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The well-known Kapchinskij-Vladimirskij (KV) equations are difficult to solve in general, but the
problem is simplified for the matched-beam case with sufficient symmetry. We show that the interde-
pendence of the two KV equations is eliminated, so that only one needs to be solved—a great
simplification. We present an iterative method of solution which can potentially yield any desired level
of accuracy. The lowest level, the well-known smooth approximation, yields simple, explicit results with
good accuracy for weak or moderate focusing fields. The next level improves the accuracy for high fields;
we previously showed [Part. Accel. 52, 133 (1996)] how to maintain a simple explicit format for the
results. That paper used expansion in a small parameter to obtain results of second-level accuracy. The
present paper, using straightforward iteration, obtains equations of first, second, and third levels of
accuracy. For a periodic lattice with beam matched to lattice, we use the lattice and beam parameters as
input and solve for phase advances and envelope functions. We find excellent agreement with numerical
solutions over a wide range of beam emittances and intensities.
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I. INTRODUCTION

This paper analyzes matched beams in alternating-
gradient (AG) focusing systems. Such beams have smaller
excursions than mismatched beams, thus requiring smaller
transport apertures, and are the starting point for analysis
of mismatched beams. Designers and experimenters who
work with AG systems need simple, accurate ways to
predict the performance of matched beams. One usually
begins with the coupled Kapchinskij-Vladimirskij (KV)
equations [1]. For weak focusing fields, solution by the
smooth approximation [2–4] is reasonably accurate.
Methods of solution for strong fields [5–7] have tended
to be indirect or complex. Lee, using a double expansion in
focus strength and emittance, demonstrated high accuracy
for a special case [8]. Our previous paper [9] presented
general results in a simple explicit format, but with only
moderate accuracy.

The present paper, summarized in Ref. [10], uses a
convenient iteration method to obtain explicit results.
High accuracy is demonstrated for a wide range of parame-
ters, which are: the AG field strength; beam emittance; and
beam charge or current. These would be small parameters
if normalized (cf. Appendix J), but we use physical units
throughout. We assume the lattice to be periodic with the
beam matched to the lattice, i.e., having the same period-
icity. The lattice is assumed symmetric. (Asymmetric cases
are treated with a novel numerical technique by Lund
et al. in Ref. [11].)

We solve explicitly for average radius [Eq. (34)], peak
radius [Eq. (40)], and the phase advances [Eqs. (44) and
(47)]. We give these results for three levels of accuracy and
complexity. All these formulas apply to arbitrary symmet-

ric lattices. They require at most the 3rd and 5th harmonics
of the lattice profile, becoming simpler for smooth profiles
(Appendix G). Envelope functions are given in Appendix E
and illustrated in Fig. 2.

A. Summary

We begin with the coupled KV equations and show in
Sec. III that the matching assumption decouples them so
that only one equation must be solved. [Although the
required symmetry Eq. (5) has been noted before [8,11],
we are not aware that it has been used in obtaining a
solution.] Section IV expands the a�z� envelope about its
mean and then splits the resulting equation into its average
part A and periodic part �. The differential equation for
��z� is solved (Sec. V) by iteration. These results are
combined to obtain a matching equation for the average
radius A. This equation is written to various orders of
accuracy; our special definition of ‘‘order’’ is given at the
end of Sec. V. The results (Sec. VI) are compared to the
results of numerical solution of the full KV equations. The
first-order case is usually called the smooth approximation.
Second- and third-order terms increasingly improve the
accuracy. Over a wide range of parameters, our third-order
versions provide a great improvement over those previ-
ously published [2–6].

Section VII combines results from Secs. Vand VI to give
the maximum and minimum radii. The phase advances �
and �0 are given in Sec. VIII. There is a useful approxi-
mation for �0 in Sec. IX. Appendices F, G, and H discuss
the use of Fourier analysis of the AG focusing function to
facilitate the solution. Some exact formulas for the FODO
case [Fig. 5] are given in Appendix I.
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II. THE KV EQUATIONS AND SYMMETRIC
LATTICE MODEL

The KV equations for envelopes a�z� and b�z� are [1]

 a�z�00 � �K�z�a�
22

a3 �
2Q
a� b

(1)

 b�z�00 � �K�z�b�
22

b3 �
2Q
a� b

; (2)

with dimensionless perveance Q, emittance 2 , and lattice
focus-strength function K�z�. The latter is periodic over the
lattice cell length, defined as 2L, so that K�z� 2L� �
K�z�. In practice, the lattice cell has one or two symme-
tries. The double symmetry occurs if the focus drift spaces
are equal in length. In this paper we assume that the
function K�z� has odd symmetry at the center of the drift
spaces and even symmetry at mid-electrode points. These
symmetry points necessarily alternate at intervals L=2. It is
convenient in what follows to choose one of the even points
for the z origin. (The odd choice is appropriate for the case
of unequal drift lengths; that case is not discussed in the
present paper.) Then the double symmetry is expressed as
 

K�L� z� � K�L� z�; (3a)

K�L=2� z� � �K�L=2� z�: (3b)

It follows that K�z� is antisymmetric about 3L=2 and that
K�z� obeys the shift relations

 K�z� L� � �K�z�; (3c)

 K�z� 2L� � �K�z�: (3d)

It also follows that

 K��z� � K�z�; (3e)

 hKi � 0: (3f)

Equation (3d) confirms the lattice periodicity which was
assumed above. Equations (3a) and (3b) indicate that K�z�
can be expanded as a cosine series containing only odd-
numbered harmonics.

In this paper we solve Eqs. (1) and (2) for the beam
envelopes in the special case where the beam is matched,
i.e., a�z� and b�z� have the same periodicity as the lattice.
The initial conditions with the symmetry of Eq. (3e) are
a0�0� � 0, b0�0� � 0, a�0� � a0, b�0� � b0.

