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Coupling of the transverse degrees of freedom modifies analysis of beam coherent motion. A general,
simple, and effective rule to do that is derived.
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I. INTRODUCTION

When the two fractional tunes of a storage ring are
equal, f�xg � f�yg, the beam stays at a coupling resonance.
This line in the tune space is of a special attraction: staying
there maximizes tune area free from the dangerous reso-
nances. That is why so many machines stayed, stay, or plan
to be there. Near the coupling resonance, even a small skew
quadrupole or solenoid may result in a significant change
of the beam optics, making it strongly coupled. If so, a
conventional uncoupled 2D optical formalism cannot be
used; instead, a 4D analysis has to be applied. Thus, any
beam issue underlain by the optics has to be revisited,
assuming that eigenmodes do not describe planar vertical
and horizontal motion any more. One of these issues is a
problem of the beam transverse coherent motion. This
problem was considered in Refs. [1–3], and discussed in
[4]. Here, we suggest our view of the problem, and come to
a solution, which is general and simple at the same time.

The leading idea is that the classical mechanics is invariant
over the canonical transformations. In a basis of the eigen-
modes, the beam motion gets to be uncoupled, and for-
mally similar to the conventional x� y uncoupled case.
There is though a single difference between the x� y
space and the space of the normal modes. This difference
relates to wake functions or impedances, which are given
in the x� y space. Thus, to solve the problem, the wakes
and impedances have to be properly projected on the
eigenvectors.

II. EIGENMODE PERTURBATIONS

For arbitrary coupling, the beam optics can be described
in terms of 4D eigenvectors. Hereafter, a parametrization
suggested in [5] is used, where the 4 eigenvectors
V1;V�1 � V�1;V2;V�2 � V�2 of a revolution matrix R
are presented as follows:
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where the superscript T stands for the transposed form, and
R � V�0�m � exp��i�m�V

�0�
m . Components of the 4D vectors

are transverse coordinates and angles, �x; �x; y; �y�; in case
of nonzero longitudinal magnetic field, the angles are
modified according to a conventional rule for the canonical
momenta [5]. Eigenvector parameters �1x, �2y, etc., are
determined by the machine optics. The symplecticity re-
quires then a specific orthogonality

 V �m � U � Vn � �2i�mnsgn�m�; (3)

with the superscript � meaning Hermite conjugation, �mn
is the Kronecker symbol, sgn�m� is the sign function, and

 U �

0 1 0 0
�1 0 0 0
0 0 0 1
0 0 �1 0

0
BBB@

1
CCCA (4)

is the symplectic unit matrix. This formalism is in fact an
extension of the Ripken-Mais presentation [6], and is
closely related to the Edwards-Teng parametrization [7].
Any vector X in the 4D phase space can be expanded over
the eigenvectors (1):
 

X �
X
n

CnVn; Cn �
i
2

V�n � U � X;

C�n � C�n; �n > 0�:

(5)

Now, an elementary act of two-particle interaction has to
be considered in terms of the eigenmodes. Following
Chao’s notations [8], the elementary kick for angles of
the following particle ���x;��y� is expressed as

 ��x � �e
2xWx=�p0v0�; ��y � �e

2yWy=�p0v0�:

(6)

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 10, 044402 (2007)

1098-4402=07=10(4)=044402(3) 044402-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevSTAB.10.044402


Here e is the particle charge, p0 and v0 are a longitudinal
velocity and momentum in the laboratory frame, x and y
are the offsets, andWx;y are the wake functions. In terms of
the 4D vector X � �x; �x; y; �y�, this can be expressed as a
perturbation �X �W �X with the wake matrix elements
W2;1 � �e

2Wx=�p0v0�, W4;3 � �e
2Wy=�p0v0�, and ze-

ros for all other matrix elements. In terms of the complex
amplitudes Cn (5), this kick is expressed as

 �Cn �
i
2

V�n � U ��X �
i
2

X
m

V�n � U �W � VmCm

�
i
2

X
m

Gn;mCm: (7)

The kick matrix G is not diagonal generally; so, when the
mode m is originally excited, the wake drives other modes
n � m as well. However, when the wake is small enough, it
can be treated as a small perturbation of the coherent
eigenmode amplitudes. In this case, in the first order of
the perturbation theory, only diagonal elements of the
perturbation are important, similar to the quantum mechan-
ics (see [9] for more details). The wake mixing can be
considered as small in this sense, when the tune separation
of the two transverse modes is much bigger than the wake-
driven coherent tune shift:

 j�1 � �2j 	 ��coh: (8)

