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High-gain free-electron lasers (FELs) are being developed as extremely bright sources for a next-
generation x-ray facility. In this paper, we review the basic theory of the start-up, the exponential growth,
and the saturation of the high-gain process, emphasizing the self-amplified spontaneous emission. The
radiation characteristics of an x-ray FEL, including its transverse coherence, temporal characteristics, and
harmonic content, are discussed. FEL performance in the presence of machine errors and undulator
wakefields is examined. Various enhancement schemes through seeding and beam manipulations are
summarized.
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I. INTRODUCTION

Free-electron lasers (FELs), invented by John Madey [1]
and subsequently demonstrated experimentally by his
group at Stanford University in the 1970s [2], hold great
promise as tunable, high-power, coherent sources for short-
wavelength radiation. To circumvent the need for mirrors
or coherent seeds, the initial random field of spontaneous
radiation in an undulator may be amplified in the medium
of a bright electron beam traveling through a long undu-
lator to intense, quasicoherent radiation [3–5]. In the x-ray
wavelength range (from a few nm down to 1 �A or less), a
high-gain FEL operated in this self-amplified spontaneous
emission (SASE) mode can generate multigigawatt (GW)
and femtosecond (fs) coherent x-ray pulses. The extreme
high power together with the excellent transverse coher-
ence of such x-ray sources provide about 10 orders of
magnitude improvement in peak brightness above that
offered by the current synchrotron radiation sources based
on electron storage rings, making FELs suitable probes for
both the ultrasmall and the ultrafast worlds. Tremendous
progress in accelerator and FEL technologies has been
made in past years towards realizing such a ‘‘fourth-
generation’’ radiation facility, demonstrated by the se-
quence of recent SASE FEL experiments at visible and
ultraviolet wavelengths [6–9]. More recently, the VUV-
FEL at DESY, now called FLASH, reported FEL lasing at
wavelengths down to 13 nm [10]. Because of these suc-
cesses, several x-ray FEL projects are either under con-
struction or being proposed (see, e.g., Refs. [11–14]).

This paper reviews the basic theory behind the x-ray
FELs and points out possible improvement of these
sources. In Sec. II we discuss qualitatively how the coher-
ent radiation is amplified and developed from the initial
seed signal or the electron shot noise. It is then followed by
mathematical analysis of the FEL equations and their
solutions in Sec. III, including diffraction, optical guiding,

and effects of beam emittance and energy spread. The main
characteristics of x-ray FELs, including coherence proper-
ties and harmonic content, are presented in Sec. IV, where
the temporal manipulation and seeding schemes are also
briefly discussed. In Sec. V we analyze degrading effects of
undulator errors and wakefields and study their tolerances
or compensations. Several electron beam-manipulation
methods to enhance the SASE performance are described
in Sec. VI. We conclude the paper with final remarks in
Sec. VII.

II. QUALITATIVE DISCUSSIONS

The radiation discussed in this paper is generated in a
periodic magnetic device called an ‘‘undulator.’’ Consider
a planar undulator for which the magnetic field is in the
vertical y direction and varies sinusoidally along the z
direction:

 By � B0 sin�kuz�: (1)

Here ku � 2�=�u, �u is the undulator period, and B0 is the
magnetic pole field. As shown in Fig. 1, a relativistic
electron entering the undulator will wiggle periodically
in the horizontal x direction and can spontaneously emit
radiation at the resonant wavelength (see, e.g., Ref. [15])
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FIG. 1. A wiggling electron in a planar undulator emits undu-
lator radiation.
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Here �0 is the electron energy in units of the rest energy
mc2,

 K0 �
eB0

mcku
� 0:934B0�Tesla��u�cm� (3)

is the dimensionless undulator strength parameter, and� is
the observation angle relative to the undulator z axis.
Spontaneous undulator radiation at the resonant wave-
length �r (and its associated harmonics) is the workhorse
of the third-generation synchrotron facilities.

The electromagnetic (EM) wave in the forward direction
copropagates with the electron beam and may exchange
energy with the electrons. In free space, the interaction
cannot be sustained because the EM wave is always faster
than the electrons. In the undulator, the copropagating
radiation overtakes the electrons in one undulator period
by �1, where
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is the resonant wavelength in the forward direction. In this
case, due to the periodicity of the system, the interaction
with a plane EM wave carrying the resonant wavelength �1

can be sustained as shown in Fig. 2. Depending on the
relative phase of the electrons to the plane wave, some
electrons gain energy from the radiation while other elec-
trons lose energy to the radiation, hence the energy of a
long electron bunch is periodically modulated at �1. As
faster electrons (with higher energies) catch up with the
slower electrons, a periodic density modulation at the
radiation wavelength (the so-called ‘‘microbunching’’) be-
gins to develop in the undulator. Under favorable condi-
tions, the microbunched electron beam emits coherent
radiation at the expense of the beam kinetic energy; then
the EM wave gains net energy and the FEL amplification
occurs.

If the total energy gain in the undulator is a small
fraction of the EM energy, the FEL is said to operate in
the low-gain regime. In this case, an FEL oscillator using

an optical cavity together with many electron bunches is
necessary to build up the radiation intensity. Such FEL
oscillators have been constructed and used successfully in
the visible and longer wavelengths (e.g., Ref. [16]). For a
sufficiently bright electron beam and a sufficiently long
undulator, the collective interaction of the beam-radiation
system leads to an exponential growth of the radiation
intensity along the undulator distance as illustrated in
Fig. 3. Such a high-gain FEL does not require any optical
cavity and can amplify either an input seed signal or the
spontaneous undulator radiation produced by the electron
shot noise. Thus, in the x-ray wavelength range where both
mirrors and coherent input sources are difficult to obtain,
intense, quasicoherent radiation can be generated by the
SASE process. The exponential gain eventually stops as
the beam loses enough energy to upset the resonant con-
dition. Both the radiation intensity and the electron beam
microbunching reach a maximum saturation level (see
Fig. 3).

A fundamental scaling parameter for a high-gain FEL is
the dimensionless Pierce parameter � defined as [5]
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where the Bessel function factor [JJ] is equal to �J0��� �
J1���� with � � K2

0=�4� 2K2
0� for a planar undulator tra-

jectory as shown in Fig. 1. A helical undulator containing
both the vertical and horizontal magnetic fields can pro-
duce a helical undulator trajectory (see, e.g., Ref. [15]). In

this case, we should take �JJ� � 1 in Eq. (5). kp �����������������������������
2Ie=��

3
0IA�

2
x�

q
is the longitudinal plasma oscillation
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FIG. 2. (Color) After an electron (black dot) travels one undu-
lator period �u of the sinusoidal trajectory (in red), a plane wave
(represented by alternating vertical arrows) overtakes the elec-
tron by one resonant wavelength �1. Thus, the undulator radia-
tion carrying this resonant wavelength can exchange energy with
the electron over many undulator periods.

 

FIG. 3. (Color) Growth of the radiation power and the electron
beam microbunching as a function of the undulator distance for a
high-gain FEL.
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wave number, Ie is the electron peak current, IA �
ec=re � 17 kA is the Alfvén current, re � 2:8	
10�15 m is the classical electron radius, and �x is the
rms transverse size of the electron beam. In terms of this
parameter, the one-dimensional (1D) power gain length of
a monoenergetic beam is

 LG0 �
�u

4�
���
3
p
�
: (6)

The relative FEL bandwidth at saturation is close to �, and
the saturation power is about � times the electron beam
power.

As the electron beam develops a periodic microbunching
with the modulation wavelength �1, the longitudinal
space-charge field between electrons tends to counteract
the bunching process if the reduced plasma oscillation
wavelength k�1

p is comparable to the FEL gain length as
given in Eq. (6). Examination of Eq. (5) for K0 
 1 shows
that this condition requires that kp ! ku and that �! 1. In
typical short-wavelength FELs using high-energy electron
beams, �
 10�3, hence we can neglect beam self-fields at
these wavelengths and focus on the beam-radiation
interaction.

III. ANALYTICAL TREATMENTS

In this section, we illustrate analytical methods to treat
the high-gain FELs. The beam-radiation interaction in the
undulator can usually be described by classical physics.
Quantum effects are expected to be small and will be
discussed at the end of this section.

A. Electron motion in the presence of undulator
radiation

Consider an ultrarelativistic electron traversing in the
undulator magnetic field described by Eq. (1). In a first
approximation, we take the longitudinal velocity vz � c
and apply the Lorentz equation in the horizontal direction:

 �m
dvx
dt
� �evzBy � �ecB0 sin�kuz�: (7)

Here �mc2 is the electron energy that can be slightly
different from the reference energy �0mc2. Since � is a
constant in a magnetic field, we can integrate Eq. (7) to
obtain
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where �vz is the average longitudinal velocity over an
undulator period. In the presence of a horizontal electric
field Ex � E0 cos�k1z�!1t�  0�, the change of the elec-
tron energy is given by

 mc2 d�
dt
� evxEx

�
eE0K0c

2�
fcos��k1 � ku�z�!1t�  0�

� cos��k1 � ku�z�!1t�  0�g: (9)

Here E0 and  0 are the initial amplitude and phase of the
electric field, respectively.

It is convenient to use the distance z from the undulator
entrance as the independent variable and change the time
variable to a phase variable relative to the EM wave:

 � � �k1 � ku�z�!1 �t; (10)

where �t �
R
dz= �vz is the electron arrival time averaged

over the undulator period at z. The phase change can be
calculated as

 

d�
dz
� k1 � ku �

!1

�vz
� ku � k1

1� K2
0=2

2�2 : (11)

Defining a relative energy variable 	 � ��� �0�=�0 � 1
and inserting the resonant condition Eq. (4) into Eq. (11),
we obtain

 

d�
dz
� 2ku	; (12)

i.e., the electron’s phase relative to the EM wave remains
constant if its energy satisfies the resonant condition [i.e.,
Eq. (4)]. Thus, the first term on the right-hand side of
Eq. (9) varies slowly, contributing to the resonant energy
exchange, while the second term varies quickly, being
oscillatory with the period 2�u. Properly taking into ac-
count the fact that the electron’s longitudinal motion also
has an oscillatory part as given in Eq. (8), Eq. (9) after
retaining only the slowly varying part becomes

 

d	
dz
�
eK0�JJ�

2�2
0mc

2 E0 cos���  0�: (13)

Equations (12) and (13), known as the ‘‘pendulum equa-
tions,’’ describe the motion of electrons under the influence
of the ‘‘ponderomotive potential’’ due to the combined
undulator and radiation fields [17]. The motion of electrons
in the ��; 	� phase space under the influence of the pon-
deromotive potential is illustrated in Fig. 4. A nearly
monoenergetic electron beam with its energy satisfying
the resonant condition develops an energy modulation at
the resonant wavelength according to Eq. (13). After a
certain undulator distance, the energy modulation is turned
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into a density modulation as the relative longitudinal po-
sition of an electron changes by an amount determined by
its energy deviation from the resonant energy [see
Eq. (12)]. Note that the net energy exchange is still zero,
as the number of electrons gaining energy is the same as
the number of electrons losing energy. However, such a
microbunched beam changes the phase of the EM wave
(through the Maxwell equation, see Sec. III C) so that the
buckets shift to the left. As a result, the electron beam
begins to lose its average energy and the radiation intensity
starts to grow exponentially further along the undulator.

Since the FEL interaction is a resonant energy exchange
between the electron and the radiation field, the evolution
of the electrons’ phase may affect the FEL performance
critically. For example, a beam with an initial energy
spread can cause a phase spread through Eq. (12) that
degrades the microbunching process. As we will discuss
next, the betatron motion of a finite-emittance beam in-
troduces another mechanism for the phase spread.

