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The linear growth of the two-stream instability for a charged-particle beam that is longitudinally
compressing as it propagates through a background plasma (due to an applied velocity tilt) is examined.
Detailed, 1D particle-in-cell (PIC) simulations are carried out to examine the growth of the wave packet
produced by a small amplitude density perturbation in the background plasma. Recent analytic and
numerical work by Startsev and Davidson [Phys. Plasmas 13, 062108 (2006)] predicted reduced linear
growth rates, which are indeed observed in the PIC simulations. Here, small-signal asymptotic gain
factors are determined in a semianalytic analysis and compared with the simulation results in the
appropriate limits. Nonlinear effects in the PIC simulations, including wave breaking and particle
trapping, are found to limit the linear growth phase of the instability for both compressing and
noncompressing beams.
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I. INTRODUCTION

Longitudinal drift compression of ion beams is being
studied as a means to achieve short-duration, high-energy-
density pulses for warm-dense-matter [1,2] and heavy ion
inertial fusion energy [3–6] applications. Longitudinal
compression is driven by a velocity profile or tilt on a
charged-particle beam that is applied either at the source
as part of the beam generation (as in some high power
diodes) or by passing the beam through a programmed
accelerating structure.

Recent experiments at Lawrence Berkeley National
Laboratory have successfully demonstrated controlled lon-
gitudinal drift compression of heavy ion beams [7–10]. A
velocity tilt was applied to an unneutralized, drifting ion
beam using an induction core, and then the beam entered a
plasma-filled drift region where longitudinal compression
factors, JbF=Jb0, over 60 were achieved, where Jb0 and JbF
are the initial and peak compressed beam current densities,
respectively. At the end of this drift region, radial com-
pression of the beam will be attempted by passing the
longitudinally compressing beam through a plasma-filled
solenoid.

Theoretical modeling supporting both the design and
analysis of these experiments has been carried out using
analytic methods [11] and numerical simulations [12–16].
As this modeling is extended to parameter regimes beyond
current experimental values to future higher-energy-
density applications, careful consideration of the growth
and saturation of a number of potential beam-plasma in-
stabilities must be considered [17–23]. Recently, a detailed
theoretical study of two-stream instability growth for a

longitudinally compressing charged-particle beam propa-
gating in a background plasma was published [24]. An
analytic asymptotic gain function for the instability was
obtained and compared to numerical solutions of the origi-
nal system of linearized equations. Reduced two-stream
instability growth, relative to the case of a noncompressing
beam, was found. This reduced growth is mainly attribut-
able to the detuning of the primary unstable wave number
as the beam propagates and compresses.

Here, we seek comparisons of theoretical estimates for
the growth of the two-stream instability with particle-in-
cell (PIC) simulations, a critical design and analysis tool
for ion beam drift compression experiments and future
higher-energy-density systems. The PIC model can also
be used to examine instability saturation mechanisms and
other nonlinear effects [25–27], which are difficult to
assess from a purely analytic approach. In order to com-
pare the two-stream instability model of Ref. [24] to our
simulation results, we have derived a semianalytic asymp-
totic gain formula that is valid in the limit of small-signal
growth at early times (and propagation distances) which is
described in Sec. II. The PIC simulation model used here is
described in Sec. III and results are presented in Sec. IV.

II. ANALYSIS

An electron beam of initial length 2Lb0 is propagating in
the x direction in a background plasma. The midpoint of
the beam length, initially at position x � X0 � 0 at time
t � 0, moves at speed Vb0 and has an initial uniform
density nb0. This beam speed increases linearly back
from the point X0 (and decreases linearly in the direction
towards the beam head), allowing the beam to longitudi-
nally compress as it propagates forward. The time of*Electronic address: David.Rose@vosssci.com
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(idealized) maximum compression is t � TF, which occurs
at position x � XF � TFVb0. The longitudinal velocity is
given by

 Vb�x; t� �
Vb0TF � x
TF � t

; (1)

and the velocity tilt is then defined as the ratio

 

�V
Vb0
�
Lb0

XF
; (2)

where �V is indicated schematically in Fig. 1, showing the
idealized beam phase-space at 3 times in terms of the
variables given here.