For given Q and 2 and given lattice parameters, the
beam will only be matched for specific values of a0 and b0,
which we denote by am and bm. Then the initial conditions
for a matched beam are

 a0�0� � 0; b0�0� � 0; a�0� � am; b�0� � bm; (4)

with a�2L� � am and b�2L� � bm.
If we substitute aL�z� � a�z� L� and bL�z� � b�z� L�

in Eqs. (1) and (2) and use Eq. (3c), we find that aL�z� and
bL�z� also satisfy the KV equations with transposed initial

conditions: aL�0� � bm, bL�0� � am. We deduce that for a
matched beam

 b�z� � a�z� L�; (5)

so that the denominator of the last term in Eq. (1) can be
written a�z� � b�z� � a�z� � a�z� L�. Then b�z� does not
appear and Eq. (1) is decoupled. In Sec. III and
Appendix A we find an expression for the function �a�z� �
a�z� L���1 in terms of integrals involving the given lattice
function K�z�. After that, Eq. (2) is not needed for our
matched-beam case. The main work of this paper will be to
find am and bm, the maximum and minimum values of the
envelope—see Secs. IV, V, VI, and VII. First we introduce
some definitions.

A. Operators, functions, parameters, derived quantities

To aid the solution of Eqs. (1) and (2), we define in
Table I the operators h	 	 	i; f	 	 	g;

R
;
RR

; the functions h�z�;
g�z�; ��z�; ��z�; and the constants k; �; �; q; A; Keff ;�, and
�m. In Eq. (21), h1 is the first Fourier coefficient of h�z�—
cf. Appendix F.

TABLE I. Collection of definitions to be used in this paper.

 hfi � �1=2L�
R

0
2Lf�z�dz (6)

 ffg � f� hfi (7)

 

R
 �

R
0
z �z0�dz0 (8)

 

RR
 � f

R
0
zdz0

R
0
z0 �z000�dz00g (9)

 k � K�0� (10)

 h�z� � K�z�=k (11)

 g �
RR
h (12)

 ��z� �
RR
fhgg (13)

 A � ha�z�i (14)

 ��z� � �a�z� � A�=A (15)

 � � 3 22=A4 (16)

 � � �L2=�2 (17)

 q � Q=A2 (18)

 Keff � k2h �
R
h�2i (19)

 � � 3k2hg2i (20)

 �m � h1kL
2=�2 (21)
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In Table I, the operator h	 	 	i performs an average over a
cell length 2L. The operator f	 	 	g removes the average part
of a periodic function: e.g., 2fcos2 xg � f1� cos 2xg �
cos 2x. In this paper,

RR
operates exclusively on functions

obeying Eqs. (3), producing functions with the same sym-
metries. It integrates twice and removes the average part, if
any, of the result. This removal can be implemented by
constructing a suitable lower limit for the outer integral. To
illustrate, Eq. (12) can be written

 g �
Z z

L=2
dz0

Z z0

0
h�z00�dz00;

which subtracts the value at L=2, so that g�L=2� � 0.
Alternatively, one can start both integrals at zero and
then apply the operator f	 	 	g, as in Eq. (9). For example,RR

cosz � f
R

sinzg � f1� coszg � � cosz.
The properties of

RR
greatly simplify the operations and

the results in Appendix B.

III. DECOUPLING THE KV EQUATIONS FOR
SYMMETRIC MATCHED-BEAM INITIAL

CONDITIONS

For a matched beam with the symmetries of Eqs. (3), we
showed in Sec. II that b�z� � a�z� L�, implying that
Eqs. (1) and (2) are decoupled and that hai � hbi � A.
We write

 a�z� � A�1� ��z��; b�z� � A�1� ��z� L��; (22)

with ��z�>�1 for all z. Then the Q term in Eq. (1) is

 

2Q
a� b

�
Q
A
�1� R�h�z��� 	 	 	�; (23)

where R is obtained from an expansion and iterations. All
terms consist of integrations of the focus-strength function
h�z� [Appendix A]:

 F�h�z�� � k2
RR
fh
RR
hg � 	 	 	 � k2��z� � 	 	 	 : (24)

Additional terms are shown in the Appendix. With the
lattice symmetries of Eqs. (3), all the series terms for
F�z�, including ��z�, have only even-numbered cosine
harmonics—in contrast to h�z�, which has only odd ones.

Equations (1) and (2) are decoupled to all orders so that
Eq. (2) is superfluous from here on. Equations (1) and (2)
are replaced by

 a�z�00 � �K�z�a�
22

a3 �
Q
A
�1� k2��z� � 	 	 	�; (25)

 b�z� � a�z� L�: (26)

IV. EXPANDING AND DECOMPOSING INTO
AVERAGE AND PERIODIC PARTS

Substituting a � A�1� ��z�� into Eq. (25), expanding
1=a3, dividing by A, and using (16) and (24), Eq. (25) is

equivalent to
 

��z�00 � �kh�z� � kh�z���
�
3
�1� 3�� 6�2 � 10�3

� 15�4 � 	 	 	� � q�1� k2��z� � 	 	 	�: (27)

To solve for the ripple ��z� and for the mean radius A
(which appears in the definition of� and q), we decompose
Eq. (27) into a pair of equations. Averaging Eq. (27),
 

0 � �khh�i �
�
3
� 2�h�2i �

10

3
�h�3i � 5�h�4i

� 	 	 	 � q: (28)

Subtracting Eq. (28) from (27),

 �00 � �kh�z� � kfh�g � ��� 2�f�2g �
10

3
�f�3g

� 5�f�4g � 	 	 	 � qk2��z� � 	 	 	 ; (29)

with the f	 	 	g operator defined by Eq. (7). There are now
two equations, each containing ��z� and A—the latter
represented by �. These are the KV equations (1) and (2)
for our matched beam. We will obtain A and ��z� to good
accuracy in Secs. V, VI, and VII and Appendix E.