B. Electron focusing and emittance effect

A beam with a finite emittance "x has an rms angular
spread �x0 � "x=�x, where �x is the rms beam size and
will expand its size in free space. Hence, the electron beam
in a long undulator channel should be properly focused to
keep the beam size nearly constant for the effective FEL
interaction. We discuss two types of undulator focusing:
‘‘natural’’ focusing and ‘‘strong’’ focusing, and study their
effects on the FEL interaction.

1. Natural focusing

Equation (1) for the undulator magnetic field is valid
only near the y � 0 midplane. An exact solution of the

Maxwell equation reducing to Eq. (1) for y � 0 is [18]

 B � �0; B0 sin�kuz� cosh�kuy�; B0 cos�kuz� sinh�kuy��:

(14)

This magnetic field is a reasonable representation of a
planar undulator with wide and flat pole faces.

The Lorentz force on the electron is given by

 �m
�
d2x

dt2
;
d2y

dt2
;
d2z

dt2

�
� ev	 B

� e
�
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dy
dt
� By

dz
dt
;�Bz

dx
dt
; By

dx
dt

�
:

(15)

A rigorous derivation of the linear and nonlinear equations
of motion in the undulator is presented in Ref. [19]. Here
we expand Eq. (15) up to the second order in x and y. The
zeroth-order solution is the wiggling motion

 x �
K0

�0ku
sin�kuz�; y � 0: (16)

The solution up to the second order can be written as

 x �
K0

�0ku
sin�kuz��1� 
� � x�n; y � y�n; (17)

where 
 is the correction term to the zeroth-order wiggling
motion, and �x�n; y�n� denotes a slow evolution of the
trajectory superimposed on the fast wiggling motion.
Inserting Eq. (17) into Eq. (15), keeping terms up to the
second order, and separating the fast oscillation with the
slow motion, we obtain

 
 �
k2
uy

2
�n

2
;

d2x�n
dz2 � 0;

d2y�n
dz2 � �

�
K2

0k
2
u

2�2
0

�
y�n � �k2

n0y�n;

(18)

where kn0 � K0ku=�
���
2
p
�0� � ku is the natural-focusing

strength of the undulator, and we have changed the inde-
pendent variable from t to z for convenience. The vertical
motion is indeed focused. The focusing is due to the
intrinsic property of the periodic nature of the undulator
magnetic field and is referred to as natural focusing. Note
that focusing is absent in the x direction because of the
uniform extent of the undulator in this direction.

We now calculate the average longitudinal velocity, as it
will determine the electron’s phase relative to the EM wave
through Eq. (11). From Eq. (8), we have
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c
� 1�
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2�2 �
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Here
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FIG. 4. Electron motion in the longitudinal phase space ��; 	�
due to the presence of a resonant EM wave (with an initial phase
 0 � �=2) in the undulator. An initial distribution of the elec-
tron beam, shown as a straight line at 	 � 0, changes into a
distribution on a sinusoidal line, implying that the energy and the
density of the electron beam is modulated, i.e., microbunched.
The dashed lines are the phase space trajectories.
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We can again average Eq. (19) over the fast oscillation and
retain terms up to the second order in y to obtain
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To generate focusing in the x direction, one can shape
the undulator pole faces to be parabolic [20]. The natural-
focusing strengths in the x and y directions can be shown to
satisfy

 k2
nx � k

2
ny � k2

n0: (22)

Typically, one wants equal focusing in both transverse
directions, in which case knx � knx � kn0=

���
2
p
� kn. The

average longitudinal velocity is then [20]
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� 1�
1� K2
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2�2 �
Jx � Jy
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where x � �x�n; y�n�, p � �dx�n=dz; dy�n=dz�, and �n �
1=kn � �0�u=��K0� is the natural-focusing beta function
in either transverse direction. We have also introduced the
transverse actions, Jx � �n�k

2
nx

2 � p2
x�=2 and Jy �

�n�k
2
ny

2 � p2
y�=2, which are invariants of the transverse

motion.

2. Strong focusing

The natural focusing is usually too weak to be effective
for the high-energy electrons that drive an x-ray FEL.
Thus, quadrupole magnets are inserted in the undulator
section breaks to provide the necessary strong focusing,
normally in the form of a FODO lattice. A FODO cell (a
single lattice period) consists of a focusing (F) and a
defocusing (D) quadrupole with drift spaces (O) in be-
tween. In Fig. 5 we show two FODO cells with the drift
spaces replaced by undulator sections. Following the stan-
dard accelerator notation (e.g., Ref. [15]), the electron
trajectory can be described by
 

x��z� �
�������������
2Jx�x

p
cos�x�z�;

px��z� �
dx�
dz
� �

�������
2Jx
�x

s
�sin�x�z� � �x cos�x�z��;

(24)

where �x is the horizontal beta function, �x �
�d�x=�2dz�, and �x is the betatron phase advance.
Similar equations describe the vertical betatron motion.

To avoid a large beam size variation in the undulator, the
FODO lattice is usually designed to have a small phase

advance per cell, i.e., the FODO lattice period LC is much
smaller than the average beta function �� (usually the same
in both transverse planes). Such a FODO lattice has the
properties

 �x � �
1

2

d�x
dz
� 1; �y � �

1

2

d�y
dz
� �1; (25)

with the sign alternating per half cell. Figure 5 illustrates
the variation of the beta function in a FODO lattice with a
small phase advance per cell.

Neglecting the natural focusing, the longitudinal veloc-
ity averaged over several undulator periods in a strong
focusing undulator is

 

�vz
c
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1� K2
0=2

2�2 �
p2
�

2
; (26)

where

 p 2
� � p2

x� � p
2
y�

�
2Jx
�x
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2Jy
�y
�1� sin�2�y��: (27)

Because the oscillatory terms in Eq. (27) change sign every
half FODO lattice period, we can further average the
longitudinal velocity over the FODO cell length if it is
smaller than the power gain length to obtain [21]

 

�vz
c
� 1�

1� K2
0=2
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Jx � Jy
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Note that Eq. (28) has the same form as Eq. (23), with
the electron’s average longitudinal velocity depending lin-
early on its transverse actions (constants of the motion in
the undulator). This simplifies the theoretical treatment of
the emittance effect in an undulator with either natural
focusing (used in many low- and medium-energy FELs)
or strong focusing (commonly used in x-ray FELs).
Although Jx;y are constants of motion for each electron,
different electrons with different betatron amplitudes have
different transverse actions. In fact, the ensemble average
of Jx;y over all electrons is the rms transverse emittance of

 

z

βx

Lc

βx = -2 βx = 2' '

FIG. 5. (Color) Variation of the horizontal beta function along
the distance of two FODO cells for a small phase advance per
cell. Its derivative �0x � d�x=dz is close to the values 2, but
the deviation of �x from the average value �� is relatively small.
The FODO cell length Lc is assumed to be much smaller than the
average beta function ��.
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the beam, i.e.,

 hJx;yi � "x;y: (29)

Because of the finite emittance, electrons with different
betatron amplitudes spread out in longitudinal positions
(and phases) relative to the EM wave and hence degrade
the FEL gain. Inserting Eq. (28) into Eq. (11), we obtain
the phase equation in the presence of the betatron motion
as

 

d�
dz
� 2ku	�

k1�Jx � Jy�
��

: (30)

C. Paraxial wave equation

In the high-gain regime, the radiation intensity increases
rapidly along the length of the undulator. The equations of
motion must be solved together with the Maxwell equation
for the transverse radiation field:
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where r2
? is the transverse Laplacian, 0 is the permittivity

of free space, ne is the electron volume density,

 jx � evxne

� eK0 cos�kuz�
XNe
j�1

1

�j
��x� xj�z����t� tj�z�� (32)

is the transverse current, and Ne is the total number of
electrons in the beam.

As we will discuss later, in order to have efficient FEL
interaction, both the e-beam and the radiation cross sec-
tions should be reasonably matched with the rms size
approximately given by

 �x 
 �r 


����������������
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�1�u
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s
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For short-wavelength FELs, the rms size of the radiation
cross section is usually much smaller than the vacuum
chamber radius; hence we may neglect any boundary con-
ditions in solving the Maxwell equation. Furthermore, we
have

 jx � evxne 
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(34)

then the ratio

 

ec2@ne=@x
@jx=@t



����
�
p
� 1: (35)

Thus, the charge density term in the Maxwell equation (31)
may be dropped.

It is convenient to introduce the frequency domain field
amplitude E� via

 Ex�x; t; z� �
1

2

Z
d�E��x; z�ei�k1�z�ct� � c:c:; (36)

where c.c. stands for complex conjugate. Although the
increase in the radiation amplitude over the entire length
of the undulator is large, we will assume that the change is
small over a few undulator period. The radiation spectrum
will then be narrowly peaked around the resonant fre-
quency. In other words, �� � �� 1 is much smaller
compared to unity, and
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��������2�k1

@E�
@z

��������: (37)

The Maxwell equation now becomes the paraxial wave
equation [22]

 �2i�k1
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��x� xj���t� tj�: (38)

Here we have approximated �j � �0 in the transverse velocity of the beam (assuming the energy spread is small) and
performed integration by parts over the time variable.

Equation (38) can be further simplified as follows. We change the integration variable from t to � according to Eq. (10)
and average the right-hand side properly over the fast wiggling motion to obtain

 

�
@
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�
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Here �j is the position of the jth electron relative to the
bunch center in units of �1=�2�� at the undulator distance
z, and the left-hand side � can be replaced by 1 around the
fundamental radiation frequency. Although �� �
�� 1� 1, we cannot ignore ��kuz in the exponent of
Eq. (39) as kuz� 1 for a high-gain undulator.
Section IV C gives a derivation of the [JJ] factor including
harmonic emissions.

D. Coupled Maxwell-Klimontovich equations

To take into account the discreteness of electrons that
initiates the SASE process, we use the Klimontovich dis-
tribution function to describe the microscopic electron
distribution in the phase space (see, e.g., Ref. [23]):
 

F��; 	; x;p; z� �
k1

n0

XNe
j�1

���� �j���	� 	j���x� xj�

	 ��p� pj�; (40)

where n0 is the peak electron volume density. The evolu-
tion of the Klimontovich distribution function F is gov-
erned by the continuity equation

 

@F
@z
�
@F
@�

d�
dz
�
@F
@	

d	
dz
�
@F
@x

dx
dz
�
@F
@p

dp
dz
� 0: (41)

Here x and p are the averaged transverse variables that
satisfy the smooth focusing approximation, i.e.,

 

dx
dz
� p;

dp
dz
� �

x
��
� �k�x: (42)

The averaging is over the (FODO) lattice period for strong
focusing. For natural focusing, the averaging is over the
undulator period, and k� should be replaced by kn.

Using this set of smoothed transverse variables, the
phase Eq. (30) for a strong focusing undulator becomes

 

d�
dz
� 2ku	�

k1

2
�k2
�x

2 � p2�: (43)

The energy equation can also be rewritten as

 

d	
dz
�

eK�JJ�

4�2
0mc

2

Z
d�ei��e�i��kuzE��x; z� � c:c: (44)

In terms of the electron distribution function F, the
paraxial wave equation (39) becomes

 

�
@
@z
�
r2
?

2ik1

�
E��x; z� � �

eK�JJ�n0

20�0
ei��kuz

Z d�
2�

e�i��
Z
d2p

Z
d	F: (45)

We note that the fluid limit of the Klimontovich distribution function F satisfies the same continuity equation, often
referred to as the Vlasov equation in the literature. Here, we retain the microscopic description of the electrons in order to
describe the SASE radiation initiated by the electron shot noise. Equation (41), with F given by Eq. (40), will be referred to
as the Klimontovich equation.