The beam density increases as the beam propagates
forward as

 nb�t� � nb0
XF

XF � Vb0t
; (3)

where nb0 is the initial beam density. To ensure adequate
charge and current neutralization, we assume nb0=np0 �

1, where np0 is the initially uniform background plasma
density. For the parameters used here, the beam density
remains smaller than the plasma density over all but the
final times of the propagation. This assumption does not
include nonideal effects such as finite beam and plasma
temperatures, which can further limit the small beam-to-
plasma density ratio assumption. These effects are not
included in this analysis, but can be examined in the PIC
simulations.

A. Linearized small-signal equations

We use the linearized continuity and momentum equa-
tions for the plasma and beam electrons from Startsev and
Davidson [24] coupled with Poisson’s equation [see
Eqs. (13) and (14) of Ref. [24] ]. These equations represent
the standard system of perturbed fluid equations typically
used in the analysis of the two-stream instability [28],
suitably modified to account for the longitudinal compres-

sion of the beam (retaining relevant first-order terms for the
beam density and velocity).

B. Asymptotic solution

Startsev and Davidson [24] obtained an approximate
Laplace transform solution to the system of equations
describing the perturbed electron beam density [see
Eq. (35) of Ref. [24] ]. They identified the phase associated
with this perturbed beam electron density as [see Eq. (36)
of Ref. [24] ]

 ��s� � �i�s� 2�
�������������
1� X
p

W; (4)

where X � x=XF, s � !=!pe, � � !pe�t� x=Vb0�, !pe

is the electron plasma frequency, and

 W �
Z 1��������

1�X
p

��
1

s
� z2

��
1

s
� z2

��
�1=2

dz: (5)

A saddle point analysis yielded the gain function

 G�X� � �
�������������������
2�1� X�

p
F�arccos�

�������������
1� X
p

�	; (6)

where � � !beTF, !be is the beam electron plasma fre-
quency, and

 F�x� �
Z x

0

�
1�

1

2
sin2�

�
�1=2

d� (7)

is the elliptic integral of the first kind. This asymptotic
solution (6) is only valid for �
 �

�������������
1� X
p

, which is for
positions (and times) far behind the beam head. Also we
note that Eq. (6) is not valid in the limit X� 1.

For direct comparison with PIC simulations, we require
an asymptotic solution that is valid at times and positions
nearer the initial perturbation. In the limit that s ’ 1� �,
�� 1, and X� 1, the integral W can be approximated as
(see the Appendix)

 W ’
i���
2
p �

�������������
�� X
p

�
���
�
p
�: (8)

With this expression for W we look for saddle points of

 ���� � �i��1� �� � i
���
2
p
�

�������������
1� X
p

�
�������������
�� X
p

�
���
�
p
�:

(9)

Setting @�=@� � 0 gives

 

1���
�
p �

1�������������
�� X
p �

���
2
p
�

�
�������������
1� X
p : (10)

Solution of Eq. (10) for � (for a given � and X) and
substitution back into Eq. (4) gives the asymptotic gain.
Although solutions are easily obtained with readily avail-
able numerical packages, Eq. (10) can be rearranged to
give a quartic equation in �. We find that the fourth order
term is generally small and can be ignored, resulting in the
following cubic equation:

 

V
b

x

 2L
b0

X
0
=0 X

F
 /2 X

F

V
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2∆V
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0

FIG. 1. Beam phase-space at 3 times in terms of the variables
defined in the text.

