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One possible way to demonstrate both the efficiency and beam quality in a plasma wakefield accelerator
is to prepare matched drive and accelerated beams by removing a central slice from a single high-quality
electron bunch (parent beam). For parameters of the parent beam given, the question arises how to
maximize the number and energy of accelerated particles and minimize their energy spread and emittance.
This question is addressed by numerical simulations. The optimum shape of the beams, required plasma
length, achievable energy gain, and energy spread are found as functions of the plasma density and parent
beam characteristics. The required control accuracy of adjustable beam and plasma parameters is
determined.
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I. INTRODUCTION

Since the mid-1980s [1], the electron beam-driven
plasma wakefield acceleration (PWFA) is actively studied
as a possible way to future high-energy linear colliders [2–
5]. Already demonstrated are good agreement between
theoretical predictions and experimental observations
[3,6–11], high acceleration rate, and high-energy gain
[12–14]. High efficiency of beam-to-beam energy transfer
and high quality of the accelerated beam (witness) are not
experimentally proven yet; this should be the next major
step toward a competitive plasma-based accelerator.

One possible way to achieve both the efficiency and
beam quality is to prepare matched drive and accelerated
beams by removing a central slice from a single high-
quality electron bunch (parent beam, Fig. 1). Given the
parameters of the parent beam, the question arises how to
maximize the number and energy of accelerated particles
and minimize their energy spread and emittance. Other
questions are what characteristics of the witness can be
achieved with available parent beams and to what accuracy
the adjustable parameters of the system must be held.

These questions are addressed in the paper. In Sec. II we
formulate the optimization problem to be solved. In Sec. III
we discuss the optimum values for adjustable parameters
of the beam and plasma. In Sec. IV we analyze the accu-
racies required. In Sec. V we summarize main findings.

It is important to emphasize the degree of generality of
the obtained results. As a reference point for optimization,
we take the design parameters of PWFA experiment on the
VEPP-5 injection complex [15,16]. The numerical values
obtained are therefore applicable to this experimental
project only. The dimensionless relations are more general
and valid for any experiment where the parent beam has a
Gaussian-like shape. The scalings (Sec. III) and order-of-
magnitude estimates for accuracies (Sec. IV) are fully
general and applicable wherever the driver and accelerated
beam are cut from a single beam.

II. OPTIMIZATION PROBLEM

There are two groups of input parameters in our prob-
lem. Parameters from the first group (Table I) are strin-
gently determined by the accelerator that produces the
parent beam and by the system that compresses the parent
beam and splits it into two pieces. These parameters cannot
be easily varied and are not a subject of optimization; we
take them close to the design parameters of Novosibirsk
PWFA experiment [15,16]. Parameters from the second
group (Table II) can be adjusted relatively easily; optimum
values of them are to be found.

Assume the parent beam at the entrance to the plasma is
axisymmetric with the density distribution
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if no slices are cut out. The cosine distribution (1) over the
longitudinal coordinate z is more convenient than the
Gaussian one because it smoothly vanishes outside the
interval of a finite length. With the cutting on, the initial
beam density is

 

FIG. 1. (Color) Beam shape at the entrance to the plasma.
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 nb�r; z� � npb�g�z; z2� � 1� g�z; z1��; (2)

where the function g�z; zi� describes a smooth cut-out
edge:
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The geometry of the cut beam is illustrated by Fig. 1.
The initial angular spread of the beam is chosen the

same for both transverse coordinates to stay within the
axisymmetric approximation, so the initial 6-dimensional
distribution function of beam particles is
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where �0 � W0=�mc
2� � 1000, and � is the delta

function.
Dynamics of thus defined beam in the uniform unmag-

netized plasma of the length Lp and density n0 is followed
numerically with LCODE code [17,18]. Typical parameters
of the run are listed in Table III; they are chosen to max-
imize the computation speed at a reasonable precision. As
can be seen, the time step and sizes depend on the plasma

frequency !p �
����������������������
4�n0e

2=m
p

.
The output of the code is a 6-space distribution of beam

macroparticles at the exit from the plasma. From these
data, we find four goal parameters: the number of accel-
erated particles Nw, their average energy gain �W, rms
normalized emittance �w, and energy spread �W. To ex-
clude a possible halo, only particles that meet several

selection criteria are taken into account. These criteria
are: the particle must originate from the second beam
[from z < �z1 � z2�=2], have a small final radius (r <
�r), small angle of departure [jprj=pz < �0=��0�r�], and
the energy in the 30% vicinity of the spike of final energy
distribution [j�pzc�W0�=�W � 1j & 0:3].

