?�r; t� � �
�0

2

X
mn

êz �r? mn�r?�
Z t

�1

Z
 
mn�r0?�

� ��� � ���Jz�r0; t0�d3r0dt0: (18)

The final solution to the electric field in the longitudinal
direction requires a few mathematical steps. To start,
 

Ez � �
1

"0

Z t

�1

Z
d3r0dt0

�@G�

@z
��

1

c2

@Gz

@t
Jz

�

� �
c

2"0

Z
d2r0?

X
mn

 mn�r?� 
mn�r0?�
Z t

�1
dt0

�
Z
dz0

��
@��
@z

@��
@��

�
@��
@z

@��
@��

�
�

�

�
@��
@t

@��
@��

�
@��
@t

@��
@��

�
Jz
c2

�
: (19)

Then using the fact that dJ0�x�=dx � �J1�x�,

 

d���2
�

d�
� 2����2

� � �
��z0  �z� c�t� t0��� � ��z0  �z� c�t� t0���

jz z0j
; (20)

and the completeness relation,

 

X
mn

 mn�r?� 
mn�r0?� � ��r? � r0?�; (21)

we can express the longitudinal electric field as
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Ez �
c

2"0

Z
d2r0?

X
mn

k?mn mn�r?� 
mn�r0?�
Z t

�1
dt0

Z
dz0

�
���2

��

��
J1�k?mn���

�
��z� z0���

Jz�t� t0�
c

�

�
���2

��

��
J1�k?mn���

�
�z� z0���

Jz�t� t
0�

c

��
�

c
2"0

Z t

�1
dt0f��z� c�t� t0�����r?; z� c�t� t0�; t0�

� Jz�r?; z� c�t� t0�; t0�=c� � ��z� c�t� t0�����r?; z� c�t� t0�; t0� � Jz�r?; z� c�t� t0�; t0�=c�

� ���z� c�t� t0�����r?;�z� c�t� t0�; t0� � Jz�r?;�z� c�t� t0�; t0�=c�g: (22)

We note that the step functions found in the last integral
term arise from the fact that the delta functions in Eq. (20)
will only yield finite contributions after integration in z0

when the zeros of the delta functions occur for z0 > 0.
Since it is always true that �z� c�t� t0�< 0, the term
which is proportional to ���z� c�t� t0�� does not con-
tribute to the last term in Eq. (22).

For the special case of a circular pipe with radius a, the
transverse eigenfunctions and corresponding eigenvalues
which solve Eq. (13) are given in cylindrical coordinates
by

  mn�r?� �
1

a
����
�
p

Jm�jmnr=a�e
im�

jJm�1�jmn�j
(23a)

and

 k?mn � jmn=a; (23b)

where Jm�x� is the mth order Bessel function and jmn is the
nth positive root of Jm�x�. Hence, Eq. (23) along with
Eqs. (17), (18), and (22) yield a complete description for
computing the space-charge fields in a circular pipe with a
cathode at z � 0. We should emphasize that the cylindrical
symmetry necessary for this solution is only placed on the
pipe, but not on the charge and current distributions.
Therefore, it is possible to use this formulation to simulate
the electromagnetic fields for arbitrary longitudinal beam
currents, such as those with dipole and quadrupole mo-
ments, within a cylindrical pipe.

In the future, the authors are planning to expand the
analysis presented in this section by including the effect of
one or more metallic irises on space-charge fields. Irises
are typically found in photoinjector systems, and the first
iris along with the cathode and cavity walls usually define
the boundary of the first half-cell in a photoinjector. The
irises will affect the space-charge fields with the presence
of additional image charges and image currents. There are
a variety of methods which can be utilized for including the
effects of irises. For example, in Refs. [8,9], the authors
expanded the space-charge fields in each region of injector
space, i.e., before and after the iris, using eigenfunctions
which locally satisfy the correct boundary conditions. The
coefficients of the field expansions were found numerically
by applying boundary conditions, such as field continuity,
at the location of the iris. Usually, this technique results in
determining the elements of a large N �M matrix where
N and M are the number of eigenmodes used in expanding

the fields before and after the iris. Another technique with
which the present authors are actively pursuing is a method
developed by Bethe [12] that expands the fields due to the
iris(es) using a perturbative multipole field expansion. This
technique starts by solving the space-charge fields assum-
ing that no iris is present, i.e., that the geometry of the
conductor is a pillbox. These lowest order electromagnetic
fields can then be used to compute the induced electric and
magnetic multipole moments of the iris to all orders in b=a,
where the iris radius is b and the cavity radius is the
previously defined pipe radius, a. The total space-charge
field can then be represented as the zeroth order fields plus
the fields due to the electric and magnetic multipoles for
each iris.