ROSE, GENONI, WELCH, STARTSEV, AND DAVIDSON Phys. Rev. ST Accel. Beams 10, 034203 (2007)

034203-2



 

�2�4X� 4�2��3���4X2� 6�2X��2��2�2X2���X2 � 0;

(11)

where

 � �

���
2
p
�

�
�������������
1� X
p :

The positive imaginary root of the cubic form can be
identified and written out for comparison with the ‘‘no
tilt’’ (NT) case. After some simplifications that take into
consideration the limit X� 1, the root in question can be
approximated as
 

�T � f1�u; X� �
1

2

�
�2X2

8�2

�
1=3
f�2 �u; X�

� i

���
3
p

2

�
�2X2

8�2

�
1=3
f�2 �u; X�; (12)

where

 f1�u; X� �
X�6� u�
6�2� u�

;

 f�2 �u; X� �
�g�1� X�	1=3

1� u=2

�
1�

�
u
2g

�
2=3 1� u2=12

3

�
;

 g�u� ’ 1� u�
u2

12
�

u4

216
;

and u � �2X. This root can be compared directly with the
equivalent root from the standard two-stream analysis
(without a velocity tilt) [28] which can be written as

 �NT � �
1

2

�
�2X2

8�2

�
1=3
� i

���
3
p

2

�
�2X2

8�2

�
1=3
: (13)

In the limit XF !1, we observe f1�u; X� ! 0, and
f�2 �u; X� ! 1, which gives �T � �NT, confirming that for
increasingly smaller velocity tilts, the �V=Vb0 � 0 two-
stream gain function is recovered.

III. PIC SIMULATION MODEL

The PIC code LSP [29] is used in 1D to examine the gain
from the two-stream instability for charged-particle beams
propagating in a background plasma with and without an
applied velocity tilt. The simulations are electrostatic and
use a cloud-in-cell model [30] to help minimize electro-
static fluctuations on the grid. This same simulation model
has been used previously to examine a number of wave-
particle and wave-wave interactions including 1D and 2D
studies of streaming instabilities [21,22,31], Landau damp-
ing [32], and drift cyclotron instabilities [33].

A perturbation of the plasma electron density at t � 0
and x � 0 of the form

 npe �
�
ny exp��ajxj�; for x > 0
�ny exp��ajxj�; for x < 0

(14)

is used, where ny is the density perturbation amplitude and
the coefficient a determines the characteristic width of the
perturbation. This provides an impulselike electric field
that excites a growing wave packet.

The simulations use four separate charged-particle spe-
cies to represent the (initially) charge and current-neutral
beam-plasma system. Electrons and ions with equal
velocity and number density (with mbi � 109me, where
mbi and me are the beam ion and electron masses) are
initially propagating in a charge-neutral, cold-background
electron-ion plasma (mpi � 109me, where mpi is the
plasma ion mass). The very high (essentially infinite) ion
masses used in the simulations effectively eliminate ion-
electron and ion-ion modes from the analysis.

For all cases, the simulations are initialized with 100
particles per cell (combined beam and plasma particles),
�t � 3� 10�4 ns, and �x � 0:01 cm, where �t and �x
are the (constant) time step and cell size. Nominal
two-stream wavelengths for our parameters are � �
2�Vb0=!pe ’ 0:33 cm, which are well resolved by �x as
are plasma oscillations !pe�t ’ 0:017< 1=2. The simu-
lation length L � 150 cm is much longer than the total
propagation distances studied. The initial beam length
2Lb0 � 55 cm and the perturbation described in Eq. (14)
is initialized at x � 0 cm, which for all cases is the center
of the beam and this position corresponds to vb � Vb0 �
0:1c, where c is the speed of light. Periodic boundaries are
used to eliminate space charge waves that are driven by
typical sheath formation at conducting boundaries. Also,
the sharp-edge density discontinuity at the beam head and
tail creates space charge waves that can propagate into the
beam. Consideration of these effects guided the selection
of the parameters, balancing growth of the wave packet
from the initial programmed perturbation against these
nonideal disturbances.

A sample simulation result for the case with �V=Vb0 �
0:2 (vtilt10 in Table I) is illustrated in Figs. 2 and 3. The
evolution of the beam electrons in time is traced in Fig. 2,
which overlays the �x; vx� phase-space of the beam elec-
trons at 5 times (0, 2, 4, 6, and 8 ns). As the beam drifts
forwards, the perturbation is growing and convecting at a
speed slightly faster than the ‘‘classical’’ estimate of the

TABLE I. Summary of cold-plasma, cold-beam two-stream
simulations. For all cases, Vb0 � 0:1c, np � 1012 cm�3, nb �
108 cm�3, a � 5 cm�1, and Lb0 � 27:5 cm.