Making use of the fundamental FEL scaling parameter � defined in Eq. (5), we introduce the following scaled variables
to simplify our equations:

 

ẑ � 2�kuz; 	̂ �
	
�
; ��̂ �

��
2�

; x̂ � x
���������������
2k1ku�

p
;

p̂ � p

�����������
k1

2ku�

s
; a� �

eK�JJ�

4�2
0mc

2ku�
e�i��kuzE�; f �

2ku�2

k1
F:

(46)

The coupled Maxwell-Klimontovich equations using these scaled variables are

 

�
@
@ẑ
� i��̂�

r̂2
?

2i

�
a��x̂; ẑ� � �

Z 2�d�
2�

e�i��
Z
d2p̂

Z
d	̂f��; 	̂; x̂; p̂; ŝ�; (47)

 

@f
@ẑ
� �0

@f
@�
� p̂

@f
@x̂
� k̂2

�x̂
@f
@p̂
�

�Z
d��̂ei��a� � c:c:

�
@f
@	̂
� 0; (48)

where

 �0 �
d�
dẑ
� 	̂�

p̂2 � k̂2
�x̂

2

2
; (49)

and k̂� � k�=�2kw�� is the scaled focusing strength.
Throughout this paper, we denote most of the scaled

(dimensionless) parameters and variables with caret, ex-

cept for a few special cases such as �, a�, and f. A list of
symbols and their physical meanings is given in
Appendix A.

E. Solution in the exponential growth regime

Equation (48) can be linearized in the small signal
regime before saturation when the scaled radiation field
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is small, i.e.,

 a��; x̂; ẑ� �
Z
d��̂a��x̂; ẑ�ei�� � 1: (50)

Let us write the distribution function as

 f � f0 � f1; (51)

where f0 is the distribution function averaged over �, and
f1 contains the shot-noise fluctuation and the FEL-induced
modulation. Equation (48) can be rewritten in two parts:
 

@f0

@ẑ
� p̂

@f0

@x̂
� k̂2

�x̂
@f0

@p̂

�

��Z
d��̂ei��a��x̂; ẑ� � c:c:

�
@f1��; 	̂; x̂; p̂; ẑ�

@	̂

	
�
� 0;

(52)

 

@f1

@ẑ
� �0

@f1

@�
� p̂

@f1

@x̂
� k̂2

�x̂
@f1

@p̂

�

�Z
d��̂ei��a��x̂; ẑ� � c:c:

�
@f0�	̂; x̂; p̂; ẑ�

@	̂
� 0: (53)

We regard both f1 and the field a defined in Eq. (50) as
first-order quantities, hence the last term of Eq. (52) (aver-
aged over �) is a second-order quantity and will be ignored
in the linear theory. We will discuss its effect at the onset of
the saturation in the quasilinear theory of Sec. III I.

Using the method of integration along the unperturbed
trajectory [23] and following the derivation of Ref. [24],
we obtain

 f1 � f1�0� �
Z ẑ

0
ds
Z
d��̂ei��

�0�
a��x̂�0�; s�

	
@
@	̂

f0�	̂; x̂�0�; p̂�0�; s� � c:c:; (54)

where f1�0� is the initial fluctuation from the smooth
distribution at z � 0, and the unperturbed trajectory is
given by

 ��0� � �� �0�s� ẑ�;

x̂�0� � x̂ cos�k̂��s� ẑ�� �
p̂

k̂�
sin�k̂��s� ẑ��;

p̂�0� � �k̂�x̂ sin�k��s� ẑ�� � p̂ cos�k̂��s� ẑ��:

(55)

One can easily confirm that Eq. (54) satisfies Eq. (53).
We now assume that the electron beam is transversely

matched to the undulator channel and is uniform in the
longitudinal direction (this can be approximately satisfied
by a bunch that is very long compared to the fundamental
radiation wavelength �1). Then f0 � f0�p̂

2 � k̂2
�x̂

2; 	̂� is a
solution of Eq. (52) in the absence of the second-order
term. Inserting f � f0 � f1 with f1 given by Eq. (54) into
Eq. (47), we find that each frequency component of the
radiation field is independently amplified and is governed

by [24]

 

�
@
@ẑ
� i��̂�

r̂2
?

2i

�
a��x̂; ẑ�

�
Z
d2p̂

Z
d	̂

Z ẑ

0
dsei�

0�s�ẑ�a��x̂�0�; s�
@f0

@	̂

�
Z
d2p̂

Z
d	̂f��	̂; x̂; p̂; 0�; (56)

where
 

f��	̂; x̂; p̂; 0� �
Z 2�d�

2�
e�i��f1��; 	̂; x̂; p̂; 0�

�
2ku�

3

�n0

XNe
j�1

e�i��j�0���	̂� 	̂j�0��

	 ��x̂� x̂j�0����p̂� p̂j�0�� (57)

is the Fourier transformation of the initial fluctuation with
�j�0� � �i!1tj�0� at z � 0.

We will postpone the discussions of shot-noise start-up
until Sec. III H and focus on the homogeneous part of
Eq. (56). In this case, we seek a solution of the form
An�x̂�e

�i�nẑ, where the complex growth rate �n and the
transverse mode profile An�x̂� of the nth eigenmode (n �
0; 1; 2; . . . ) satisfy
 �
�i�n � i��̂�

r̂2
?

2i

�
An�x̂�

�
Z
d2p̂

Z
d	̂

Z 0

�1
d�An�x̂��ei��

0��n��
@f0

@	̂
� 0: (58)

Here x̂� � x̂ cos�k̂��� � �p̂=k̂�� sin�k̂���. Equation (58)
generalizes Moore’s guided mode equation [25,26] to in-
clude effects of beam energy spread and emittance [27,28].
In general, there are many discrete solutions of Eq. (58),
and the radiation field can be written as an expansion of
eigenmodes:

 a��x̂; ẑ� �
X1
n�0

CnAn�x̂�e�i�nẑ; (59)

where Cn is the mode expansion coefficient that can be
determined by solving the initial value problem. In the
high-gain regime, a Gaussian-like fundamental mode (for
n � 0) with the largest growth rate Im�0 usually domi-
nates over other higher-order modes, i.e.,

 a��x̂; ẑ� � C0A0�x̂�e�i�0 ẑ when ẑ � 2�kuz� 1: (60)

Thus, the transverse profile of the radiation appears to be
guided with an exponentially growing amplitude. We will
discuss this remarkable feature of a high-gain FEL and its
implication to the transverse coherence in Sec. IVA.

Before considering a fully three-dimensional (3D) solu-
tion of Eq. (58), it is useful to consider a simpler case
where electrons are all parallel with a vanishing angular
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spread. We can then set k� � 0 and take f0 � U�x̂�V�	̂�,
where U�x̂� describes the electron beam transverse profile
with U�0� � 1 and V�	̂� describes the energy distribution
with the normalization

R
d	̂V�	̂� � 1. In this case,

Eq. (58) becomes

 

�
�n � ��̂�

r̂2
?

2
�U�x̂�

Z
d	̂

dV=d	̂
	̂��n

�
An�x̂� � 0:

(61)

This equation has been studied by various authors during
the early days when optical guiding was first discovered
[25,26,29,30]. In the 1D limit where the electron beam is
uniform and infinite in transverse dimensions, we can drop
the transverse dependence to obtain

 ����̂�
Z
d	̂

dV=d	̂
	̂��

� 0: (62)

Here all transverse modes become degenerate with the
same growth rate �. For a cold beam with a vanishing
energy spread [i.e., V�	̂� � ��	̂�], Eq. (62) reduces to the
well-known cubic equation for the complex growth rate
[31]

 �2��� ��̂� � 1: (63)

At the optimal detuning ��̂ � 0, the growing solution of

Eq. (63) is� � ��1� i
���
3
p
�=2. Hence, the radiation power

builds up as P / exp�z=LG0�, with LG0 � �u=�4�
���
3
p
�� as

in Eq. (6).

F. Dispersion relation with four scaled parameters

We will now return to the general 3D case and solve
Eq. (58) for a finite-emittance beam with Gaussian trans-
verse and energy distributions:
 

f0�p̂
2 � k̂2

�x̂
2; 	̂� �

1

2�k̂2
��̂

2
x

exp
�
�
p̂2 � k̂2

�x̂
2

2k̂2
��̂

2
x

�
1�������

2�
p

�̂	

	 exp
�
�

	̂2

2�̂2
	

�
; (64)

where

 �̂ x � �x
���������������
2k1ku�

p
; �̂	 � �	=�; (65)

and �	 is the relative rms energy spread. The electron
beam emittance is specified by

 "x � "y � " � �̂2
xk̂�=k1: (66)

Inserting Eq. (64) into Eq. (58) and performing the 	̂
integral, we obtain a dispersion relation for the fundamen-
tal mode as [32,33]

 �
�0 � ��̂�

r̂2
?

2

�
A0�x̂� �

1

2�k̂2
��̂

2
x

Z 0

�1
�d�e��̂

2
	�2=2�i�0�

Z
d2p̂A0

�
x̂ cos�k̂��� �

p̂

k̂�
sin�k̂���

�

	 exp��
p̂2 � k̂2

�x̂
2

2

�
i��

1

k̂2
��̂

2
x

��
� 0: (67)

The complex growth rate �0 and the fundamental mode
A0�x̂� are completely determined by four scaled parameters
[32], such as �̂x, k̂�, �̂	, and ��̂ used here. They can be
cast in different ways [32,33], but they characterize four
distinct physical effects to be illustrated below.

(i) �̂x characterizes the diffraction effect. Let us rewrite

 �̂ 2
x � �2

x2k1ku� �
2��2

x

�1

4��
�u
�

1���
3
p

ZR
2LG0

; (68)

where ZR � 4��2
x=�1 is the Rayleigh length assuming

that the rms size of the optical beam is the same as that
of the electrons. The transverse area of the radiation will
double in one Rayleigh length, reducing the interaction
efficiency. A strong gain will mitigate the diffraction. The
condition for that is

 �̂ x � 1 or ZR � 2LG0: (69)

(ii) ��̂ represents the effect of the frequency detuning
(the normalized deviation of the radiation wavelength �
from the resonant wavelength �1). Since the electron with
the energy �0mc2 slips exactly �1 behind the radiation per

undulator period, it will experience a different radiation
phase if � � �1. In order to not degrade the gain signifi-
cantly, the phase spread introduced by the frequency de-
tuning over the 
1=� undulator period should be smaller
than unity, or

 j��̂j �
j��j
�1

1

2�
�
j�!j
!1

1

2�
< 1: (70)

The length �u=� is roughly the saturation length [see the
discussion following Eq. (92) in Sec. III I]. Thus, we expect
that the relative SASE bandwidth at saturation is about �,
i.e., �� 
 �.

(iii) �̂	 represents the effect of the beam energy spread.
The resonant wavelength spread caused by the energy
spread over the saturation length must also be less than
unity, i.e.,

 �̂ 	 �
j��j
��


j��j
�1

1

�
< 1 or �	 < �: (71)
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(iv) �̂xk̂� represents the effect of the angular spread for a
finite-emittance beam. According to Eq. (2), the beam
angular spread �x0 � k��x � �x= �� inevitably introduces
a spread in the resonant wavelength j��j=�1 �

�u�
2
x0=�2�1�. Using similar arguments, we have

 ��̂xk̂��
2 �

�u�
2
x0

2�1

1

�
�
j��j
�1

1

�
< 1: (72)

Writing �2
x0 � "= ��, and LG0 � �u=�4�

���
3
p
�� �

�u=�8���, we have the emittance requirement

 " <
�1

4�

��
LG0

: (73)

G. Variational solution of the power gain length

One of the most important FEL design parameters is the
power gain length of the fundamental mode given by

 LG �
�u

8�Im�0���
� LG0�1���; (74)

where � quantifies the degrading effects discussed in the
previous section over the shortest possible gain length
LG0 � �u=�4

���
3
p
��� and will be determined explicitly

here. Given the four scaled parameters, the complex
growth rate of the fundamental mode �0 can be obtained
by solving Eq. (67) with a variational approximation
[30,32,33], with an orthogonal function expansion [34],
or with a direct numerical method [33]. The variational
method is very fast and accurate in terms of the growth rate
and will be illustrated here.