B. Rectangular pipe with arbitrary currents

We now show the exact solution to the electromagnetic
potentials when the pipe in Fig. 1 has a rectangular cross
section. In this system, it is possible to find the explicit
potentials for the more general assumption of arbitrary
beam currents, that is currents which have both longitudi-
nal as well as transverse components. We denote the sides
of the pipe by x � 0, x � L, y � 0, and y � W. As in the
previous case, the electromagnetic potentials ��r; t� and
A�r; t�, may be solved in the Lorentz gauge. The difference
in this case, however, is that A�r; t� will have all three
components instead of only the longitudinal component as
in the previous case. For a given ��r; t� and J�r; t� which
satisfy Eq. (4), the potentials are given by

 

�
r2 �

1

c2

@2

@t2

�
��r; t� � �

��r; t�
"0

(24a)

and

 

�
r2 �

1

c2

@2

@t2

�
A�r; t� � ��0J�r; t�; (24b)

and satisfy the boundary conditions listed in Eqs. (6)–(8).
Similar to the previous case, the solutions to the elec-

tromagnetic potentials can be expressed in terms of four
time-dependent Green’s functions, which we denote by
Gi�r; t; r0; t0� where i � �, x, y, and z. The potentials are
given by

 ��r; t� �
1

"0

Z t

�1

Z
G��r; t; r0; t0���r0; t0�d3r0dt0; (25a)
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and

 A	�r; t� � �0

Z t

�1

Z
G	�r; t; r0; t0�J	�r0; t0�d3r0dt0;

(25b)

where 	 � x, y, and z. All four Green’s functions satisfy
the differential equation

 

�
r2 �

1

c2

@2

@t2

�
Gi � ���r� r0���t� t0�; (26)

and are subject to the following boundary conditions,
namely
 

G�jsurf � 0; (27a)

Gxjy�0;y�W �
@Gx

@x

��������x�0;x�L
� 0; (27b)

Gyjx�0;x�L �
@Gy

@y

��������y�0;y�W
� 0; (27c)

Gzj
x�0;x�L
y�0;y�W �

@Gz

@z

��������z�0
� 0: (27d)

The solutions to Gi can be readily constructed in a
fashion similar to the previous case, i.e.
 

G� �
2c
LW

X1
m�1

X1
n�1

sin
�
m�x
L

�
sin
�
m�x0

L

�
sin
�
n�y
W

�

� sin
�
n�y0

W

�
��� � ���; (28a)

Gx �
2c
LW

X1
m�1

X1
n�1

cos
�
m�x
L

�
cos

�
m�x0

L

�
sin
�
n�y
W

�

� sin
�
n�y0

W

�
��� � ���; (28b)

Gy �
2c
LW

X1
m�1

X1
n�1

sin
�
m�x
L

�
sin
�
m�x0

L

�
cos

�
n�y
W

�

� cos
�
n�y0

W

�
��� � ���; (28c)

Gz �
2c
LW

X1
m�1

X1
n�1

sin
�
m�x
L

�
sin
�
m�x0

L

�
sin
�
n�y
W

�

� sin
�
n�y0

W

�
��� � ���; (28d)

where

 k?mn �

������������������������������������
m�
L

�
2
�

�
n�
W

�
2

s
: (29)

The reason why it is relatively straightforward to con-
struct the potential solutions in this geometry for arbitrary
beam currents as opposed to a general curvilinear pipe,
such as a circular pipe, is due to two reasons. First, in the
rectangular case for which it is appropriate to utilize

Cartesian coordinates, Eq. (24b) can be separated into
three component equations. In these equations, there is
no coupling between the two transverse directions, i.e. Jx
generates Ax but not Ay, and vice versa. This is not the case,
however, in general curvilinear coordinate systems, such as
cylindrical coordinates, in which both Ar and A� are gen-
erated when either Jr or J� are present. Second, in order to
satisfy the Lorentz gauge condition with the potentials, it is
necessary to change the order of differentiation in the
eigenfunctions from unprimed coordinates to prime coor-
dinates using integration by parts, and then to exploit the
continuity equation. This was readily accomplished for
longitudinal currents when the eigenfunctions in the lon-
gitudinal direction and in time are sinusoidal as in Eq. (14).
Since the transverse eigenfunctions for the rectangular case
are also given by sinusoidal functions, the gauge condition
can be readily satisfied for the transverse potentials as well.