V. ITERATIVE SOLUTION: ARBITRARY
SYMMETRIC FOCUSING PROFILE

On the right-hand side (rhs) of Eq. (29), the kh�z� term
dominates the terms involving the unknown function ��z�.
Therefore, we use only kh�z� in the initial integrations
which give ��0�. Then we insert ��0� into (29) and integrate
again to obtain ��1�. [A miniscule term, qk2��z�, in ��0� is
omitted.] This process is repeated to get ��2�:
 

��0� � �kg; (30a)

��1� � ��0� � �k
RR
g� k2��

10

3
�k3

RR
g3; (30b)

��2� � ��1� � �2k
RRRR

g� k3
RR
h�� 4�k3

RR
g�: (30c)

In (30c),
RRRR

stands for two applications of the operator
RR

defined by Eq. (9).
To complete the approximate solution of the KV equa-

tions, ��z� from Eqs. (30) is put into the matching equation
(28). In Eqs. (30) we included no items (e.g., 2�k2

RR
fgg2)

that would give terms in (28) higher than third power in the
parameters k2, �, and q. That is, we go no higher than third
order as defined below.

Some terms vanish by orthogonality, since h�z�, g�z�, g3,
etc. possess only odd harmonics while ��z�, fg2g, fg4g have
only even ones for symmetric quadrupoles.

A term not shown, qk2
RR
��z�, involves multiple integra-

tions of an already small function and would contribute
<0:04% to the maximum radius amax even at �0 � 120


and affect A by less than 2 parts in 10 000. This is much
smaller than the two parts per thousand criterion used for
significant terms in Appendix E.
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Order.—We reckon the order of a term in the matching
equation by counting the number of factors k2, �, and q.
These would become small parameters in a nondimen-
sional formalism (Appendix J). We prefer to retain physi-
cal units for quantities such as the axial coordinate z. Note
that Lee [8] defines order using k and 2 so that our third
order corresponds approximately to his fifth order.
Appendix B evaluates the combination of Eqs. (28) and
(30). The result (simplified in Appendix C) is shown in the
next section.

VI. MATCHING EQUATION TO VARIOUS ORDERS
FOR AN ARBITRARY SYMMETRIC LATTICE

A. Third order

Inserting Eqs. (30) into Eq. (28) yields seven terms
[Appendix B, Eq. (B7)]. Some terms combine, resulting
in (Appendix C)

 Keff
y �

2III
2

AIII
4 �

Q

AIII
2 � 0; (31)

where

 Keff
y � h �

R
K�z��2i

�
1�

1

24
�
�
1�

20

27
c3

��
; (32)

 2III
2 � 22

�
1��

�
1�

3

4
�� 3�I

��
: (33)

In Eq. (32), c3 is of order unity (see Appendices G and H);
in Eq. (33), �I is defined by Eq. (39). Roman-numeral
subscripts on A and 2 signify the order of approxima-
tion—third order in this case. The subscript on � / A�4

indicates that AI [Eq. (37)] is used to approximate A. The
matching equation (31) is in the standard form of the
smooth approximation, Eq. (37), and can be solved to

find the third-order A:

 AIII
2 �

Q

2Keff
y

�

��
Q

2Keff
y

�
2
�
2III

2

Keff
y

�
1=2
: (34)

If the input quantity is the mean radius Ainp, then
Eq. (31) gives the allowable Q to third order,

 QIII � Ainp
2Keff
y �

2III
2

Ainp
2 :

 

aIII
max

aII
max

aI
max

(Smooth approximation)

AI

〈a
〉 e

rr
or

+1%

0%

–1%

–5%

–3%

0° 20° 60° 80°40°
Depressed tune σ (exact)

σ0 = 83.4°

AIII

AII

(a)

am
ax

 e
rr

or

0%

–5%

–10%
0° 20° 60° 80°40°

Depressed tune σ (exact)

σ0 = 83.4°
(Smooth approximation)

(b)

FIG. 1. Illustration of results for special case of FODO lattice, compared with simulation results. (a) Accuracy of mean radius, from
Eqs. (34), (36), and (37). (b) Accuracy of maximum radius, from Eqs. (40)–(42). Input quantities: Q, 2 , and quad voltage VQ�/ K�.
Other parameters: see Table II. VQ, fixed at 20 kV, gives phase advance �0 of 83:37
; 2 and Q are varied so that depressed tune �
ranges between 0
 and 76:5
; exact �0 and � were obtained numerically.

 

1.5

1.0

0.0

0.5

 0 0.5L L 1.5L 2L

R
ad

iu
s 

/A
ve

ra
ge

 R
ad

iu
s

Axial Distance

a(z)/A b(z)/A

Exact
Third Order

First Order

FIG. 2. Illustration of matched envelopes a�z� and b�z� for
special case of FODO model. Parameters from Table II, giving
tunes �0 � 112:2
; � � 86:9
. Exact envelopes (solid curves)
obtained numerically. Third-order results from Eqs. (30), using
Eqs. (E6)–(E10), give amax error of �2:37%. Smooth approxi-
mation error [Eq. (E6) only] is �13:0%. Amplitude of half-
period ripple is 5:6% of amplitude of full-period ripple.
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B. Second order

Equation (B7) has two second-order terms. One yields
the correction to Keff seen in Eq. (32). The other term is
�k2hg2i, or, using definition Eq. (20), ��=3. We define

 2II
2 � 22 �1���; (35)

and get

 Keff
y �

2II
2

AII
4 �

Q

AII
2 � 0: (36)

Equation (36) can be solved for AII or QII in the same
way as for the third order, giving useful approximations
when K�z� and 2 produce �0 and � less than about 80
.

C. First order

In Eq. (B7), the three terms of lowest order in �; q; k2

produce what is called the first-order matching equation
in this paper (Ref. [9] used another terminology). This is
the classic smooth approximation. These terms give
k2h �

R
h�2i � �=3� q, or, using the definitions Eqs. (16),

(18), and (19),

 Keff �
22

AI
4 �

Q

AI
2 � 0: (37)

The equations derived in this paper apply to arbitrary
focusing profiles satisfying Eqs. (3), such as the continuous

profiles in Appendix G, but for illustration (Figs. 1–3), we
use the FODO model (Appendix H) with parameters from
Table II. First-, second-, and third-order results for A, from
(34), (36), and (37), are plotted in Fig. 1(a) for FODO. The
smooth approximation is seen to be relatively inaccurate
except near the point where its error curve crosses the 0%
line.