For an azimuthally symmetric fundamental mode, we
take A0�x̂� � A0�R�, where R � jx̂j=�̂x � jxj=�x.
Equation (67) can be simplified considerably after some
algebra:

 

�
�0 � ��̂�

�̂2
x

2

d
RdR

�
R
d
dR

��
A0�R�

�
Z 1

0
R0dR0G0�R;R

0�A0�R
0�; (75)

where

 G0�R;R
0� �

Z 0

�1

�d�

sin2�k̂���
exp

�
�
�̂2
	�2

2
� i�0��

�R2 � R02��1� ik̂2
��̂

2
x��

2sin2�k̂���

�
I0

�RR0�1� ik̂2
��̂

2
x�� cos�k̂���

sin2�k̂���

�
; (76)

and I0 is the zeroth-order modified Bessel function. A variational functional may be constructed as follows [30,32,33]:

 

Z 1
0
RdRA0�R�

�
�0 � ��̂�

�̂2
x

2R
d
dR

�
R
d
dR

��
A0�R� �

Z 1
0
RdRA0�R�

Z 1
0
R0dR0G0�R;R0�A0�R0�: (77)

The variational principle states that a first-order approximation in A0�R� yields a stationary solution �0 that is accurate to
the second order. For a Gaussian-like fundamental mode, we take a trial function A0�R� / exp��wR2� and insert it into
Eq. (77) to obtain

 

�0 � ��̂
4w

�
1

4�̂2
x
�
Z 0

�1

�d�e��̂
2
	�2=2�i�0�

�1� ik̂2
��̂

2
x�

2�2 � 4w�1� ik̂2
��̂

2
x�

2� � 4w2sin2�k̂2
���

: (78)

Differentiating Eq. (78) with respect to w and applying the
variational condition @�0=@w � 0, we obtain the second
relation between �0 and w. Solving these two equations,
we can determine �0 and hence the power gain length.

Based on the variational solution of the FEL dispersion
relation, Ming Xie obtained a very useful fitting formula
for the power gain length of the fundamental mode that
depends on three scaled parameters [33,35]:

 	d �
1

2
���
3
p
�̂2
x

�
LG0

2k1�2
x
�diffraction parameter�;

	" �
2���
3
p k̂2

��̂
2
x

� k�LG0
"

�1=�4��
�angular spread parameter�;

	� �
�̂	���

3
p � 4�

LG0

�u
�	 �energy spread parameter�;

(79)

while the fourth parameter, the frequency detuning, is
optimized to yield the minimum power gain length. The
gain length degradation factor � defined in Eq. (74) is
written as
 

� � a1	
a2
d � a3	

a4
" � a5	

a6
� � a7	

a8
" 	

a9
� � a10	

a11
d 	a12

�

� a13	
a14
d 	a15

" � a16	
a17
d 	a18

" 	a19
� ; (80)

where the fitting coefficients are
 

a1 � 0:45; a2 � 0:57; a3 � 0:55; a4 � 1:6;

a5 � 3; a6 � 2; a7 � 0:35; a8 � 2:9;

a9 � 2:4; a10 � 51; a11 � 0:95; a12 � 3;

a13 � 5:4; a14 � 0:7; a15 � 1:9; a16 � 1140;

a17 � 2:2; a18 � 2:9; a19 � 3:2: (81)

The discrepancy between Xie’s fitting formula and numeri-
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cal solutions of the FEL eigenmode equation is typically
less than 10%. These positive fitting coefficients quantita-
tively show that all three scaled beam parameters in
Eq. (79) should be kept small to avoid a large gain reduc-
tion, corresponding to the qualitative beam requirements
discussed in Sec. III F.

H. Start-up process

The 3D initial value problem for an FEL starting up from
electron shot noise [i.e., Eq. (56)] can be solved using Van
Kampen’s normal mode expansion [27,36]. Equivalent
methods using the bi-orthogonality theorem of a general-
ized Hamiltonian for the beam-radiation system are given
in Refs. [37,38]. For Van Kampen’s normal mode expan-
sion, we refer to the detailed derivation in Appendix A of
Ref. [39]. In the high-gain limit, we may keep only the
fundamental mode and arrive at
 

a��x̂; ẑ� � e�i�0 ẑA0�x̂�

�Z
d2x̂0A0�x̂

0�a��x̂
0; 0�

�
Z
d2x̂0

Z
d2p̂

Z
d	̂f��	̂; x̂

0; p̂; 0�

	
Z 0

�1
d�A0

�
x̂0 cosk̂���

p̂

k̂�
sink̂��

�
ei��

0��0��
�
:

(82)

The first term in the square bracket describes the process of
coherent amplification (CA), which starts from a coherent
input signal a��x̂; 0� at the frequency ! � �!1. The sec-
ond term describes the SASE process that starts from
electron shot noise [27,37,40,41]. Although the ensemble
average of f��	̂; x̂0; p̂; 0� in Eq. (57) is zero, the average
radiation intensity is not and can be computed by using the
relation [23]

 hf��	̂; x̂; p̂; 0�f��	̂0; x̂0; p̂0; 0�i

�
2k3

1ku�
3cT

�2n0

��	̂� 	̂0���x̂� x̂0���p̂� p̂0�f0; (83)

where cT is the bunch length for a flattop current profile.
Including the frequency dependence of the complex

growth rate in Eq. (60) and integrating over the transverse
coordinates, we obtain the FEL power spectrum in the
high-gain regime as

 

dP
d!
�
�0mc3n0�

2�!2
1T

Z
dx2hja�ji

2

� gA

�
dP0

d!
� gS

��0mc
2

2�

�
exp

�
z
LG
�

�!2

2�2
!

�
; (84)

where dP0=d! is the input power spectrum; ��0mc
2=�2��

is the 1D SASE noise power spectrum [27] and can be
identified as the spontaneous undulator radiation in the first
two power gain lengths [42]; gA and gS determine the input
coupling to the fundamental mode and the effective start-

up noise in units of ��0mc
2=�2��, respectively; and �! is

the SASE bandwidth. In the 1D, cold beam limit, gA �
1=9, gS � 1, and the rms SASE bandwidth is [40,41]

 �! �

������������
3
���
3
p
�

kuz

s
!1: (85)

For a more general beam distribution, the SASE bandwidth
can be found by solving the dispersion relation [i.e.,
Eq. (58)] and typically decreases to about �!1 at the
FEL saturation point. gA and gS can also be computed
for a general beam distribution by solving the 3D initial
value problem [38,43]. It is noted that the effective start-up
noise increases with larger energy spread and emittance
mainly because of the corresponding increase in the gain
length. Integrating the SASE term over the frequency, we
have the average SASE power as

 P � gAPn exp
�
z
LG

�
: (86)

Here Pn � gS��0mc
2�!=

�������
2�
p

is the effective noise
power for SASE.

As a numerical example, Fig. 6 shows the total radiated
energy in the LEUTL FEL [6] at �1 � 130 nm. The agree-
ment of the high-gain behavior between time-dependent
SASE simulations using either GINGER [44] or GENESIS

[45] and Eq. (86) are very good when the proper input
coupling coefficient and effective noise power (i.e., gA and
gS) are calculated. Note that GENESIS is a 3D code that does
not assume azimuthal symmetry in the radiation profile.
Hence, it takes into account more higher-order transverse
modes than GINGER (with only azimuthally symmetric
modes) in the start-up regime and leads to more radiated
energy in the early part of the undulator length.

 

80

80

FIG. 6. (Color) GINGER (black) and GENESIS (blue) simulations
of the LEUTL FEL energy at 130 nm versus the undulator
distance z, as compared from predictions of Eq. (86) with 3D
noise (red) and 1D noise (green).
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I. Saturation mechanism

The exponential growth cannot continue indefinitely,
and the power must saturate at a certain level. This is
because the average beam energy must decrease to con-
serve the total energy. (In the linear theory, the average
beam energy is unchanged to the first order in a� because
the field energy is second order in a�.) In addition, the
beam energy spread inevitably increases so that the growth
rate becomes negligible. The saturation effect is due to
nonlinear interactions and can be studied by a quasilinear
theory that takes into account the second-order term in
Eq. (52) [27,46]. Here we illustrate the basic steps in the
1D case, where we write the distribution function as

 f � f0�	̂; ẑ�|���{z���}
� indep: average distribution

�
Z
f��	̂; ẑ�ei��d�� c:c:|��������������������{z��������������������}
� dep: microbunching

(87)

Unlike in the linear theory discussed in Sec. III E, the
smoothed distribution function f0�	̂; ẑ� is also a function
of ẑ. Consider �
 1 for the fundamental frequency (drop-
ping higher harmonics is equivalent to dropping higher
than second-order terms; see Sec. IV C), the set of non-
linear equations following Eqs. (47), (52), and (53) are

 

�
d
dẑ
� i��̂

�
a� �

Z
d	̂f� � 0; (88)

 

@f�
@ẑ
� i	̂f� �

@f0

@	̂
a� � 0; (89)

 

@f0

@ẑ
�

�Z
d�a��

@f�
@	̂
� c:c:

�
� 0: (90)

In the small signal regime where ja�j; jf�j � 1,
@f0=�@ẑ� � 0 and we recover the 1D linearized
Maxwell-Klimotovich equations. When ja�j; jf�j 
 1, the
initial energy distribution changes rapidly with ẑ. The
average energy decreases with an increasing energy spread
and the FEL saturation sets in.

This set of nonlinear equations can be solved numeri-
cally given the initial conditions. Since the saturation
power level is quite insensitive to the start-up process, we
start with a small seed signal a��0� at various initial
frequency detunings and find the dependence of the maxi-
mum power (at the optimal detuning) as a function of the
initial rms energy spread. The results [46] are shown in
Fig. 7 and are compared with a simulation fitting formula
given by [35]

 Psat � 1:6
�
LG0

LG

�
2
�Pbeam �

1:6

�1���2
�Pbeam; (91)

where � is defined in Eq. (74), and Pbeam�GW� �
��0mc2=e��GV�Ie�A� is the total electron beam power.

To estimate the saturation distance of a SASE FEL, we
require that Eq. (86) is equal to Eq. (91). In the 1D case, we
obtain

 

zsat

LG
� ln

20Ietc
e

; (92)

where tc �
����
�
p

=�! is the coherence time [see Eq. (102)
below]. Thus, the saturation distance is a numerical factor
times the power gain length. The numerical factor depends
logarithmically on the number of electrons within one
coherence time (i.e., Nc � Ietc=e) and typically varies
little from 18 to 20. We note that, numerically, 4�

���
3
p
�

20. Therefore the saturation length is simply �u=�, if LG �
LG0.

J. Quantum effects

Despite the fact that the first FEL theory is based on a
quantum mechanical analysis [1], subsequent analysis
shows that the classical theory is adequate in most practical
devices. In this section, we discuss both the quantum recoil
and the quantum diffusion effects that tend to decrease the
FEL interaction efficiency if they are not negligible.