For realization of the optimization algorithm, it is nec-
essary to combine the goal parameters into a single-valued
criterion function F. The choice of the criterion function
determines the convergence speed and, in principle, can
strongly affect the result of optimization procedure.
Fortunately, in the problem considered, there exists an
acceleration regime for which all goal parameters are
simultaneously good and there is no trade-off between,
for example, energy gain and number of particles. Thus,
the result weakly depends on the particular criterion func-
tion if the latter is reasonably chosen. Among several
criterion functions tested, the function

 F � ln�Nw=Np� � ln��W=W0� �
1

1� � �w2�0
�2

�
1

1� � �W0:1�W�
2
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provides the best convergence. Here, the logarithms pro-
hibit too small values of maximized quantities and moder-
ately stimulate their increase in the vicinity of expected
values (about Np=5 for the population and W0 for the
energy gain). The rational functions flatten the contribu-
tions of minimized quantities if they are much smaller than
some ‘‘acceptable’’ values (2�0 for the final emittance and
0:1�W for the energy spread) to avoid overminimization at
the expense of beam population. If the minimized quanti-
ties are too large, their contributions are also flattened to
avoid a delay of the search algorithm in the region of
obviously unacceptable parameters. In the paper, all the
results presented are obtained with this criterion function.

The above procedure defines the function F��r; �z;
z1; z2; n0; Lp� that has to be maximized in the 6-space of
adjustable parameters. The function is noisy; a small varia-
tion of any argument can result in a large change of the
value. This is because beam particles make about 102

TABLE III. Parameters of a typical LCODE run.

Parameter Value

Plasma model Kinetic, quasistatic
Number of plasma macroparticles 800
Initial plasma temperature 5 eV
Radius of simulation window 4c=!p

Length of simulation window 10c=!p

Grid size 0:025c=!p � 0:025c=!p

Plasma length 6000c=!p

Number of beam macroparticles 104

Time step for the beam 2!�1
p

TABLE II. Adjustable parameters of the system.

Parameter and notation Limitation

Compressed beam length, �z, �z 	 �z;min

Projections of chopper edges onto
the compressed beam, z1 and z2,

z1 > z2

Beam radius, �r, �r 	 �r;min

Plasma density, n0

Plasma length, Lp

TABLE I. Fixed parameters of the beam.

Parameter and notation Value

Initial energy, W0 510 MeV
Number of particles in the parent beam, Np 2� 1010

Normalized rms emittance, �0 20 mm mrad
Initial energy spread, �W0 0% (low)
Minimum possible length, �z;min 0.1 mm
Minimum possible radius, �r;min 20 �m
Cut-out sharpness, �z 0.1 mm
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betatron oscillations in a typical plasma length, and a very
small variation of run parameters is sufficient to change the
oscillation phase at the exit. Because of the noise, the
search of maxima is best done with a simple step-by-step
algorithm. The search starts from some random point and
moves alternately in each coordinate until a local maxi-
mum is found with a given precision. Typically, one search
takes about 200 code runs and 50 hours at Pentium-IV.

Because of the noise, the search started from different
points results in different local maxima. The local maxima
found are not uniformly distributed in the parameter space;
they concentrate in regions of high F thus showing not only
the location of optimum regimes in the parameter space but
also the widths of these regimes. Local maxima with low
values of F can be easily culled.

III. OPTIMUM REGIME

The main result of the above optimization is that the
optimum parameters form a curve in the 6-space of adjust-
able parameters. The curve has one free parameter; let it be
the plasma density n0. Other adjustable parameters are thus
determined by n0:

 �z 
 2:15c=!p; �r � �r;min; (6)

 z1 
 0; z2 
 �
�
2
c=!p; Lp 
 A�0c=!p; (7)

where the factor A depends on the parent beam population.
In our case A 
 5. Figure 2 illustrates these statements.
From Fig. 2(a) we can see that, though F � const on the

optimum curve, this inconstancy is small compared to the
decrease of F as its arguments deviate from the curve.