VII. EXPLICIT THIRD-ORDER RESULT FOR amax

Knowing the matched mean radius A, one can complete
the solution for the beam envelope a�z� � A�1� ��z��
using ��z� from Eqs. (30); b�z� can be found by changing
the sign of the terms that contain odd powers of k.

Some terms of Eqs. (30) can be written in exact form
[Appendix I] for models such as FODO, but Fourier ex-
pansion is more useful in general:

 h�z� � h1

�
cos

�z
L
�
c3

3
cos

3�z
L
�
c5

5
cos

5�z
L
� 	 	 	

�
:

(38)

Values (usually of order unity) of h1 and cn for both smooth
and FODO profiles are given in Appendices G and H. With
the definition

 �I � �I
L2

�2 � 3
L2

�2

22

AI
4 ; (39)

we have

 

σ  
er

ro
r

0%

–5%

–10%

–15%

σ0 = 83.4°

0° 20° 60° 80°40°
Depressed tune σ (exact)

(Smooth approximation)

σIII

σ 0
 e

rr
or

0%

–3%

–6%

–9%

–12%

Phase advance σ0 (exact)

(a) (b)

(Smooth approximation)

0° 20° 60° 80°40°

σII

σ I

100°

σ0III

σ0II

σ0 I

FIG. 3. Phase advances for special case of FODO model with parameters from Table II. (a) Accuracy of depressed tune � from
Eqs. (44)–(46). VQ is fixed at 20 kV as in Fig. 1. (b) Accuracy of phase advance �0 from Eqs. (47)–(49). VQ ranges from 5 to 22 kV.

TABLE II. Parameters for Figs. 1–3, based on the actual MFE ESQ accelerator [12].

Quad cell length 20 cm Quad voltage [Figs. 1 and 3(a)] 20 kV
Occupancy factor 0.5 Quad voltage (Fig. 2) 25 kV
Quad radius �aQ� 1.75 cm Beam current (Fig. 2) 0.5 Amp
Beam energy 200 KeV Normalized emittance (Fig. 2) 1:55� mrad-cm
Beam particles H� ions
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amax
III � AIII

�
1� �m

�
1�

c3

27
�

c5

125

�
�

1

8
�m

2

�
1�

25c3

54

�

� �I�m

�
1�

5

2
�m

2 � �I

��
(40)

using results from Appendix E. The accuracy of Eq. (40)
(applied to the special case of the FODO model) is shown
in Fig. 1(b), along with that of the truncations

 amax
II � AII

�
1� �m

�
1�

1

27
c3 �

1

125
c5

�
� �I�m

�
(41)

and (the smooth approximation)

 amax
I � AI�1� �m�: (42)

The z-dependence of Eq. (40), from Appendix E, is plotted
in Fig. 2.

VIII. PHASE ADVANCES: ARBITRARY
SYMMETRIC FOCUSING FUNCTIONS

From the well-known phase-amplitude result [13], the
phase advance per quadrupole cell of length 2L is

 � �2
Z 2L

0

dz

a2 � 2L2ha�2i:

We approximate a�z� by AIII�1� ��z�� with AIII from
Eq. (34) and ��z� to third order from Eqs. (30).
Subscripts are omitted for brevity. Expanding a�2 and
taking the average gives

 � � 2L
2

AIII
2 �1� 3h�2i � 4h�3i � 5h�4i � 	 	 	�: (43)

(The 2� term has zero average by definition.) Appendix D
shows that to third-order accuracy

 �III � 2L
2

AIII
2

�
1��

�
1�

3

4
�� 2�I

��
(44)

for arbitrary symmetric AG lattice functions. Errors with
respect to exact values from simulations are illustrated in
Fig. 3(a) for the particular case of a FODO lattice. Useful
accuracy is retained after dropping two terms and using
lower-order AII from Eq. (36):

 �II � 2L
2

AII
2 �1���: (45)

Figure 3(a) shows large errors for the first-order result
(smooth approximation):

 �I � 2L
2

AI
2 : (46)

The undepressed tune �0 for arbitrary symmetric focus-
ing profiles is found by setting Q � 0 in Eq. (31), then
eliminating 2 from Eq. (44). Details are in Appendix D.
The third-order result is (cf. Sec. IX)

 �0 III � 2L�Keff
y �

1=2

�
1�

1

2
��

3

4
�2

�
(47)

for arbitrary symmetric focusing functions. To second
order,

 �0 II � 2L�Keff
y �

1=2

�
1�

1

2
�
�
: (48)

The smooth approximation is

 �0 I � 2L�Keff�1=2: (49)

Figure 3 compares the accuracy of Eqs. (47)–(49) for the
special case of FODO focusing (with occupancy � � 0:5),
but gives an idea of the relative accuracy for arbitrary
cases. At �0 � 100
, the smooth approximation is off by
12%; this is improved to 1.4% for third order.

IX. UNDEPRESSED TUNE: A SIMPLE, ACCURATE
APPROXIMATION

For the symmetric FODO model, �0, obtained by multi-
plying transfer matrices [2], is given exactly by
 

�0 � cos�1

�
cos� cosh�

� �1� ��K1=2L�cos� sinh�� sin� cosh��

�
1

2
�1� ��2KL2�sin� sinh��

�
; (50)

where � � �k1=2L. Equation (50) applies to cases where
�0 < 180
.