1. Quantum recoil

As an electron emits a photon of energy @!1, its energy
is reduced due to the quantum recoil. If the fractional
energy change is on the order of or larger than the FEL
gain bandwidth, the quantum recoil may significantly de-
grade the FEL gain. For short-wavelength, high-gain FELs
using magnetic undulators and high-energy electron
beams, the typical FEL gain bandwidth is on the order of
10�3, while the fraction energy change after a photon
emission is no more than 10�6; hence, the quantum recoil
is negligible. The quantum recoil effect may become an

 

σ  /ρη

FIG. 7. (Color) Maximum FEL efficiency Psat=��Pbeam� versus
the initial normalized rms energy spread �	̂ � �	=� from the
quasilinear theory [46] (red solid curve) and from a simulation
fitting formula [35] (green dashed curve).
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issue when an extremely bright and low-energy electron
beam interacts with an electromagnetic undulator, as the
fractional energy change due to an x-ray photon emission
may be comparable to or exceed the FEL bandwidth. High-
gain FELs in the quantum regime were studied before (see,
e.g., Ref. [47–49]) and have been revisited recently in the
context of SASE [50,51]. For a 1D, cold electron beam, the
classical cubic equation (63) is modified to [48,50,51]

 

�
�2 �

1

4 ��2

�
�����̂� � 1; (93)

where �� � ��mc2=�@!1� can be regarded as the ratio of
the classical FEL bandwidth to the fractional energy recoil
of an FEL photon. In view of Eq. (62), we see that the effect
due to the quantum recoil is equivalent to a flattop energy
spread with a width @!1 that decreases the FEL growth rate
�.

2. Quantum diffusion

Even when a single photon emission is not capable of
changing the electron energy outside the FEL bandwidth,
the accumulated effects of spontaneous undulator emission
may alter the electron energy significantly over the long
undulator line. The classical part of this effect is that the
electron changes its energy due to the spontaneous undu-
lator radiation, given by

 

����SR

�0

� �
1

3
re�0K

2
0k

2
uLu; (94)

where Lu is the total length of the undulator. For the Linac
Coherent Light Source (LCLS) at 14 GeV (see Table I), the
fractional energy loss over the 100-m undulator is about
0.17%, which causes the electrons’ central energy �0 to
move away from the resonant bandwidth. In view of
Eq. (4), the resonant wavelength can be kept constant by
tapering the undulator magnetic field strength (i.e., adjust-
ing the K0 parameter) to compensate for the energy loss.

In addition to the average energy loss, the discrete nature
of spontaneous photon emissions (over a wide energy
spectrum) increases the uncorrelated energy spread of the
beam, much like the effect of quantum excitation in an
electron storage ring (see, e.g., Refs. [15,52]). The diffu-
sion rate of the energy spread is calculated to be [53]
 

dh����2i
dz

�
7

15
re�c�4

0K
2
0k

3
uF�K0�;

F�K0� � 1:2K0 �
1

1� 1:33K0 � 0:40K2
0

;

(95)

where �c � @=mc � 3:86	 10�13 is the Compton wave-
length. For the LCLS case (see Table I), this quantum
diffusion process increases the uncorrelated energy spread
in the 100-m undulator to more than 1	 10�4 even if the
initial energy spread is zero. Although this level of energy
spread is still acceptable for the LCLS and other similar x-
ray FEL projects, the quantum diffusion effect may impose
a practical limit on the minimum achievable wavelength
for a given transverse emittance and peak current [54].

IV. CHARACTERISTICS OF X-RAY FELS

In the last section, we reviewed the basic theory of a
high-gain FEL. In the following three sections, we will
apply the theory to discuss in turn, the properties of x-ray
FEL output, various effects that can degrade FEL perform-
ance, and novel schemes designed to enhance the useful-
ness of the x-ray FEL. In order to make the length of the
paper manageable, we will present most results without
much derivation and refer the reader to an extensive list of
literature.

In this section, we describe the radiation characteristics
of an x-ray FEL including its transverse and temporal
coherence, harmonic content, and saturation behaviors.

TABLE I. Main parameters for the LCLS FEL.

Parameter Symbol Value

Electron energy �0mc
2 13.6 GeV

Bunch duration (FWHM) T 200 fs
Bunch current (flat part) Ie 3.4 kA
Transverse norm. emittance "n 1:2 �m
Average beta function �� 25 m
Undulator period �u 0.03 m
Undulator field B0 1.25 T
Undulator strength parameter K0 3.5
Active undulator length Lu 110 m
Fundamental wavelength �1 1.5 Å
Pierce parameter � 4:5	 10�4

FEL power gain length LG 4.3 m
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FIG. 8. GENESIS SASE simulation of the LCLS power along
the undulator distance.
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We will mainly concentrate on the SASE FEL but will also
comment on some advanced seeding schemes in Sec. IV B.
As a numerical example, we use the LCLS at �1 � 1:5 �A
[11] as given in Table I. Figure 8 shows the GENESIS

simulation of the radiation growth along the undulator
distance obtained with these parameters.

A. Transverse coherence and mode properties

As briefly discussed in Sec. III E, a unique feature of the
exponential growth regime is optical guiding [25,29], the
phenomena in which the transverse profile of the radiation
does not change significantly. This arises because the field
amplitude is dominated by the fundamental mode with the
largest growth rate as given by Eq. (60). Because of
stronger diffraction and less spacial overlap with the elec-
tron beam, higher-order modes usually have smaller
growth rates and hence are negligible after a few e-folding
lengths of the fundamental modes. For an explicit numeri-
cal demonstration, we refer the reader to the results of the
LCLS higher-order mode calculation reported in Ref. [55].

Because of optical guiding, the SASE FEL can reach
almost full transverse coherence before saturation, even
when the emittance of the electron beam " is larger than the
diffraction-limited radiation emittance "r0 � �1=�4�� as
in the above LCLS example. Figure 9 shows the GENESIS

simulation of the LCLS radiation angular patterns at differ-
ent z locations. At the initial start-up stage, the large beam
emittance excites many transverse modes, and the radiation
is dominated by incoherent spontaneous emission with its
emittance "r � " [Fig. 9(a)]. The mode pattern cleans up
in the exponential growth regime due to optical guiding
[Fig. 9(b)]. Near saturation, the guided fundamental mode
dominates the radiation pattern [Fig. 9(c)], and the radia-
tion emittance is almost given by "r0. In fact, the
frequency-dependence of the fundamental mode profile
within the finite SASE bandwidth introduces a slight in-
crease of the radiation emittance above the minimum

emittance "r0 [56,57]. If we define the transverse mode
parameter as

 M2
T �

�
"r
"r0

�
2
; (96)

then M2
T � �"="r0�

2 � 1 at the start-up stage and de-
creases to a value slightly above unity at saturation.
Detailed numerical simulations characterizing the depen-
dence of transverse coherence on the ratio of the electron
emittance to the radiation emittance is presented in
Ref. [58].

In general, the evaluation of the transverse mode size
(and angular divergence) requires numerical solutions of
the FEL eigenmode equation. Two limiting cases can be
discussed here for a ‘‘parallel’’ beam with a vanishing
angular spread. For a large electron transverse size or a
small diffraction parameter [i.e., 	d � 1 in Eq. (79)], it is
plausible (but wrong) to estimate the rms mode size �r by
�D �

�������������������������
�12LG0=4�

p
, which is the size of a coherent optical

beam with its Rayleigh length identified as the 1D field
amplitude gain length 2LG0. A correct calculation of the
mode size proceeds from Eq. (61) by setting U�x̂� �
exp��x̂2=2�̂2

x� � 1� x̂2=2�̂2
x and solving the equation

exactly for a Gaussian fundamental mode. In this 1D limit,
we find that the rms mode size is the geometric average of
�D and �x [33], i.e.,

 �r �
�������������
�D�x
p

�
������
	d
p

�x: (97)

On the other hand, when the radiation mode size is much
larger than the electron transverse size due to strong dif-
fraction effect (i.e., 	d � 1), the beam-radiation interac-
tion is no longer characterized by �. In this 3D limit, we
should redefine � by replacing �2

x in Eq. (5) with �2
r �

��1=4��2LDG, where LDG is the power gain length in this
diffraction-dominated regime. If we assume LDG takes the
form of Eq. (6) with the redefined �, both LDG and�r can be
determined self-consistently as [32]

 

FIG. 9. (Color) Evolution of the LCLS transverse profiles at different z locations (courtesy of Sven Reiche, UCLA).
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 LDG �
�u
4�

��������������������������������
�0IA
Ie

1� K2
0=2

K2
0�JJ�2

s
; and �r �

����������������
�1

4�
2LDG

s
:

(98)

In this case, both the gain length and the mode size are
independent of the transverse beam size.

B. Temporal characteristics and manipulations

Because of its noisy start-up, the temporal property of a
SASE FEL is that of a chaotic light [59–62]. This may be
illustrated with the analytical result in the 1D case.
Dropping the transverse dependencies and mode index 0
in Eq. (82) and assuming a cold beam without any initial

energy spread, the second term of Eq. (82) is simplified to

 a��ẑ� �
ie�i�ẑ

3�

XNe
j�1

e�i��j�0�; (99)

where � satisfies the 1D FEL cubic equation (63) and may
be expanded to the second order in ��̂ as

 ����̂� � �
1

2

�
1�

2

3
��̂�

��̂2

6

�
�

���
3
p

2
i
�
1�

��̂2

6

�
:

(100)

Inserting it into Eq. (99) and Fourier transforming a� using
the relations in Eqs. (36) and (46), we have

 Ex�t; z� / e
i�k1z�!1t�

Z
d��̂e�i����̂�ẑ

XNe
j�1

expf�i�j�0� � i2���̂��� �j�0��g

/
e�
��
3
p
�i��kuz���
z
p

XNe
j�1

exp
�
ik1z� i!1�t� tj�0�� �

3

4

�
1�

i���
3
p

�
�2
!

��
t� tj�0� �

z
vg

�
2
; (101)

where tj�0� is the random arrival time of the jth electron at
the undulator entrance. Note that the group velocity of the
wave packet is vg � !1=�k1 � 2ku=3� [59], slower than
the speed of light but faster than the electrons that amplify
the radiation.

Such a chaotic light can be analyzed by statistical meth-
ods (see, e.g., [63]). From the first-order time correlation
function, we obtain the coherence time as [60–62]

 tc �

����
�
p

�!
: (102)

The energy of a SASE pulse W with a flattop duration T
fluctuates according to the Gamma probability distribution
[60]:

 p�W� �
MM

��M�
WM�1

hWiM
exp

�
�M

W
hWi

�
; (103)

where hWi is the average radiation energy and ��M� is the
Gamma function. The relative rms energy fluctuation �W
is given by [60–62]

 M �
1

�2
W

�
hWi2

hW2i � hWi2
�



T=tc when T � tc;
1 when T � tc:

(104)

Thus, theM parameter characterizes the degree of freedom
or the temporal ‘‘mode’’ of the pulse. For hard x-ray wave-
lengths, the coherence time tc determined by Eq. (102) is
only a few hundred attoseconds. Since the SASE pulse
duration T is on the same order as the typical electron pulse
of a few hundred femtoseconds, M� 1, and the Gamma
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FIG. 10. Temporal structures of 10% of the LCLS pulse at different z locations.
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distribution of shot-to-shot pulse energies approaches a
Gaussian distribution with a small relative rms fluctuation
given by 1=

�����
M
p

. Figure 10 illustrates the temporal power
profile for about 10% of the LCLS x-ray pulse. Note that
these intensity spikes are roughly separated by tc. A sta-
tistical analysis shows that the average number of intensity
spikes in the time domain is about 0:7M [64]. In the
frequency domain, the SASE spectral profile is also simi-
larly spiky. The full SASE spectral width is about 2

����
�
p

�!,
consisting of M independent spectral modes. Each mode is
characterized by the spectral coherence range 2�=T.