It is instructive to look at the evolution of main witness
parameters in the plasma (Fig. 3). In this section, we use
the input parameter set marked by crosses in Fig. 2 and
apply no halo filtering criteria. We see that the beam
evolution occurs in three stages. After escape of the
beam tail [Fig. 3(b)], the rest of the witness stably prop-
agates in the plasma until the driver gets considerably
depleted [Fig. 3(d)]. Then the driver widens, the wakefield
structure changes, and the witness gets defocused and lost
[Fig. 3(b)]. The end of the second stage corresponds to the
optimum plasma length. The increase of emittance during
the second stage is a numerical effect that disappears at
shorter time steps, so it is a price for fast computing.

The resulting energy spectrum depends on the plasma
density (Fig. 4). The witness energy gain is limited to about
the initial driver energy. At high plasma densities, the
energy gain is high, but the energy spread is large because
of the limited beam shape control [Fig. 4(b)]. Namely, as
the density increases, the width of the cut-out interval gets
smaller than the cut-out sharpness �z, and the witness
energy spread increases [Fig. 5(a)]. In units of eE0 �

mc!p, the average accelerating rate is constant in a wide
interval of plasma densities [Fig. 5(b)] and equals A�1.
Together with the expression (5) for Lp, this suggests that
the acceleration distance here is determined by the driver
depletion. At low plasma densities, the acceleration length
is limited by emittance-driven driver erosion, much of the
energy remains with the driver [Fig. 4(b)], and the witness
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FIG. 2. (Color) (a) Values of the criterion function on the optimum curve (dots) and on the line ��r;�z; z1; z2; Lp� � const (line); (b)
optimum beam shape; (c) optimum beam length; and (d) optimum plasma length. Dots show the local maxima obtained numerically.
Crosses mark the regime under the detailed study.
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energy gain is small. Thus, the optimum plasma density is
the minimum one at which the acceleration length is
determined by driver depletion (n0 
 2:2� 1015 cm�3 in
our case).

The decrease of the average acceleration rate at low
plasma densities [Fig. 5(b)] follows from properties of
the blowout regime. As the plasma density decreases, the
beam lengthens in accordance with (4) and the beam peak
current Ib;max decreases as

�����
n0
p

. In the problem considered,
typical beam currents are not very high (Ib;max � 0:5
2 kA), so the dimensionless bubble radius is determined
by the beam current Ib as [19]
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where the factor B 
 2:8 for �z!p=c 
 2:15. The same
relation holds for the maximum bubble radius:

 rmax 
 B
c
!p
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s
: (9)

Expressing Ib;max in terms of beam population Nb and
substituting the optimum value (4) for �z yields

 

FIG. 3. (Color) (a) Evolution of witness emittance �w, energy gain �W, population Nw, and energy spread �W as the witness
propagates in the plasma; (b) portraits of the beam (dots) and plasma electron density (shading) at different times; (c) the palette for
electron density maps; (d) the dependence of the beam energy W on the longitudinal coordinate at the end of good acceleration (at
!pt � 5000).
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where re � e2=�mc2� is the classical electron radius. The
dimensionless bubble radius is
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The scaling (9) is very accurate at early stages of beam-
plasma interaction [Fig. 6(a)].

At the beam energies considered, we can safely put
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In this approximation, we can obtain from Maxwell equa-
tions the expression for the on-axis electric field (see, e.g.,
[19]):
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FIG. 4. (Color) (a) Dependence of the witness energy gain �W (crosses) and energy spread �W (ovals) on the plasma density;
(b) typical energy spectra at various densities.
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FIG. 5. (Color) Dependence of the relative witness energy spread (a) and dimensionless average accelerating rate (b) on the plasma
density.
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 Ez�0; z� ct� �
4�e
c

Z 1
0
nvrdr; (13)

where n � n�r; z� ct� and vr � vr�r; z� ct� are the den-
sity and radial velocity of plasma electrons. If the bubble is
narrow compared to the plasma skin depth c=!p (as it is in
our case), then there is no electron density peaking at the
bubble boundary and the radial scale of plasma perturba-
tions is c=!p:

 n 
 n0;
Z

. . . dr� c=!p: (14)

It is natural to assume that the maximum radial velocity of
plasma electrons is proportional to their radial shift and
inversely proportional to the time scale of motion:

 vr /
crmax

�z
/ n1=4

0 ; (15)

whence follows the scaling for the maximum decelerating
electric field inside the bubble:

 Ez;max / n
3=4
0 : (16)

The proportionality coefficient can be easily obtained from
simulations. For the dimensionless field,

 

~E z;max �
eEz;max

mc!p

 0:165�n0; 1015 cm�3�1=4: (17)

The maximum field observed in simulations follows the
scaling (15) very good [Fig. 6(b)] as does the average field
at low plasma densities [Fig. 5(b)]. At high plasma den-
sities, the decelerating field considerably decreases as the
driver propagates in the plasma, so the average field is
lower than the maximum field achieved near the entrance
to the plasma, and we observe the saturation of the energy
gain at high plasma densities.