This exact solution can be expanded to give the accurate
approximation

 �0 � 2 sin�1�L�Keff�1=2�; (51)

where for FODO, Keff � 1
12�

2�3� 2��k2L2. Equa-
tion (51) resembles Eq. (49), the smooth approximation,
but (for � � 0:5, �0 � 100
) the error is reduced from
12% to 0.41%. This is actually better accuracy than given
by Eq. (47) (see Fig. 3).

For non-FODO cases, such as the examples in
Appendix G, Keff in Eq. (51) would be calculated from
Eq. (19) or (F10). It would be interesting to compare the
accuracies of Eqs. (47) and (51) for such cases.

X. WORK FOR THE FUTURE

It would be useful to investigate the modifications that
would be required to extend the methods of this paper to
nonsymmetric AG profiles, which are often used in
practice.
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APPENDIX A: DECOUPLING a AND b IN THE
KV EQUATIONS

This Appendix calculates a�z� � b�z� for the Q-term
denominators in the KV equations. Putting Eq. (15) into
Eq. (1) and expanding gives
 

��z�00 � � kh�z� � kh�z���
22

A4 �1� 3�� 	 	 	�

�
Q

A2 �1� R�z� � R
2�z� � 	 	 	�; (A1)

where, using Eq. (5),

 R�z� �
��z� � ��z� L�

2
: (A2)

We will find that only lowest-order results are needed and
will drop the R2 term, etc. We subtract the average of
Eq. (A1), using definitions from Table I, and obtain

 �00 � �kh�z� � kfh�g � ��� qR�z� � 	 	 	 ; (A3)

which we solve by iteration. In the initial step, the lowest-
order quantity is kh�z�, so that

 �00
�0� � �kh; ��0� � �kg: (A4)

Substituting �kg for � in the previous equation,

 �00
�1� � �kh� k

2fhgg � �kg�
qk
2
�g�z� � g�z� L��;

(A5)

 ��1��z� � �kg� k2�� �k
RR
g�

qk
2

RR
�g�z� � g�z� L��;

(A6)

where we used the definition of �. Using the shift Eq. (3c),
 

��1��z� L� � �kg� k2�� �k
RR
g

�
qk
2
�g�z� � g�z� L��: (A7)

Then Eqs. (A2), (A6), and (A7) give

 R�z� � k2�� 	 	 	 ; (A8)

resulting in Eq. (25) in Sec. III.
The expansion and iteration could be extended to pro-

duce more terms [all derived solely from h�z�] but these
would give even smaller corrections to our results.

APPENDIX B: DETAILS OF DERIVATION OF THE
MATCHING EQUATION

Rearranging Eq. (28) slightly gives

 khh�i � �
�

1

3
� 2h�2i �

10

3
h�3i � 5h�4i � 	 	 	

�
� q:

(B1)

1. Left-hand side (lhs) of Eq. (B1)

Inserting � from Eqs. (30), the lhs of this equation is

 khh�i � k2

�
�hhgi � �hh

RR
gi �

10

3
�k2hh

RR
g3i

� �2hh
RRRR

gi � k2hh
RR
h�i � 4�k2hh

RR
g�i

� 	 	 	

�
;

where we have dropped the subscripts on �. The orthogo-
nal k2� term is absent. We rearrange the integrations,
noting that hu

R
vi � �hv

RR
ui if huihvi � 0 and that

hu
RR
vi � �hv

RR
ui if hui � hvi � 0. For example,

�hh
RRRR

gi � �hg
RR
gi � �h �

R
g�2i. Applying this tech-

nique throughout gives

 lhs � �k2

�
h �
R
h�2i � �hg2i � �2h �

R
g�2i

�

� k4

�
hh
RR
h�i �

10

3
�hg4i � 4�hg2�i � 	 	 	

�
:

(B2)

and will allow us to eliminate four terms in Eq. (B7).

2. Right-hand side (rhs) of Eq. (B1)

For the rhs of (B1), the significant terms are

 h�2i � k2hg2i � 2�k2hg
RR
gi � 2k4hg

RR
h�i � 	 	 	 ; (B3)

 h�3i � 3k4hg2�i � 	 	 	 ; (B4)

 h�4i � k4hg4i � 	 	 	 : (B5)

The very small k4h�2i term was omitted from h�2i. Again
changing the order of integrations, the rhs of (B1) becomes
 

rhs � �
�

1

3
� k2�2hg2i � 4�h �

R
g�2i�

� k4�4hg
RR
h�i � 10hg2�i � 5hg4i� � 	 	 	

�
� q:

(B6)

Four of the terms of (B6) combine with terms of (B2), so
that
 

k2h �
R
h�2i � k4hh

RR
h�i � �

�
1

3
� k2�hg2i � 3�k2h �

R
g�2i�

� k4

�
4hg
RR
h�i � 6hg2�i

�
5

3
hg4i

�
� 	 	 	

�
� q; (B7)

the matching equation from Eq. (B1). Each term (except
�=3 and q) involves averages of functions of the focusing
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profile h�z�. Given any h�z�—obtained from a model such
as FODO or measured on an actual quadrupole cell—these
averages can be calculated once and for all, being constant
coefficients of the terms in � and k. Appendix C shows
how to write Eq. (B7) in simple form [Eq. (C10)].

APPENDIX C: SIMPLIFICATION OF THE
MATCHING EQUATION

It is convenient to write the Fourier representation in the
form

 h�z� � h1

�
cos

�z
L
�

1

3
c3 cos 3

�z
L
�

1

5
c5 cos 5

�z
L
	 	 	

�
:

(C1)

The axial profile of the quadrupole gradient determines h1

and cn. Tables III and IV show that h1 remains of the order
of unity while c3 and c5 can change sign as the profile is
varied. For the hard-edge quadrupole model (FODO) with
occupancy � � 0:5, Table IV shows that c3 � 1. Because
of multiple integrations, terms containing c5 are usually
negligible.