The statistical fluctuation can be generalized to the 3D
case by redefining M � MLM

2
T , where ML � T=tc (for

T � tc) or 1 (for T < tc) is the longitudinal mode number
and M2

T is the transverse mode number as defined in
Eq. (96). Thus, the instantaneous power (with ML � 1)
at the start-up stage (with M2

T � 1) does not fluctuate as
much as the exponential growth stage (with M2

T ! 1), as
shown from Figs. 10(a) to 10(b) and 10(b) to 10(c).

1. Shorter x-ray pulses

The temporal property of the SASE pulse can be tailored
to a given application by suitable manipulations. One
interesting direction is to generate much shorter x-ray
pulses than the typical electron pulse of 100-fs in duration.
Several methods have been proposed (see Ref. [65] for a
recent review), including that based on x-ray pulse com-
pression [66] and slicing [67] of a frequency-chirped
SASE. The frequency-chirped SASE can be generated by
an energy-chirped electron beam through the FEL resonant
condition of Eq. (4). In this case, it can be shown [68] that
the coherence time is independent of the frequency chirp
u � �!=�t as long as the frequency span within a tem-
poral spike is smaller than its bandwidth (i.e., when juj �
�2
!), while the spectral coherence range increases accord-

ing to
����
�
p
juj=�!. A narrow-bandwidth monochromator

may be used to slice a much shorter section of the chirped
x-ray pulse. If �m is the rms bandwidth of the monochro-
mator, the sliced rms x-ray pulse duration is [68]

 �t �

������������������������������������
�2
! � �

2
m

u2 �
1

4�2
m

s
: (105)

The minimum pulse duration for an optimized �m is
��t�min � �!=juj. For juj 
 �2

!, �t 
 tc, and a single
temporal spike of a few hundred attoseconds may be
selected.

The energy chirp produced by the rf accelerator over the
entire electron bunch is typically much smaller than that
required to select a single SASE spike, and the sliced x-ray
pulse duration is typically on the order of 10 fs [68]. A
sufficiently large energy modulation over a small fraction
of the bunch may be produced when a high-power, fs
optical laser resonantly interacts with the bunch in a short
undulator [69]. The local energy chirp can be sufficiently

large (with juj 
 �2
!) but can act like an effective energy

spread to degrade the FEL gain. Nevertheless, it is pointed
out in Ref. [70] that the FEL gain degradation due to a
linear energy chirp can be perfectly compensated for by a
proper taper of the undulator parameter. Thus, a tapered
undulator can automatically ‘‘select’’ a small fraction of an
energy-modulated bunch that has the right chirp with a
pulse duration of about 200 attoseconds [70].

2. Coherence enhancement through seeding

Although the poor temporal coherence of a SASE pulse
can be improved by a narrow-bandwidth monochromator,
the radiation energy will at least be reduced by the ratio of
the SASE bandwidth to the monochromator bandwidth. In
addition, the statistical fluctuation of the filtered radiation
will increase up to 100% as the number of spectral modes
is reduced down to unity. In order to provide fully coherent
x-ray FEL pulses, the intrinsic noise of the SASE radiation
must be overcome with some form of seeding.

(i) HGHG: Since a proper coherent seed does not exist at
x-ray wavelengths, a high-gain harmonic generation
(HGHG) FEL relies on a coherent seed at subharmonic
wavelengths. In this scheme [71], a small energy modula-
tion is imposed on the electron beam by interaction with a
seed laser in a short undulator (the modulator). The energy
modulation is converted to a coherent spatial density
modulation as the electron beam traverses a dispersive
section. A second undulator (the radiator), tuned to a
higher harmonic of the seed frequency, causes the micro-
bunched electron beam to emit coherent radiation at that
harmonic frequency. This shorter-wavelength radiation
may then be used as the coherent seed to the next stage
HGHG. In this cascaded harmonic conversion process, the
ratio of electron shot noise to the laser signal is amplified
by at least the square of the harmonic order and may limit
its final wavelength reach to the soft x-ray region [72].
Single-stage HGHGs at infrared and ultraviolet wave-
lengths have been demonstrated at Brookhaven National
Laboratory [73,74]. Cascaded HGHG FELs are currently
under design studies as soft x-ray sources [75,76].

(ii) Self-seeding FEL: A self-seeding scheme [77,78] to
improve the temporal coherence consists of two undulators
(of the same undulator period and strength) and an x-ray
monochromator located between them. The first undulator
operates in the exponential gain regime of a SASE FEL.
After the exit of the first undulator, the electron beam is
guided through a dispersive bypass that smears out the
microbunching induced in the first undulator. The SASE
output enters the monochromator, which selects a narrow
band of radiation. At the entrance of the second undulator
the monochromatic x-ray beam is combined with the elec-
tron beam and is amplified up to the saturation level. Since
the SASE power over a narrow bandwidth at the exit of the
first undulator fluctuates 100% for a single mode, the
length of the second undulator is chosen to exceed the
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saturation length sufficiently to suppress fluctuation of the
final output power level. Thus, this approach requires an
undulator system almost twice as long as a single-stage
SASE FEL.

(iii) Regenerative amplifier FEL: Another self-seeding
scheme, a regenerative amplifier FEL (RAFEL), has been
demonstrated in the infrared wavelength region [79] and
proposed for VUV FELs [80,81]. Recently, a hard x-ray
RAFEL was also proposed and studied [82]. In this
scheme, SASE radiation from the leading electron bunch
in a bunch train is spectrally filtered by the Bragg crystal
reflectors and is brought back to the beginning of the
undulator to interact with the second bunch. This process
continues bunch-to-bunch, yielding an exponentially
growing laser field in the x-ray cavity. The FEL interaction
with these short bunches regeneratively amplifies the ra-
diation intensity and broadens its spectrum. The down-
stream crystal transmits the part of the radiation
spectrum outside its bandwidth and feeds back the filtered
radiation to continue the amplification process. This ap-
proach uses a significantly shorter undulator but requires a
bunch train that is uniform in space and energy.

C. Nonlinear harmonic generation

The ability to generate coherent harmonic radiation is an
important aspect of an x-ray FEL. In a planar undulator, the
electron trajectory is not a pure sinusoid due to the fact that
the longitudinal velocity oscillates at one-half of the un-
dulator period [see Eq. (8)]. This fact leads to the odd
harmonic emission along the undulator axis. More specifi-
cally, when we change the dependent coordinate from t to
� in the paraxial wave Eq. (38), we should use the exact
arrival time of the electron t � �t� �K2

0=�8cku�
2� sin�2kuz�

and the relation

 ��z� � �ku � k1�z� ck1 �t

� �ku � k1�z� ck1t� � sin�2kuz�; (106)

where �t is the undulator-period-averaged arrival time and
� � K2

0=�4� 2K2
0� as defined previously in Sec. II.

Because the right-hand side of Eq. (38) under the time
integral is periodic in z due to the fast wiggling motion, we
average Eq. (38) over the undulator period �u with the help
of the Bessel function expansion

 ei�� sin�2kuz� �
X�1

p��1

Jp����ei2pkuz: (107)

This undulator-period averaging is nonzero only when
� is close to an odd integer h � 2p 1 �
. . . ;�3;�1; 1; 3; . . . . Thus, the harmonic field amplitude
E��x; z� at �
 h is given by

 �
@
@z
�
r2
?

2ihk1

�
E��x; z� �

eKh
20�0

ei��hkuz
Z k1d�

2�
e�i��

	
XN
j�1

��x� xj����� �j�: (108)

Here, the effective coupling strength of the hth harmonic is

 Kh � K0��1��h�1�=2�J�h�1�=2�h�� � J�h�1�=2�h���: (109)

In the previous notation, we had K1 � K0�JJ�. Thus, in the
forward z direction, the electric field consists of a series of
nearly monochromatic waves around the harmonic fre-
quencies hck1 [22], with the frequency detuning ��h �
�� h� 1.

The FEL interaction introduces both energy and density
modulations of the electron beam with the period �1. Close
to saturation, strong bunching at the fundamental fre-
quency !1 produces rich harmonic bunching and signifi-
cant harmonic radiation in a planar undulator [83,84]. This
nonlinear harmonic bunching process is qualitatively illus-
trated in Fig. 11. Taking into account electron energy
spread and emittance, as well as the radiation diffraction
and guiding, a 3D analysis of nonlinear harmonic genera-
tion [39] shows that the gain length, and transverse and
temporal properties of the first few harmonics are even-
tually governed by those of the fundamental after a certain
stage of exponential growth. For instance, driven by the
third power of the radiation mode at the fundamental
wavelength, the third nonlinear harmonic radiation grows
3 times faster than the fundamental with a coherent trans-
verse mode and a more spiky temporal structure. As a
numerical example, the third harmonic power P3 (at
0:5 �A) of the LCLS radiation before saturation is analyti-
cally estimated to be [39]

 

P3

�Pbeam
�

�
P1

�Pbeam

�
3


	0:018 in the seeded mode
	0:11 in the SASE mode;

(110)

where P1 is the fundamental radiation power. Because of
the nonlinear statistics, the third-harmonic power in the
SASE mode is higher by a factor of 6 than that in the
seeded case. Figure 12 shows both the LCLS fundamental
and the third-harmonic power of the seeded case obtained
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FIG. 11. Longitudinal phase space picture of the electron
bunch. In the small signal regime, both the energy and the
density modulations are sinusoidal at the fundamental wave-
length �1 (left). Near saturation, the nonlinear modulation at the
fundamental induces strong harmonic bunching in the beam
current (right).
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from GINGER simulation at the optimal frequency detuning.
Simulation for the SASE mode shows more complicated
third-harmonic evolution due to the shot-noise background
of the higher harmonics and the saturation effect. The
analytical estimate for the third-harmonic power is valid
only for a short distance just before saturation. GINGER

SASE simulation shows that the third-harmonic power at
saturation can reach almost 1% of its fundamental power at
1:5 �A. A 1D SASE simulation study [85] shows that the
maximum third-harmonic power at saturation (for a cold
beam) is about 2% of the fundamental level. The coherence
time at saturation falls inversely proportional to the har-
monic number, while the relative spectral bandwidth is
independent of the harmonic number.

In general, the third nonlinear harmonic radiation is the
most significant harmonic component and can naturally
extend the wavelength reach of the x-ray FEL by a factor
of 3. The naturally synchronized fundamental and third-
harmonic radiation open up possibilities for two-color
pumb-probe experiments [86]. The pronounced temporal
spikes of the nonlinear harmonic radiation may allow
selection of a short temporal pulse with high intensity [87].

Even harmonic radiation exists at an angle away from
the undulator z axis. Although the microbunched electron
beam at saturation contains more second-harmonic bunch-
ing than the third-harmonic bunching, the coupling
strengths to even harmonic radiation are usually much
weaker for x-ray FELs employing high-energy electrons
[88,89]. For instance, the second-harmonic radiation for
the LCLS FEL is negligible. Nevertheless, the second-
harmonic radiation may still be significant for long-
wavelength FELs using relatively low-energy electron
beams as experimentally observed in Refs. [7,90]. For an
x-ray FEL such as the LCLS, an ‘‘afterburner’’ undulator

with its fundamental wavelength tuned to the second har-
monic of the main undulator may be used parasitically to
extract coherent second-harmonic radiation (at 0:75 �A) at a
power level higher than the third-harmonic radiation that
accompanies the fundamental in the main undulator [91].