III. NUMERICAL IMPLEMENTATION AND
BENCHMARKING

We now briefly describe how the electromagnetic fields
given in Eqs. (17), (18), and (22) can be numerically
solved, and then show results of a benchmarking study
which was used to validate the accuracy of the numerical
scheme. The authors will be addressing all of the computa-
tional requirements necessary for accurately computing the
fields to within less than 1% error in a later paper [13].

In order to evaluate the fields numerically from
Eqs. (17), (18), and (22), it is necessary to perform three
distinct operations: a double series over the transverse
eigenfunctions, a time integration, and a spatial integration
over all three coordinates. Hence, in order to determine the
fields accurately for a given simulation, it is essential to
understand the requirements on the following numerical
parameters: (i) the number of transverse modes, (ii) the
integration time step, and (iii) the spatial integration steps
in all three directions.

In general, the convergence rate of the series, and hence
the number of modes necessary, will strongly depend on
the transverse size of the beam. Typically, the number of
transverse modes necessary for accurately resolving the
fields will be inversely proportional to the transverse size
of the beam. A good rule for figuring out the number of
modes necessary to achieve a certain level of accuracy in
the fields is to find the number of modes necessary for
achieving at least the same level of accuracy when expand-
ing the charge density in terms of the eigenfunctions,
 mn�r?�, i.e.

 ��r; t� �
X
mn

�mn�z; t� mn�r?�; (30)

where �mn�z; t� are expansion coefficients. In the specific
case of a cylindrically symmetric beam with a character-
istic beam radius rb inside of a circular pipe of radius a, the
typical number of radial modes,M, necessary for modeling
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the fields to within 1% error is given by

 M �
40a
rb

: (31)

The integration time step, �t0, needs to be sufficiently
small for two distinct reasons—one which is based on
beam dynamics and another which is based on the error
of the numerical integration. From the beam dynamics
point of view, �t0 needs to be smaller than any character-
istic time scale related to beam motion in order to resolve
the fields associated with the beam motion. For example, if
a bunch of electrons is accelerated in the source by an
external electric field, Eext, and achieves a relativistic
energy factor, �, then the dynamical time scale in the
system according to the Lorentz force law is given by

dyn � �mec=eEext, where me is the mass of the electron.
A completely different limit on �t0 emerges, however,
when considering the numerical errors due to time integra-
tion. The integrands of the field equations contain Bessel
functions, J0�k?mn��, which will typically oscillate be-
tween positive and negative values either one or multiple
times as the parameter t0 is varied within the limits of
integration, i.e.�1 � t0 � t. Hence, in order to accurately
perform the time integration, �t0 must be sufficiently small
compared to the oscillation time of the Bessel function
corresponding to the highest order transverse mode used in
the series expansion. Since the highest order mode number
is inversely proportional to the beam size as in Eq. (31), it
can be shown that �t0 should be proportional to the beam
size. In particular, for a cylindrically symmetric beam, it is
found that setting

 �t0 �
0:01rb
c

(32)

yields excellent results for the field computation. We note
that any electromagnetic waves generated at the center of
the bunch at r � 0 will take at least a time rb=c to propa-
gate through the bunch. Hence, Eq. (32) ensures that any
effects involving waves propagating through the bunch will
be modeled accurately. When simulating photocathode
electron sources, for example, it is usually the case that
the time scale shown in Eq. (32) is much smaller than 
dyn.
Hence, Eq. (32) will typically be appropriate for comput-
ing the space-charge fields in a photocathode source
simulation.

Finally, it is obvious that if ��r; t� and J�r; t� have
characteristic length scales, then the spatial integration
step sizes, �x0, �y0, and �z0 need to be sufficiently small
compared to those scales in order to accurately resolve the
fields. In the benchmark example that is illustrated in this
section, we specify the distribution function of the beam
for all times in the simulation, and the spatial integrations
within Eqs. (17), (18), and (22) are carried out analytically.
Hence, we do not need to specify the spatial integration
step sizes for this example.