1. Right-hand side of Eq. (B7)

By definition, k2hg2i � �=3. For the factor h �
R
g�2i �

h �
RRR
h�2i, the third and higher harmonics make very small

(0.1%) contributions because of the multiple integrations.
Comparing leading terms for h �

R
g�2i and hg2i gives

 3k2h �
R
g�2i �

L2

�2 3k2hg2i �
L2

�2 �: (C2)

The three k4 terms on the rhs of Eq. (B7) are

 4hg
RR
h�i �

1

2
hg2i2

�
1�

19

27
c3 � 	 	 	

�
; (C3)

 � 6hg2�i � �
3

4
hg2i2

�
1�

4

9
c3 � 	 	 	

�
; (C4)

 

5

3
hg4i �

5

2
hg2i2

�
1�

4

81
c3 � 	 	 	

�
: (C5)

Adding the rhs’s of Eqs. (C3)–(C5) gives 3
4 hg

2i2�1�
0:063c3 � 	 	 	�, where the small c3 correction can be ne-
glected since it corrects a term which is already third order.
Using all these results along with definition (16), the
quantity in brackets on the rhs of Eq. (B7) is

 22

�
1���

3

4
�2 �

9

�2

22 L2

AI
4 �

�
;

2III
2 � 22

�
1���

3

4
�2 � 3�I�

�
;

(C6)

which is Eq. (33). In the last term,

 �I � 3
L2

�2

22

AI
4 ; (C7)

uses the lowest-order value for A because this term is
already of the highest order that we retain.

2. Left-hand side of Eq. (B7)

The smaller term is

 hh
RR
h�i �

1

8
hg2i

�
1�

20

27
c3 � 	 	 	

�
h �
R
h�2i: (C8)

We define the lhs of (B7) as

 Keff
y � k2h �

R
h�2i

�
1�

1

24
�
�
1�

20

27
c3

��
; (C9)

i.e., Eq. (32). Altogether,

 Keff
y �

2III
2

AIII
4 �

Q

AIII
2 ; (C10)

which is Eq. (31).

APPENDIX D: DEPRESSED AND UNDEPRESSED
TUNES, GENERAL CASE

1. Depressed tune

Here we evaluate the expansion terms in Eq. (43). From
Eqs. (B3)–(B5) in Appendix B,

 3h�2i � 3k2hg2i � 6�k2h �
R
g�2i � 6k4hg

RR
h�i � 	 	 	 ;

(D1)

 � 4h�3i � �12k4hg2�i � 	 	 	 ; (D2)

 5h�4i � 5k4hg4i � 	 	 	 : (D3)

TABLE IV. h1 and cn � nhn=h1 for FODO case with four
different occupancies.

� �h1=2 c1 c3 c5 c7 c9 c11

1=3 1 1 2 1 �1 �2 �1
1=2

���
2
p

1 1 �1 �1 1 1
2=3

���
3
p

1 0 �1 1 0 �1
1 2 1 �1 1 �1 1 �1

TABLE III. h1, cn � nhn=h1, and �equiv for four smooth mod-
els.

Model h1 c1 c3 c5 c7 c9 �equiv

#1 1 1 0 0 0 0 0.57
#2 9=8 1 �1=3 0 0 0 0:69
#3 3=4 1 1 0 0 0 0.40
#4 15=16 1 1=2 �1=2 0 0 0.53
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From Appendix C, Eqs. (C2)–(C5),

 6�k2h �
R
g�2i �

L2

�2 6�k2hg2i � 2�I�; (D4)

 6k4hg
RR
h�i �

3

4
k4hg2i2

�
1�

19

27
c3 � 	 	 	

�
; (D5)

 � 12k4hg2�i � �
3

2
k4hg2i

�
1�

4

9
c3 � 	 	 	

�
; (D6)

 5k4hg4i �
15

2
k4hg2i2

�
1�

4

81
c3 � 	 	 	

�
: (D7)

When Eqs. (D5)–(D7) are added, the c3 coefficient is only
25=729. Dropping this and using the definitions gives, to
third-order accuracy

 � � 2L
2

AIII
2

�
1���

3

4
�2 � 2�I�

�
: (D8)

2. Undepressed tune

Setting Q � 0, Eq. (31) is

 Keff
y �

2III
2

AIII
4 �

22

AIII
4

�
1���

3

4
�2 � 3�I�

�
1=2
: (D9)

The factor 22=AI
4 in �I can be replaced by Keff �

k2h �
R
h�2i, according to Eq. (37) with Q � 0. Comparing

with the definition of � and Fourier expanding as before,
the last term, to lowest order, is 3�2 for Q � 0. Thus,
altogether,

 Keff
y �

22

AIII
4

�
1���

7

2
�2 � 	 	 	

�
1=2
: (D10)

Making a similar replacement in Eq. (D8) with Q � 0,

 �0 � 2L
2

AIII
2

�
1���

11

4
�2 � 	 	 	

�
: (D11)

Using Eq. (D10) to eliminate 2=AIII
2,

 

�0 � 2L�Keff
y �

1=2

�
1���

11

4
�2 � 	 	 	

�




�
1���

15

4
�2 � 	 	 	

�
�1=2

; (D12)

or, finally, to third order,

 �0 � 2L�Keff
y �

1=2

�
1�

1

2
��

3

4
�2 � 	 	 	

�
(D13)

for arbitrary symmetric AG profiles. Sometimes it is con-
venient to work with the squares of �0 and �, which are,
for third order

 �0
2 � 4L2Keff

y

�
1���

7

4
2�2

�
(D14)

and

 �2 � 4L2 2
2

AIII
4

�
1� 2�

�
1�

5

4
�� 2�I

��
: (D15)

APPENDIX E: CALCULATION OF a�z�AND b�z�
FOR THE GENERAL CASE

Using Fourier expansion, written as in Appendix C,

 kh�z� � kh1

�
cos

�z
L
�

1

3
c3 cos 3

�z
L
�

1

5
c5 cos 5

�z
L
	 	 	

�
;

and recalling �m � h1kL
2=�2, the terms of Eqs. (30) are

 