D. Saturation behavior

The radiation characteristics after saturation are more
complex, especially for SASE FELs. Linear and quasi-
linear theories do not apply, and simulation codes are
required to accurately predict the saturation behavior.
The FEL bandwidth starts to increase due to the appear-
ance of sidebands associated with synchrotron oscillations
of electrons trapped in the ponderomotive potential [92]. In
general both the transverse and the temporal coherence
decrease with the undulator distance in the saturation
regime. Although the fluctuation of the total radiated en-
ergy is reduced after saturation, the fluctuation of a single
frequency mode filtered by a monochromator is still 100%
just as in the exponential growth regime [60]. An analytical
model that reproduces such a statistical fluctuation in the
early saturation regime was recently developed in
Ref. [93].

V. UNDULATOR ERRORS AND WAKEFIELDS

The design of a typical x-ray FEL calls for a small-gap
undulator system about 100 m in length, consisting of
many undulator sections with beam focusing/steering/di-
agnostic stations between the sections. Errors in undulator
magnetic field and electron beam steering can degrade the
FEL performance. In addition, wakefields induced by a
high-current beam in the small-gap vacuum chamber can
also interfere with the FEL gain process. In this section, we
illustrate how FEL theory may be applied to study these
effects.

A. Undulator errors

We will assume that each undulator segment is shimmed
to have vanishing first and second magnetic field integrals
(no net steering errors) and focus on the variations of the
undulator parameter K due to magnetic field errors or
transverse misalignments among segments. Using the 1D
FEL equations, Yu et al. [94] studied the effect of undulator
errors on FEL performance. When the undulator strength
parameter has an error �K � K � K0, Eq. (11) can be
written as

 

d�
dz
� ku � k1

1� �K0 � �K�2=2

2�2

� 2ku	� ku
K0�K�z�

1� K2
0=2

: (111)

Here, the first term describes the ideal motion, and the
second term is the amount of the phase kick due to small

 

FIG. 12. (Color) Fundamental (black solid curve) and third-
harmonic (red dashed curve) powers in GINGER seeded simula-
tion for the LCLS parameters at the optimal frequency detuning.
The analytical estimate according to Eq. (110) is shown as the
blue dotted curve.
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changes in K. As a concrete model, we take

 �K�z� � �Kn for �n� 1�Lc < z < nLc

�n � 1; 2; 3; . . .�;
(112)

where �Kn is a random quantity with the ensemble aver-
age h�Kni � 0. We have introduced a magnetic correlation
length Lc � Nc�u, which is assumed to be much shorter
than the approximate field amplitude gain length 2LG �
�u=�4���. Then the net phase shift per gain length is

 �� �
X2LG=Lc

n�1

Nc
2�K0�Kn
1� K2

0=2
: (113)

For 2LG=Lc � 1, �� has a zero mean and a variance

 ����2 �
Lg
Lc

�
Nc

2�K2
0

1� K2
0=2

�K
K0

�
2

�
�NcK4

0

�1� K2
0=2�2

��K=K0�
2

�
� 4�Nc

��K=K0�
2

�
;

(114)

where �K is the rms value of �Kn. A perturbation analysis
yields the radiation power as [94]

 P � P0 exp
�
�

z
LG

����2

9

�
; (115)

where P0 is the power along the undulator without any
error.

For a negligible power degradation near the SASE satu-
ration at z � 20LG, the mean square of the ponderomotive
phase shift per gain length is ��2 � 1. For errors associ-
ated with magnetic pole field B0 that may occur every
undulator period, Nc 
 1, the condition becomes [94]

 

�B
B0

<
�������
�

4�

r
: (116)

Hence, the pole field error tolerance is quite relaxed be-
cause it scales as

����
�
p

instead of �. On the other hand, if the
length of the undulator segment is a significant fraction of
2LG as in the LCLS case, the error in the average undulator
parameter K per segment is now correlated over Nc !
�4����1. Although the perturbation analysis is not strictly
valid in this case, Eq. (114) suggests that the error tolerance
for K is

 

�K
K0

<�: (117)

The LCLS has the FEL parameter � � 4:5	 10�4 and 33
undulator segments (each 3.4 m in length) [11]. Figure 13
shows that the GENESIS SASE simulation results for the
LCLS undulator segment K errors is in qualitative agree-
ment with the requirement of Eq. (117).

B. Beam trajectory errors

The effects of nonstraight beam trajectory may be illus-
trated with a heuristic 3D model when a microbunched
beam is kicked by a single error dipole field (e.g., a mis-
aligned quadrupole) [95]. While the direction of the beam
trajectory changes after the kick by a deflecting angle �,
the wavefront orientation normal to the microbunching
plane does not. This discrepancy results in two mecha-
nisms for gain degradation: a decrease in coherent radia-
tion power and an increased smearing of microbunching
due to the intrinsic angular spread. Both mechanisms are
characterized by a critical angle [95]

 �c �

�������
�1

LG

s
; (118)

and the power gain length after the kick becomes approxi-
mately LG=�1��2=�2

c�. In the LCLS case, �c � 6 �rad
at �1 � 1:5 �A for LG � 4 m.

For random trajectory errors that are periodically cor-
rected by steering elements at beam position monitor lo-
cations between the undulator sections, a statistical
analysis based on the previous phase error model is given
in Ref. [94]. When the separation of the corrector stations
Ls is smaller than the gain length, the radiation power for
an rms trajectory deviation xrms is
 

P � P0 exp
�
�

�
xrms

xtol

�
1=4
�
;

xtol � 0:266
�
Ls
LG

�
3=4
�
LG
z

�
1=4 ������������

�1LG
p

:

(119)

For the LCLS, we can take Ls � 3:4 m, LG � 4 m, and
z=LG � 20 for the saturation undulator distance, then
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FIG. 13. (Color) Power degradation factor P=P0 at FEL satura-
tion versus�K=K0 in the LCLS 33 undulator segments. Here, �K
is the rms value of a uniform segment K error distribution. Five
random error distributions are used for a given �K. The rms
width of the Gaussian fit is 4:2	 10�4.
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xtol � 3 �m, and the rms trajectory angle should be con-
trolled to within 1 �rad in order to guarantee a small power
degradation.

Since a large trajectory distortion can destroy the FEL
interaction, kicking the beam at selected undulator loca-
tions may facilitate the z-dependent FEL power measure-
ments using a single diagnostic station at the end of the
undulator beam line. This technique is especially useful
when intraundulator FEL diagnostic stations are difficult to
install. Let us illustrate the trajectory distortion method for
the LCLS. For a quadrupole with a focal length fQ �
10 m, a small horizontal offset Qx � 60 �m corresponds
to a kick angle � � Qx=fQ � �c. Figure 14 shows that a
quadrupole at z � 40 m with a horizontal offset Qx �
60 �m (i.e., a kick angle � � �c) inhibits further growth
of the FEL fundamental mode, producing an approxi-
mately constant on-axis radiation intensity, which may be
detected by a far-field x-ray diagnostic station after the
undulator. Similar conclusions hold at other undulator
locations in the exponential growth regime.

C. Wakefield effects

A high-current electron bunch induces a short-range
wakefield that changes the beam properties in the long
undulator vacuum chamber. For the LCLS, the dominant
(longitudinal) wakefield is caused by the resistive wall of
the vacuum pipe [96] and creates an energy variation along
the undulator distance as well as along the bunch position.
Since the x-ray coherence time tc is much shorter than the
x-ray pulse duration T, the wakefield-induced energy
variation in an electron temporal slice of length ctc (known
as an FEL slice) is usually negligible for a typical wake-
field that does not vary rapidly inside the bunch. Thus, the
main effect of the undulator wakefield in an FEL slice is to
change the slice central energy and consequently shift its
resonant wavelength along the undulator distance. If we

still use the initial resonant wavelength to define the pon-
deromotive phase as was done in Sec. III A, the phase
Eq. (11) can now be rewritten as

 

d�
dz
� 2ku

���z� � �0

�0
�

� 2ku

�
��z� � �c�z�

�0|��������{z��������}
�	

�
�c�z� � �0

�0|�������{z�������}
��

�
; (120)

where 	�z� is now the energy deviation from the slice
central energy �cmc2 and is still governed by Eq. (13)
due to the FEL interaction, and ��z� is the wakefield-
induced energy change relative to the initial energy
�0mc

2 for a particular slice of the bunch. Thus, the wake-
field effect for this slice is equivalent to an undulator taper
that also changes the resonant wavelength. The last point
can be seen by comparing Eqs. (120) and (111). They are
equivalent when

 ��z� � �
K0�K�z�

�2� K2
0�
� �

�K�z�
K0

; for K2
0 � 2:

(121)

Note that � in Eq. (120) is not a randomly fluctuating
quantity as was the case for undulator errors. Instead, �
is a linear function of z for wakefield-induced energy
change or an equivalent linear taper of the undulator pa-
rameter. Unlike the uniform energy loss due to the sponta-
neous undulator radiation, the wakefield-induced energy
change varies from slice to slice along the bunch coordi-
nate, hence a unique undulator taper cannot perfectly
compensate the energy change for all bunch slices.

In general, ��z� is not small but can be considered as
slowly varying if the fractional energy change per field
gain length is less than �. In the small signal regime before
saturation, the WKB approximation can be used to solve
the FEL equations and to obtain the SASE power as [97]

 P�z� � Pm�z� exp
�
�

1

2

�
��z� � �m�z����

3
p
�!�z�=!1

�
2
�
; (122)

where Pm is the maximum power at the optimal energy
change �m > 0 or an equivalent undulator taper, and Pm >
P0 with P0 being the radiation power when ��z� � 0. Thus,
a small energy gain is actually beneficial to the SASE
output power. For the LCLS, simulations show that a frac-
tional energy increase of 2� over the saturation distance
zsat � 90 m improves the saturation power by about a
factor of 2 as compared to the nominal saturation power
without any external energy change or taper [e.g., that
given by Eq. (91) or FEL simulations without any wake-
field and taper]. Because the LCLS bandwidth�!�zsat�=!1

is close to �, Eq. (122) indicates that the SASE power has a
FWHM in � � 4� at saturation.

For a given wake energy variation as a function of the
bunch coordinate, Eq. (122) can be used to estimate the
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FIG. 14. (Color) GENESIS simulation of the LCLS far-field
power for various quadrupole offsets Qx at z � 40 m.
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FEL power along the bunch position and to find the aver-
age SASE power over the bunch. As a numerical example,
Ref. [97] studied the case for a sinusoidal energy oscilla-
tion that resembles the resistive wall wakefield in the core
part of the 1-nC LCLS bunch [96]. Figure 15 shows the
average power degradation factor (with respect to the
maximum power Pm) as a function of the fractional energy
oscillation amplitude �A without and with a linear taper
that yields �m � 2� at zsat. For a round 5-mm-diameter
vacuum pipe, �A � 6� for Cu and 3� for Al at zsat � 90 m.
The average power in this part of the bunch is then about
50% (25%) of Pm for the Al (Cu) vacuum pipe and in-
sensitive to the undulator taper for large energy oscillation
amplitudes as shown in Fig. 15. In order to reduce the
wakefield effects in the undulator as well as in the accel-
erator, a 200-pC bunch configuration was recently pro-
posed for the LCLS [98]. In addition to compensating the
average wake energy loss, the start-to-end LCLS simula-
tions [99] show that an additional undulator taper of about
2� improves the saturation power by about a factor of 2,
making its radiation energy comparable to the 1-nC case
that suffers stronger wakefield effects.