For beam simulations in which ��r; t� and J�r; t� are not
specified, but rather are time evolving due to the dynamics
of the system macroparticles, it would be necessary to
make the integration step sizes small enough to accurately
compute ��r; t� and J�r; t�. One simple method for finding
��r; t� and J�r; t� would be to divide the entire space into
cells, and then to count the total charge and current in each
cell. In this case, the spatial integration step sizes would be
the cell sizes.

It is essential when developing a numerical algorithm to
find benchmarks by which the algorithm may be compared.
The benchmark that we now present is based on an ana-
lytical result. In particular, we test the case of a source with
cylindrical pipe of radius awhereby a bunch of total charge
Q is emitted from the cathode at time t � 0 with a constant
uniform velocity V � Vêz. The bunch is assumed to be
cylindrically symmetric, have zero longitudinal length, and
have finite size in the transverse directions. We assume that
the transverse radial density of the bunch is parabolic with
radius rb and fixed in time. The charge and current den-
sities are given by

 ��r; t� � �?�r?���z� Vt� (33a)

and

 Jz�r; t� � �?�r?�V��z� Vt�: (33b)

where �?�r?� � �2Q=�r2
b���rb � r��1� r

2=r2
b�.

Now we compare the fields of this system to the fields of
another system where there are two bunches Q1 � Q and
Q2 � �Q, with velocities V1 � Vêz and V2 � �V1, re-
spectively. The trajectories of the two bunches are config-
ured, such that at time t � 0, the two bunches will overlap .
The charge and current densities of this second system are
given by
 

�1�r; t� � �?�r?���z� Vt�; (34a)

Jz1�r; t� � �?�r?�V��z� Vt�; (34b)

�2�r; t� � ��?�r?���z� Vt�; (34c)

and

 Jz2�r; t� � �?�r?�V��z� Vt�: (34d)

The fields for each bunch in the second system can be
easily computed by finding the electric field in the rest
frame of the bunch, and then Lorentz transforming back to
the laboratory frame. In the second system, the bunch Q2

represents the image bunch which is found in the first
system due to the presence of the cathode at z � 0. For
specific regions of space and time, e.g., before wave re-
flection from the pipe has occurred (t < 2a=c for r � 0)
and after the initial electromagnetic shock front due to
bunch emission has passed ( z < ct for r � 0), the electro-
magnetic fields produced by the first system will be exactly
the same as those of the second system. We note that, in the
first system, the fields should be exactly zero when z > ct,
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since the causality condition prevents any waves from
propagating beyond z � ct.

Figures 2–5 show plots of the normalized radial and
longitudinal electric fields using the beam densities given
in Eq. (33) and the field equations given by Eqs. (17) and
(22). In the simulation, the following parameters were
chosen: the beam velocity is V � 0:9c, the beam radius
corresponds to the experimental beam radius in the BNL
2.856 GHz photocathode experiment [2], i.e. rb=a �
0:0243, and the time is t � 0:25a=c. In order to accurately
compute the fields in accordance with Eqs. (31) and (32),
we set M � 2000 and �t0 � 10�6a=c.

Figure 2 shows a 3D plot of Er�4�"0a2�=Q vs r=a and
z=a. There are two distinguishing features in Fig. 2—a
large pulse near z=a � 0:225, which is the bunch’s axial
location and a second smaller pulse with an outer edge at
z=a � 0:25. The pulse at z=a � 0:225 represents the local
electric field generated by the beam, while the second pulse
represents the initial electromagnetic waves which were
generated at t � 0 when the bunch was emitted. Since the
time in Fig. 2 is t � 0:25a=c, the point z=a � 0:25 corre-

sponds to the location of the causality condition, z � ct.
From Fig. 2, it is also seen that the fields are zero when
z > ct, which illustrates the effect of the causality condi-
tion. Figure 3 shows a plot (solid line) of Er�4�"0a