In reality, this condition is typically satisfied. If it is not,
nondiagonal elements of the kick matrix G have to be
taken into account as well, leading to some modification
of results. Below, the condition (8) is assumed satisfied, so
the perturbation formalism is approved. Thus, only diago-
nal elements in Eq. (7) count; they are calculated as
follows:

 Gn � Gn;n � Gn;�n � �
e2

p0v0
�Wx�nx �Wy�ny�;

�n � 1; 2�:

(9)

This result already shows how the wake is projected on the
eigenmodes. However, one more step may be useful for
understanding. The complex amplitudes Cn can be pre-
sented with explicitly written real and imaginary parts as

 Cn �
qn
2
� i

pn
2

; �n � 1; 2�: (10)

It is straightforward to show that a linear phase space
transformation from the original variables �x; �x; y; �y� to
the new variables �q1; p1; q2; p2� is canonical, since they
are related to each other by a symplectic matrix, composed
from real and imaginary parts of the eigenvectors V (see
Ref. [5]). Thus, q1; q2 are new canonical coordinates, and
p1; p2 are the corresponding canonical momenta. It fol-
lows then that a single excited mode gets the wake-driven
kick with

 

�qn � 0;

�pn � Gnqn � �
e2

p0v0
�Wx�nx �Wy�ny�qn;

�n � 1; 2�:

(11)

Equations (11) show how canonical momentum is per-
turbed by a small localized wake. Having that, the Vlasov
equation with all its results in the phase space �q1; p1� are
exactly identical to the uncoupled case �x; �x�, with the
following substitution rules for the tune �x � �x=�2��,
wake times beta function Wx�x; , and, thus, impedance
times beta function Zx�x:

 �x ! �1; Wx�x ! Wx�1x �Wy�1y;

Zx�x ! Zx�1x � Zy�1y:
(12)

Note that these rules work both for coasting or bunched
beam, and do not depend on a shape of the longitudinal
potential well. Any solution of the Vlasov equation for an
uncoupled beam can be immediately rewritten to the
coupled case with these simple rules. After that, the result
looks formally similar, while its practical consequences are
generally different because of two reasons. First, the inco-
herent betatron spectrum is changed by the coupling, �x !
�1; thus, the Landau damping is changed. This point is
missed in Refs. [2,3], where denominators of dispersion
integrals are based on the uncoupled incoherent tunes. And
second, an amplitude of the coherent shift / Zx�1x �

Zy�1y is a function of coupling as well. The wake sub-
stitution rule (12) is valid both for conventional driving (or
dipole) wake, and for the detuning (quadrupole) wake (for
more information about the two wakes, see e.g. Ref. [10]).

The substitution rules (12) show disagreement both with
results of Ref. [1], and Refs. [2,3].

A head-tail growth rate � was derived in Ref. [1] for a
coupled optics within a two-particle model, and the two
rates were found to be identical. In a simplified form, cited
in Ref. [11], the rate looks like

 � / �0xWx � �0yWy; (13)

where �0x; �0y are the chromaticities far from the coupling
resonance. Applied for the same problem, the substitution
rules (12) lead to

 �n / �
0
n��nxWx � �nyWy�:

Clearly, the two results are significantly different. They
may become identical only if accidentally �0x=�0y �
�nx=�ny both for n � 1 and n � 2. Generally, this condi-
tion cannot be correct: the left-hand side is determined by
sextupoles, while the right-hand side is given by coupled
linear optics.

There are two significant disagreements between the
rules (12) and Refs. [2,3]. According to these papers, a
localized skew-quad entangles coasting beam modes with
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different longitudinal numbers. We cannot agree with that.
Indeed, localization of skew quads, as well as normal
quads, still preserves the longitudinal wave number, since
the growth time is much longer than the revolution time.
When the Vlasov equation is averaged over fast variables,
resulting equations on the slow growing coherent ampli-
tudes become homogeneous over the ring, so the longitu-
dinal Fourier harmonics are true eigenmodes of the
coasting beam. The second disagreement between (12)
and Refs. [2,3] is that denominators in dispersive integrals
[e.g. Eq. (7) of Ref. [2] ] are uncoupled, which excludes
correct calculation of Landau damping from those
equations.

III. CONCLUSION

A method to treat x� y coupling for analysis of beam
transverse coherent oscillations is presented. The method
effectively reduces a coupled problem to an uncoupled one,
making the two problems identical—for any strength of
coupling, any sort of bunching, any wake functions, any

space charge, etc. Intentionally, any further analysis, like
possible use of coupling, is left outside of the scope of this
paper.
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