VI. GAIN ENHANCEMENT METHODS

As discussed in Sec. III F, a key requirement in realizing
x-ray FELs is high-quality electron beams. Since the SASE
coherence time is relatively short as compared to the
electron bunch length, the slice beam qualities (i.e., the
local emittance and energy spread on the scale of the
coherence time) are more relevant than the global ones.
When high-energy electrons are employed to drive the x-
ray FELs, the relative slice energy spread is usually too
small to affect the SASE gain process. However, the FEL
performance depends critically on the transverse bright-

ness of the beam defined as

 B? �
Ie

4�2"2
n
: (123)

Here "n � �0" is the transverse normalized emittance. In
the x-ray wavelength with negligible energy spread, the
power gain length at the optimized beta function may be
estimated as [100]

 LG � 1:2
�
IA
I

�
1=2 "5=6

n �5=6
u

�2=3
r

�1� K2
0=2�1=3

K0�JJ�
/ B�1=2

? "�1=6
n :

(124)

The state-of-the-art photocathode rf gun is expected to
produce beams with a normalized emittance of about 1 �m
at about 1 nC charge. With an optimized bunch compres-
sion configuration, the bunch can be compressed to a peak
electron current of 3 to 4 kA. These expectations are
reflected in the LCLS design parameters listed in Table I.
Hence, the FEL power gain length predicted from Eq. (80)
or (124) is about 4 to 5 m, and the saturation length is about
80 to 100 m.

We will now discuss some advanced beam-manipulation
methods that may overcome these apparent beam-quality
limitations in order to enhance the FEL performance.

A. Beam conditioning

It was realized in Ref. [101] that the angular spread of a
finite-emittance beam in the undulator can be compensated
for if each electron’s energy deviation is made to be
proportional to the square of its betatron amplitude. This
can be understood by expanding the undulator-period-
averaged longitudinal velocity [i.e., Eq. (23) or (28)] for
small �� � �� �0. The average longitudinal velocity
will not depend on the transverse actions Jx;y when

 

�1� K2
0=2�

�2
0

��
�0
�
�Jx � Jy�

��
: (125)

Averaging Eq. (125) over the beam (i.e., hJx;yi � " �
"n=�0) and using the FEL resonant condition, the required
correlated energy spread to compensate for the emittance
effect or to ‘‘condition’’ the beam is

 h��i �
�u
�1

"n
��
: (126)

Thus, the FEL gain degradation due to the angular
spread of a finite-emittance beam can be eliminated by
conditioning the electron beam prior to the undulator en-
trance according to Eq. (125). For such a conditioned beam
in a natural-focusing undulator, we can take k̂��̂x � 0 in
Eq. (78) and 	" � 0 in Eq. (79), and the power gain length
from Eq. (80) can be much reduced. For a strong-focusing
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FIG. 15. (Color) Power degradation factor averaged over the
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sinusoidal wake oscillation amplitude �A=� at the LCLS satu-
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undulator employing FODO cells discussed in Sec. III B,
however, the oscillatory effect of the angular spread as
shown in Eq. (27) remains even though the average effect
of the angular spread is eliminated by conditioning. In this
case, we can take 	" � 0 in Eq. (80) only when [102]

 "n < �0
�1

��
�Lc

: (127)

This is usually a more tolerable emittance requirement than
an unconditioned beam [see Eq. (73)].

The nonlinear correlation of Eq. (125) requires special
nonlinear accelerator components that pose technical chal-
lenges. The discussion of various proposed methods to
condition the electron beams is beyond the scope of this
paper. Reference [103] contains a recent review on the
subject.

B. Current-enhanced SASE

High electron peak current is an essential requirement
for efficient FEL interaction (through the FEL scaling
parameter �). In a typical x-ray FEL accelerator system,
bunch-compressor chicanes are designed to increase the
beam current to a few-kA level. Further compression is
increasingly difficult due to short-bunch collective effects
in the accelerator. Recently, Zholents proposed introduc-
tion of a GW-level optical laser beam to induce large
energy modulation in the electron beam in a special wig-
gler placed in the accelerator [104]. This energy modula-
tion can then be converted to a large-density modulation at
the optical wavelength by a weak chicane prior to the FEL
undulator. The local peak current of the modulated beam
can be tens of kA without strong emittance-deteriorating
effects due to the small amount of charge concentrated in
high-current regions. Such a current-enhanced beam may
enable the x-ray SASE FEL to saturate in a shorter undu-
lator distance or to decrease the x-ray wavelength for a
fixed undulator length. Reference [105] details a possible
implementation of this scheme in the LCLS.

C. Optical klystron enhancement

An optical klystron FEL [106] uses dispersive sections
(magnetic chicanes) between undulators to speed up the
FEL microbunching process and has been successfully
implemented in many FEL oscillator facilities. A prereq-
uisite for the effectiveness of the optical klystron is the
small relative energy spread. For a high-gain FEL, the
requirement is [107]

 �	 � �: (128)

Motivated by the very small uncorrelated energy spread
(a few keV) of the electron beam that has been measured in
a photocathode rf gun [108], the optical klystron enhance-
ment to SASE FELs was recently studied in Ref. [109].

The optimal momentum compaction R56 of the chicane can
be determined as

 R56 �
1

k1�	
: (129)

The additional slippage of the electron beam to the radia-
tion introduced by the chicane is

 

R56

2
�

�1

4��	
�

�1

4��

 tc; (130)

where tc is the SASE coherence time defined in Eq. (102).
This large slippage is beneficial to a SASE optical klystron
device because the microbunched electron beam does not
have to match the radiation phase when the dispersively
enhanced microbunching does not overwhelm the radiation
from the earlier undulator [109]. Thus, the output power
will not be sensitive to a small variation of the chicane R56

(at the Angstrom level) or a small energy jitter (at the 10�4

level), in contrast to an early simulation study with a
seeded FEL [110]. The simulated SASE performance
with the addition of four optical klystrons located at the
undulator breaks in the LCLS shows significant improve-
ment if the slice energy spread at the undulator entrance
can be controlled to 5	 10�5 [109]. In addition, FEL
saturation at shorter x-ray wavelengths (around 1:0 �A)
within the LCLS undulator length becomes possible.

D. Emittance exchange

The very small uncorrelated energy spread of the beam
from an rf gun also opens up the possibility of exchanging
the small longitudinal emittance with a large transverse
emittance, and hence increasing the transverse brightness
of the beam for an x-ray FEL. First, a special, ‘‘flat-beam’’
rf gun [111] can be used to produce beams with a large
ratio of transverse emittances. Then a transverse-to-
longitudinal emittance-exchange beam line can be used
to switch the larger transverse emittance with the smaller
longitudinal one. An approximate optics for emittance
exchange consisting of a dipole mode cavity in the middle
of two doglegs of opposite kicks (i.e., a magnetic chicane)
was discussed in Ref. [112]. The scheme is adequate when
the emittance ratio is not too large. An exact emittance-
exchange optics found recently by Kim is similar to the one
in Ref. [112], but with the second dogleg in the same
direction as the first one [113] (see also Ref. [103]). Such
a transverse-to-longitudinal emittance-exchange optics is
capable of handling very large-emittance ratios. Together
with a short-pulse, flat-beam rf gun, this scheme may
produce beams with normalized transverse emittances on
the order of 0:1 �m and a compressed current on the order
of kA, which may be used to drive a sub-Angstrom x-ray
FEL.
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VII. CONCLUSIONS

We have reviewed the theory of the high-gain FELs,
especially the SASE FELs, in both ideal and more realistic
accelerator environments. These analytical results are use-
ful in providing physical pictures, benchmarking simula-
tion codes, and guiding the FEL designs and experiments
that are currently building toward x-ray lasers. We also
highlighted several research directions toward shortening
the x-ray pulse lengths, increasing the temporal coherence
of the source, and enhancing the FEL performance. We
hope that the formulas and ideas summarized here will
stimulate further progress in realizing x-ray FELs, improv-
ing their performance, and reducing their size and cost.
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APPENDIX A: LIST OF SYMBOLS

Symbol Physical meaning

a� Scaled electric field
An nth-order transverse mode profile (n � 0; 1; 2; . . . )
�x;y Twiss parameter �
B0 Undulator peak magnetic field on axis
�� Average transverse beta function
�n Natural beta function in a parabolic-pole-faced

undulator
�x;y Transverse beta function
c Speed of light in vacuum
�� Relative frequency detuning
e Electron charge
E0 Transverse electric field amplitude
E� Fourier component of the transverse electric field
Ex Transverse electric field
	 Relative energy deviation
	d Diffraction parameter
	 Angular spread parameter
	� Energy spread parameter
0 Vacuum permittivity
" or "x;y Transverse emittance of the electron beam
"n Normalized transverse emittance of the electron

beam
"r0 Diffraction-limited radiation emittance
"r Radiation emittance
f or F Electron phase space distribution function
f0;1 Zeroth-order (first-order) phase space distribution

function
f� Fourier component of the distribution function
�0 Electron reference energy (in units of mc2)
� Electron energy (in units of mc2)
h Harmonic order
@ Planck constant

Symbol Physical meaning

I0 Zeroth-order modified Bessel function
Ie Electron bunch peak current
IA Alfvén current
jx Transverse current
Jx;y Transverse action
Jn Bessel function of order n (n � 0; 1; 2; . . . )
k1 Fundamental undulator radiation wave number
k� Average betatron focusing wave number
kn Parabolic-pole-faced undulator natural-focusing

wave number
kn0 Planar undulator vertical natural-focusing

wave number
kp Longitudinal plasma oscillation wave number
ku Undulator wave number
K0 Nominal undulator strength parameter
Kh Effective coupling strength of the hth

harmonic radiation
LG0 1D FEL power gain length of a monoenergetic beam
LG 3D FEL power gain length
Ls Undulator section length
Lu Active undulator length
�1 Fundamental FEL wavelength
�r Undulator resonant wavelength at an arbitrary angle
�u Undulator period
� FEL gain length degradation factor
m Electron rest mass
M Total number of independent mode in a

radiation pulse
MT;L Transverse or longitudinal mode number
�n Scaled growth rate of the nth transverse mode

(n � 0; 1; . . . )
n0 Peak electron volume density
ne Electron volume density function
Ne Total number of electrons in a bunch
!1 Fundamental undulator radiation frequency
� Ratio of the radiation frequency to the

fundamental frequency !1

p� Divergence angle vector of transverse betatron
motion

p Divergence angle vector due to natural focusing
or smoothed betatron focusing

P Radiation power
Pbeam Electron beam power
Pn Effective SASE start-up noise power
Psat FEL saturation power
P0 Fundamental radiation power without error or taper
P1;3 Radiation power at the fundamental

(third-harmonic) frequency
Pm Fundamental radiation power with an optimal taper
� Angle of the electron trajectory relative to the

radiation propagation
 0 Initial phase of the radiation wave
re Classical electron radius
� FEL Pierce parameter
�	 rms relative energy spread of the electron beam
�r rms transverse radiation size
�! rms SASE bandwidth
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Symbol Physical meaning

�W rms radiation energy fluctuation
�x rms transverse size of the electron beam
�x0 rms transverse divergence of the electron beam
t Electron’s arrival time at the undulator location z
�t Electron’s arrival time averaged over an

undulator period
T Flattop electron bunch duration
tc Radiation temporal coherence time
� Electron’s phase relative to the radiation wave
u Radiation frequency chirp (frequency change

per unit time)
vg SASE radiation group velocity
vx;y Electron’s transverse velocity
vz Electron’s longitudinal velocity
�vz Electron’s average longitudinal velocity in a

planar undulator
W Total radiation energy
x Electron’s horizontal position
x Two-component vector representing smoothed

transverse betatron motion
y Electron’s vertical position
z Distance from the undulator beginning
zsat FEL saturation distance
� Wakefield-induced fractional energy change
ZR Rayleigh length of the radiation
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