Run ID �V=Vb0 XF (cm) TF (ns)

vtilt11 0 1 1

vtilt10 0:2 275.0 91.67
vtilt12 0:4 137.5 45.83
vtilt13 0:6 91.67 30.56
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two-stream group velocity vg � 2Vb0=3. On this scale, the
electron response is only visible at t � 6 ns.

The total electric field energy associated with the evo-
lution of this wave packet is tracked in the simulation by a
diagnostic window that moves in the beam propagation

direction at speed vg. This electrostatic energy Es is plot-
ted for run vtilt10 in Fig. 3 as a function of time. The
diagnostic window is 20-cm wide and initially centered
around x � 0. The individual data points (open circles)
correspond to the times of the phase-space plots in Fig. 2.
The wave energy level rises linearly over approximately
6 orders of magnitude before leveling off at 3�
10�8 J=cm2. Relative to the beam electron phase-space at
8 ns (Fig. 2), this transition represents the end of the linear
growth phase and corresponds to the onset of nonlinear
effects including wave breaking and particle trapping
[25–27].

This nonlinear phase is illustrated in Fig. 4 which plots
the electric field, beam electron phase-space and beam
electron number density at t � 9 ns, which corresponds
to the beginning of the plateau in electrostatic wave energy
shown in Fig. 3. At this time, the electric field wave packet
is beginning to distort (the onset of wave breaking), as
shown in Fig. 4(a). (Note that this time and corresponding
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FIG. 2. (Color) Evolution of the beam electron �x; vx� phase-
space for a drifting beam with �V=Vb0 � 0:2 at 2-ns intervals
(labeled at the top of the plot).
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FIG. 4. Sample data taken from the initial nonlinear phase of
the simulation, t � 9 ns. The electric field wave packet is shown
in (a), the beam electron phase-space in (b), and the beam
electron density in (c).
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FIG. 3. (Color) Wave packet energy as a function of time for a
20-cm wide window moving at 2Vb0=3. The individual points
correspond to the electron beam phase-space times shown in
Fig. 2.
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propagation distance is much smaller than TF and XF for
this case as given in Table I.) A lobe on the electron phase-
space volume has folded back into the main body at small
values of v=c, as shown in 4(b), illustrating the onset of
particle trapping. This fold initially acts to fill in the beam
density between the small wavelength oscillations, as
shown in 4(c), which, in turn, acts to partially damp the
electric field oscillations. Within another 3 ns (about 170
plasma periods), the beam electrons begin to thermalize
within the wave packet.

IV. SIMULATION RESULTS AND MODEL
COMPARISON

A series of four PIC simulations with different velocity
tilts (�V=Vb0) are presented and compared with the model
developed in Sec. II. The simulations are listed in order of
increasing �V=Vb0 in Table I. For all cases Vb0 � 0:1c,
npe � npi � 1012 cm�3, nbe � nbi � 108 cm�3, a �
5 cm�1, ny � 106 cm�3, L � 150 cm, and Lb0 � 55 cm.
The first simulation listed in Table I uses a constant veloc-
ity beam (no tilt), which corresponds to infinite values of
XF and TF.

The relative growth of the electric field wave packet as a
function of the beam velocity tilt is illustrated in Fig. 5 at
t � 5 ns for all four velocity tilt cases. The PIC simulation
results are given in Fig. 5(a). A larger tilt results in smaller
relative growth in the peak electric field and an increasing
group velocity. For all cases, 5 ns is well before nonlinear
saturation effects occur, as illustrated in Fig. 4. Numerical
solutions of the perturbed fluid equations described in
Sec. II A are shown in Fig. 5(b) for the same parameters.
The overall agreement in both the phase and amplitude of
the wave packets for all velocity tilts confirms that the PIC
simulations are still in the linear regime at t � 5 ns.

The magnitude of the longitudinal electric field from the
PIC simulations as a function of time 10 cm from the initial
perturbation is shown in Fig. 6. This result further illus-
trates the slower unstable growth as a function of beam
velocity tilt that is observed in Fig. 5.