The utilization efficiency of the driver energy is shown
in Fig. 7. Since the deceleration field is not uniform within
the beam, about 50% of the energy is left with the driver.
An extra 20%–30% is left in the plasma, so the overall
driver-to-witness efficiency is at the 30% level in the wide
interval of plasma densities.

Note that the beam-plasma interaction in the optimum
regime has most of the features of the efficient acceleration
mode described in Ref. [20]. Namely, both drive and wit-
ness beams propagate in the blowout regime [21] in the
electron-free bubble, the beams are shaped to flatten decel-
erating or accelerating field inside of them, and the length
of the driver is about one wakefield half-wavelength. The
only missed feature is the beam current, the relatively low
value of which limits the efficiency at the 30% level.

IV. ACCURACIES REQUIRED

Once the optimum set of adjustable parameters is found,
the question arises of how precisely these values must be
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FIG. 6. (Color) Plasma density dependence of the maximum bubble radius (a) and maximum decelerating field (b) at the early stage of
beam-plasma interaction. Dots show numerically obtained values, curves are obtained from formulas (11) and (17).
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controlled. To answer this question, we follow the variation
of main witness parameters as one of adjustable parameters
of the system deviate from the optimum value (marked by
crosses in Fig. 2). The results are listed in Table IV and
illustrated by Figs. 3(a) and 8. The tolerances listed corre-
spond to a twofold increase/decrease of any minimized/

maximized witness parameter (marked by continuous lines
in Fig. 8).

There are essentially three major scenarios of witness
degradation. The first two are related to the mismatch
between the beam and the wakefield. Variation of any input
parameter, except the plasma length, can cause this mis-

TABLE IV. Acceptable deviation of adjustable parameters from the optimum values.

Limiting factor Downward tolerance Parameter Upward tolerance Limiting factor

Incomplete
energy exchange

�50% Plasma length Lp �20% Driver
depletion

Mismatched
witness

�20% Beam length �z �25% Witness beyond
the bubble

Mismatched
witness

�25% Plasma density n0 �20% Driver depletion
(increase of effective

plasma length)

Witness beyond
the bubble

0.45 back Relative shift of
the cut-out interval

0:5jz1 � z2j=�z1 � z2�

0.45 forth Small driver,
mismatched witness

Mismatched
witness

�30% Cut-out interval width �z1 � z2� �30% Witness beyond
the bubble
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match. Depending on the sign of the effect, the witness
either gains a large energy spread (‘‘mismatched witness’’)
or shifts to the defocusing region and loses good emittance
or population (‘‘witness beyond the bubble’’). The third
scenario (‘‘driver depletion’’) takes place if the depleted
driver gets destroyed before the beam exits the plasma.
This happens not only in too long, but also in overdense
plasmas, since it is the dimensionless plasma length that is
to match the optimum value.

We see that most of adjustable parameters of the system
need to be controlled with 20%–30% accuracy, and the
most sensitive parameter is the plasma density. Note also
that an overlength plasma in much worse than an under-
length one.

V. SUMMARY

Present-day computers make possible a multiparametric
optimization of plasma wakefield accelerators, which in-
cludes a two-dimensional end-to-end simulation of beam
dynamics in the plasma section as the elementary step. The
optimum seeking, however, is complicated by a noise of
the maximized function.

If both the driver and witness beams are cut from a single
parent beam, then only one parameter of the system can be
chosen relatively freely, for example, the plasma length or
density. Once this parameter is specified, other ones are
uniquely determined. For the Gaussian-like shape of the
parent beam, relations between the adjustable parameters
of the system are given by formulas (4) and (5). The
optimum plasma density is the minimum one at which
the length of beam-plasma interaction is determined by
the driver depletion rather than by emittance-driven
erosion.

The witness energy gain achievable with the Gaussian
parent beam is limited by about the parent beam energy.
The energy spread is greater than 5% and increases with
the plasma density.

The region of optimum values in the space of adjustable
parameters is rather broad. The control accuracy required
is at the 20%–40% level.
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