�kg�z� � �k
RR
h � �m

�
cos

�z
L
�

1

27
c3 cos3

�z
L

�
1

125
c5 cos5

�z
L
� 	 	 	

�
; (E1)

 �k
RR
g � ��m

�
cos

�z
L
�

1

243
c3 cos 3

�z
L
� 	 	 	

�
; (E2)

 

k2��z� � k2
RR
fhgg �

1

8
�m

2

��
1�

10

27
c3 	 	 	

�
cos 2

�z
L

�
5

54
c3 cos 4

�z
L
� 	 	 	

�
; (E3)

 

10

3
�k3

RR
g3 �

5

2
��m3

��
1�

1

27
c3�		 	

�
cos

�z
L

�
1

27

�
1�

2

9
c3�		 	

�
cos3

�z
L
�		 	

�
; (E4)

 � �2k
RRRR

g � �2�m cos
�z
L
� 	 	 	 : (E5)

The small final two terms from Eqs. (30) have been omitted
here for simplicity.

1. The significant terms

We drop small quantities in the above equations. The
criterion is that they contribute less than two parts per
thousand to the final result for a bad-case scenario: large
focusing strength (giving phase advance of 112
) and large
�. This leaves
 

�kg � �m

�
cos

�z
L
�

1

27
c3 cos 3

�z
L

�
1

125
c5 cos 5

�z
L
� 	 	 	

�
; (E6)

 �k
RR
g � ��m cos�

�z
L
� 	 	 	 ; (E7)

 k2��z� �
1

8
�m2

�
cos 2

�z
L
�

25

54
c3 cos 4

�z
L
� 	 	 	

�
; (E8)
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10

3
�k3

RR
g3 �

5

2
��m

3 cos
�z
L
; (E9)

 � �2k
RRRR

g � �2�m cos
�z
L
� 	 	 	 : (E10)

Adding all these gives ��z� to third-order accuracy. A few
small terms were omitted as mentioned before. Setting
z � 0 gives �max and amax � A�1� �max� as presented in
Sec. VII. Setting z � L changes the sign of all terms,
except the even term k2��z�, and yields amin. � and �
are only needed to lowest order, i.e., �I and�I; we omit the
subscripts here.

Results from Eqs. (E6)–(E10) are shown in Fig. 2 in the
main text.

APPENDIX F: FOURIER REPRESENTATION,
ARBITRARY SYMMETRIC CASES

1. Fourier coefficients

Recall from Sec. II that the focusing force K�z� in the
KV equations is written as

 K�z� � kh�z� (F1)

with h�0� � 1. Because of the symmetries [Eqs. (3)] and
initial conditions, there are only odd harmonics and no sine
terms:

 h�z� �
X

1;3;5;...

hn cos
n�z
L

(F2)

with the condition

 

X
1;3;5;...

hn � 1: (F3)

The Fourier coefficients are

 hn �
1

L

Z 2L

0
h�z� cos

n�z
L

dz: (F4)

It is often convenient to define

 cn � n
hn
h1
; (F5)

where c1 � 1 by definition and where jc3j usually turns out
to be of order unity—see Tables III and IV. Then Eq. (F2)
is written as

 h�z� � h1

X
1;3;5;...

1

n
cn cos

n�z
L

: (F6)

2. Solution of envelope equation

In the solution for ��z�, Eqs. (30), the largest term is

 ��0��z� � �kg�z� � �k
Z z

L=2
dz0

Z z0

o
h�z00�dz00; (F7)

which with Eqs. (F2) and (F5) is

 � kg�z� �
kL2

�2 h1

X
1;3;5;...

cn
n3 cos

n�z
L

: (F8)

The next largest term is

 �k
RR
g � �

kL4

�4 h1

X
1;3;5;...

cn
n5

cos
n�z
L

: (F9)

To achieve 1% accuracy, the first three series elements of
(F8) are usually required, whereas for Eq. (F9), only the
fundamental is needed [cf. Eq. (E2)].

The additional terms of Eqs. (30), shown in Eqs. (E3)
and (E4), are found with the help of trigonometric
identities.

The mean square of the integral of Eq. (F2) gives the
effective force

 Keff � k2h �
R
h�2i � h1

2 k
2L2

2�2

X
1;3;5;...

cn2

n4 ; (F10)

which is used in the matching equation and for calculating
the undepressed phase advance.

The correction term � (used in evaluating phase advan-
ces, average radius or transportable current, etc.) is

 � � 3k2hg2i � 3h1
2 k

2L4

2�4

X
1;3;5;...

cn
2

n6
! 3h1

2 k
2L4

2�4 (F11)

since the harmonics contribute practically nothing.
Dividing by Eq. (F10), we find

 � � 3Keff L
2

�2

�
1�

c3
2

81
� 	 	 	

�
; (F12)

which could be useful in certain calculations.

APPENDIX G: SOLUTION FOR SOME SMOOTH
LATTICE PROFILES

All our results apply to an arbitrary symmetric focusing
profile once its Fourier coefficients are known. Some sim-
ple but representative smooth models are discussed here.
None of our examples require more than two harmonics.

Field model 1.— h�z� � cos �z
L .

 h1 � 1; c3 � 0:

This is the model used by Lee [8].
Field model 2.— K00�0� � 0.

 h1 �
9

8
; c3 � �

1

3
; (G1)

with all the other coefficients zero except c1, which is unity
by definition. This choice gives a flat field at the midpoint
of the quadrupoles, without the discontinuities of the hard-
edge FODO model. From Eqs. (G1) and (F10) we get

 Keff �
92

82

k2L2

2�2

�
1�

1

93

�
; (G2)
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 � � 3
92

82

k2L4

2�4

�
1�

1

94

�
: (G3)

The 1=94 term can be neglected in practice.
Field model 3.— K0�L=2� � 0.

 h1 �
3

4
; c3 � 1: (G4)

This model is narrow, peaked at the quadrupole midpoints,
with zero slope at the gap centers. It gives focusing strength
equivalent to FODO [Eq. (I1)] having about 40% occu-
pancy. The third-harmonic corrections to Keff and � are
1=81 and 1=243, respectively.