2�=Q vs
r=a at the bunch’s location z=a � 0:225. In addition, a plot
of the normalized radial electric field from the second
(benchmark) system is shown (dashed line), which uses
the densities in Eqs. (34) to compute the fields. From
Fig. 3, it is seen that there is excellent agreement, i.e.,
less than 1% error, between the numerical scheme and the
benchmark example for r=a � 0:085. The difference be-
tween the fields in Fig. 3 for r=a � 0:085 is attributed to
the initial electromagnetic pulse generated at bunch emis-
sion. Essentially, one can view this transient electromag-
netic pulse as being due to transition radiation, which
occurs when the electron bunch is spontaneously generated
at the cathode surface at a time t � 0. Obviously, this
electromagnetic pulse would not be present in the bench-
mark example since the two bunches defined by Eq. (34)
are uniformly moving for all time. It is therefore necessary
to wait a sufficient amount of time for the initial transient

 

FIG. 5. Plots of Ez�4�"0a
2�=Q vs z=a for r � 0, showing the

numerical scheme (solid line) and the benchmark example
(dashed line).

 

FIG. 2. Plot of Er�4�"0a
2�=Q vs r=a and z=a for t � 0:25a=c.

 

FIG. 4. Plot of Ez�4�"0a2�=Q vs r=a and z=a for t � 0:25a=c.

 

FIG. 3. Plots of Er�4�"0a
2�=Q vs r=a at the bunch location,

z=a � 0:225, showing the numerical scheme (solid line) and the
benchmark example (dashed line).
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pulse to pass in order for the fields in the benchmark case
and the numerical case to match.

Figure 4 shows a plot of Ez�4�"0a2�=Q vs r=a and z=a.
Figure 4 shows similar features as Fig. 2, namely, two
pulses—one near the beam and one generated by the initial
waves due to bunch emission, i.e., the transient electro-
magnetic pulse due to transition radiation. The sharp dis-
continuity in the pulse near the beam is located precisely at
the bunch’s location, and denotes the point at which the
sign of the electric field changes. Note that in Fig. 4, the
field near the second pulse shows a trough instead of a crest
which is shown in Fig. 2. The reason for this is that, since
there is no charge density near the location of the second
pulse, Maxwell’s equations yield r 	E�r; t� � 0. Hence,
the longitudinal electric field is decreasing while the radial
component is increasing. Figure 5 shows a plot of
Ez�4�"0a

2�=Q vs z=a at r � 0 for both the numerical
scheme (solid line) as well as the benchmark example
(dashed line). We see excellent agreement, i.e., less than
1% error between the fields for locations which are not
close to the second pulse at z � ct. For z > ct, the numeri-
cal scheme correctly shows that the fields are zero accord-
ing to the causality condition.

IV. SUMMARY

In this paper, we have formulated and demonstrated a
numerical scheme based on Green’s function methods for
computing the electromagnetic fields within a simplified
electron source geometry. The conductor geometry con-
sisted of a flat cathode at z � 0 along with a uniform pipe
which is semi-infinite in extent. We explicitly showed how
to compute the fields for two cases, namely, a uniform pipe
with arbitrary cross section and longitudinal beam currents
and a rectangular pipe with arbitrary beam currents. The
Green’s functions within this scheme are constructed from
eigenfunctions which exactly satisfy the boundary condi-
tions at the conductor surfaces. In addition, these functions
include the necessary causality constraints, i.e. ���2

�,
which are due to the finite speed of light. For any given
��r; t� and J�r; t� which satisfy the continuity equation, the
electromagnetic potentials in the Lorentz gauge, and
hence, the space-charge fields, E�r; t� and B�r; t�, can be
computed which satisfy both the correct boundary condi-
tions, as well as, the correct causality constraints.

Using an analytical benchmark case, we have shown the
high level of accuracy, less than 1% error in the fields,
which is possible with the Green’s function scheme. A
more detailed study of the relatively small error associated
with the fields in the numerical scheme will be presented in
a later paper [13]. The benchmark example also illustrates

how the scheme can resolve other interesting phenomena,
such as image charge effects due to the cathode surface as
well as the transient electromagnetic effects which are
generated by the beam emission.

The authors plan to continue developing the Green’s
function scheme for future simulation studies of electron
sources. In particular, we are actively working to develop
methods for computing the fields within curvilinear pipes
when transverse currents are present. In addition, we are
working on techniques for including the effects of more
complicated conducting structures, such as irises, which
are typically present in many electron sources including
photocathode sources.
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