The peak electric field as a function of time for these
four simulations is plotted in Fig. 7. The asymptotic small-
signal gain factor for the linear growth rate without a
velocity tilt is [28]

 GNT�x; t� ’
3
���
3
p

4
�kbex�

2=3���1=3; (15)

and this equation is plotted in Fig. 7 as a black line. Here
kbe � !be=Vb0 and Eq. (15) is valid for �
 kbex. The
remaining curves shown in Fig. 7 are determined by nu-
merically maximizing Eq. (4) as a function of time for each
velocity tilt. For comparison of the simulations with the
asymptotic gain curves, we normalized the computed fields
to E0 ’ 1:22� 10�6 kV=cm. This value brings the simu-
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FIG. 5. (Color) Comparison of electric field wave packets with
different velocity tilts at t � 5 ns from (a) the PIC simulations
and (b) numerical solution of the perturbed fluid equation.
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lation gain for all four velocity tilts into agreement with the
model gain at the earliest time (t � 1 ns). At later times,
and hence larger gains, reduced instability growth due to
increasing velocity tilt values is clearly observed, and the
simulation results show trends that agree well with the
asymptotic solutions. The agreement improves with in-
creasing velocity tilt since the net gain is smaller and the
validity of the approximations carried out as part of the
analytic analysis then holds for longer times.

V. DISCUSSION AND CONCLUSIONS

A small-signal, early-time gain analysis has been carried
out based on a system of model equations developed by
Startsev and Davidson [24] to examine the linear growth of
the two-stream instability for a longitudinally compressing
charged-particle beam immersed in a background plasma.
Here, we have extended the analysis of Ref. [24] to provide
asymptotic gain estimates in the linear regime at small
propagation distances and early times. The overall conclu-
sion of Ref. [24] is that the two-stream growth rate is
reduced for longitudinally compressing charged-particle
beams. Our model results and PIC simulations support
this conclusion. We note that the asymptotic analysis pre-
sented here correctly reduces to the well-established small-
signal two-stream analysis for noncompressing beam [28].

One-dimensional PIC simulations have been carried out
that support the conclusions of the model in the linear
phase. In addition, these simulations can follow the non-
linear evolution of the instability well beyond the limits of
the asymptotic analysis. As noted above, a velocity tilt
applied to charged-particle beams for longitudinal drift

compression does indeed result in a reduced growth rate
for the longitudinal two-stream modes. However, techno-
logical constraints limit the velocity tilt that can be applied,
at least for present applications [7–10]. Therefore, even
these reduced growth rates are still significant. Careful
evaluation of the nonlinear effects and possible coupling
to emittance growth in charged-particle beams are impor-
tant issues that need to be addressed as part of future
accelerator designs supporting warm-dense-matter and
heavy-ion-driven inertial fusion energy research.
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APPENDIX

The evaluation of the integral W given in Eq. (5) from
Sec. II is carried out in the limits X� 1 and �� 1. From
standard integral tables [34], Eq. (5) is

 W �
���
s
2

r
�F��2� � F��1�	; (A1)

with F given by Eq. (7) and

 �1 � arcsin
� �����

2s
p �������������

1� X
p

������������������������
s� 1� sX
p

�
;

 �2 � arcsin
� �����

2s
p

������������
s� 1
p

�
:

For s ’ 1� � and �i ’ �=2� 	i,

 sin�1 ’ 1�
	2

1

2
’

�������������������������������
�1� ���1� X�

p
��������������������������������
1� �=2� X=2

p ’ 1�
�� X

4
;

 sin�2 ’ 1�
	2

2

2
’

������������
1� �
p

�����������������
1� �=2

p ’ 1�
�
4
;

which gives 	1 ’ i
���������������������
��� X�=2

p
and 	2 ’ i

��������
�=2

p
. Taylor

expansion of F near �1 and �2 gives

 F��i� ’ F��=2� �
@F
@�

���������=2
��	i�; (A2)

with

 

@F
@�

���������=2
�

���
2
p
:

Substitution of Eq. (A2) into Eq. (A1) gives Eq. (8) for
the integral W.
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