Field model 4.— K00�0� � 0 and K0�L=2� � 0.

 h1 �
15

16
; c3 �

1

2
; c5 � �

1

2
; (G5)

which gives a fairly realistic profile (Fig. 4) and corre-
sponds to FODO with �� 53%. The third- and fifth-
harmonic corrections are well under 1% for this case.

Table III summarizes the above results.

APPENDIX H: FOURIER SOLUTION FOR THE
SPECIAL CASE OF FODO

In the case of the popular FODO lattice model (Fig. 5),
the Fourier coefficients hn are readily calculated from
Eq. (F4):

 hn �
4

n�
sin

n��
2

; (H1)

which satisfies Eq. (F3) for occupancy � over the range
0<� � 1. From Eq. (F5),

 cn � n
sin �n��=2�

sin ���=2�
(H2)

for FODO. All the results from Appendix F can be used for
FODO by putting h1 � sin ��

2 . Values of h1 (normalized
with �=2) and cn are shown in Table IV for various �.

APPENDIX I: SOME EXACT FORMULAS FOR THE
SPECIAL CASE OF FODO

Results using truncated Fourier representations for the
hard-edge FODO may be compared with exact results by
integration. (The FODO model is illustrated in Fig. 5.)
Because of the symmetries expressed in Eqs. (3), the
calculation of averages is simplified, requiring only inte-
gration over one-fourth of a cell. One finds for a specified
occupancy �

 Keff � k2h �
R
h�2i �

1

12
�2�3� 2��k2L2; (I1)

 � � 3k2hg2i �
1

16
�2

�
1� �2 �

2

5
�3

�
k2L4: (I2)

One can do the integrals in the first two terms of ��z�,
Eqs. (30). For the integrations, we divide the cell into five
zones:
 

Zone 0: 0 � z � �L=2

Zone 1: �L=2< z � L� �L=2

Zone 2: L� �L=2< z � L� �L=2

Zone 3: L� �L=2< z � 2L� �L=2

Zone 4: 2L� �L=2< z � 2L:

For even-numbered zones, the first integral is

 �
RR
h � P

�
n
2

�
1

2

�
��2� ��

�
L
2

�
2
�

�
z� n

L
2

�
2
�

(I3)

with n the zone number. P is defined as follows: for any
integer m,

 P �m� �
�
�1 if m is even;
�1 if m is odd:

For odd-numbered zones the integral is

 �
RR
h � P

�
n� 1

2

�
1

2
L�

�
z� n

L
2

�
: (I4)

As required by the definition of
RR

, the average has been
subtracted. The maximum value of ��0� (where z � 0,
implying n � 0) is

 �max
�0� � �k

RR
h
��������0
�

1

8
��2� ��kL2: (I5)

The next term in Eqs. (30) includes the integral
RR
g. For

even-numbered zones
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FIG. 5. Normalized quadrupole strength h�z� vs z for a FODO
lattice having occupancy 0.5. The unit cell length is 2L.
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FIG. 4. Axial profile of normalized quadrupole strength h�z�
for smooth field model #4, which uses only the 3rd and 5th
harmonics. The unit cell length is 2L.
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 RR
g � P

�
n
2

��
�
�
1�

�2

2
�
�3

8

��
L
2

�
4

�
3

4
��2� ��

�
L
2

�
2
�
z� n

L
2

�
2
�

1

8

�
z� n
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and for odd-numbered zones
 RR
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The maximum value of
RR
g is
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These results, for any value of �, may be compared with
those from Appendices G and H to determine the number
of Fourier terms needed for a given accuracy in each case.

APPENDIX J: NONDIMENSIONAL FORMALISM

As mentioned in Sec. V, we have chosen in this paper to
use physical units for quantities such as the axial distance
z. The result is that the expansion parameters k2, �, and q
are not necessarily small numbers. To show that they are
nevertheless appropriate parameters, we replace z by

 	 �
�z
L
: (J1)

The KV equations become

 

�2

L2
a�	�00 � �K�	�a�

22

a3 �
2Q
a� b

(J2)

 

�2

L2
b�	�00 � �K�	�b�

22

b3 �
2Q
a� b

; (J3)

where the primes now indicate differentiation with respect
to 	.

In Table I, averages are now defined by

 hfi �
1

2�

Z 2�

0
f�	�d	: (J4)

Similarly, the symbols
R

and
RR

refer to integration with
respect to 	, not z. Other replacements in Table I are

 h�	� �
K�	�
K�0�

; (J5)

 k �
L2

�2 K�0�; (J6)

 � � 3
L2

�2

22

A4 ; (J7)

 q �
L2

�2

Q

A2 ; (J8)

 Keff �
L2

�2 �K�0��
2h �

R
h�2i; (J9)

 �m � h1k: (J10)

All these items are now dimensionless. In Eq. (J7), the
quantity � is supplanted by �. Equations (39) and (C7) no
longer apply; � must be replaced by � in Eqs. (33), (40),
(41), (44), and (C6) as well as four places in Appendix D
and six places in Appendix E. The equations throughout
this paper are otherwise unchanged, and one can verify that
the expansion parameters k2, �, and q are now dimension-
less small numbers.

APPENDIX K: ALTERNATIVE MATCHING AND
INITIAL CONDITIONS

Another method of beam matching is convenient for
some simulation studies. The beam is launched at the
midpoint of a quadrupole gap. Using the same lattice
models as before, the matching conditions would become
 

a�5L=2� � a�L=2�; b�5L=2� � b�L=2�;

a0�5L=2� � a0�L=2�; b0�5L=2� � b�L=2�
(K1)

with initial conditions

 a�L=2� � b�L=2�; b0�L=2� � �a0�L=2�: (K2)

This choice would be essential for the case of unequal
drift spaces (only a single symmetry) but we do not con-
sider this case here.
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