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By applying a time reversal to the multiturn extraction method recently proposed, a novel approach to
perform multiturn injection is described. It is based on the use of stable islands of the horizontal phase
space generated by means of sextupoles and octupoles. A particle beam can be injected into stable islands
of phase space, and then a slow tune variation allows merging the beam trapped inside the islands. The
results of numerical simulations will be presented and discussed in detail, showing how to use the
proposed approach to generate hollow bunches in the transverse phase space, and how different
resonances can be used. The dependence of the final beam parameters on the key quantities of the
proposed approach, such as emittance of the initial beam and the way the resonance is crossed, is
investigated. Furthermore, a comparison of the proposed approach against the classical multiturn injection
without the use of stable islands is carried out.
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I. INTRODUCTION

The injection of charged particles into a circular accel-
erator can be performed by three distinct approaches:
single-turn, multiturn, and charge-exchange injection [1].
The first method is based on the use of a septum magnet to
deflect the injected beam towards the central orbit of the
receiving machine and a fast deflector, a so-called kicker,
to adjust the angle of the incoming beam so to match both
position and angle of the central orbit. While the septum
magnet can be pulsed or not, the kicker provides a deflec-
tion over one machine circumference only, which will be
the length of the injected pulse. The second method aims at
injecting more than one turn. This is normally obtained by
means of a septum magnet and an appropriate time-
dependent bump used to paint the phase space so to gen-
erate the appropriate transverse and/or longitudinal beam
distribution. Finally, the charge-exchange method [2] is a
refined version of the multiturn injection, where H� ions
are injected and stripped at the injection point: this has the
advantage of generating high-brightness beams.

In recent years, a novel method to perform multiturn
extraction from a circular particle accelerator was pro-
posed [3–6]. It is based on particle trapping inside stable
islands of transverse phase space generated by nonlinear
magnetic fields, such as sextupolar or octupolar ones. This
method proved to work well not only in numerical simu-
lations [3–6], but also in a series of experiments carried out
at the CERN Proton Synchrotron (PS) machine [7–10]. It is
worth mentioning that the novel method for performing
multiturn extraction will be implemented in the PS ma-
chine as a replacement of the current continuous transfer
extraction mode (see Ref. [11] for more details in the
implementation project).

The time-reversal property of the dynamics involved in
the novel extraction process allows extending the approach
to perform multiturn injection. The idea consists in inject-
ing the beam in stable islands of phase space and then to
vary the tune so to merge back the beamlets into one single
beam [12,13]. This requires a closed orbit bump generated
by kickers so that one of the stable islands is used to inject
the beam. Then, once all the islands are filled, the bump is
collapsed and the tune is varied to change the beam distri-
bution towards the final shape. The number of injected
turns depends on the resonance used for generating the
stable islands. In the next sections, the results of numerical
simulations performed on a simple model are presented to
support the validity of the proposed concept.

Parenthetically, it is worth noting that a proposal of
injecting the beam into stable islands of the transverse
phase space generated by an octupolar resonance was al-
ready made in Ref. [14] a long time ago. However, to our
best knowledge, such a proposal never led to more detailed
and quantitative theoretical studies and experimental tests.
The results reported in this paper represent an independent
and complete analysis of a novel injection process origi-
nated from the studies for a novel multiturn extraction.

The plan of the paper is the following: in Sec. II the
results of numerical simulations for the proposed technique
are presented and discussed in detail for the fourth order, in
Sec. II B, and for the third-order resonance, in Sec. II C.
The analysis of how the shape of the final beam distribution
depends on the details of the injection process is consid-
ered in Sec. II D. In Sec. III a simple model of the classical
multiturn injection is presented, which is then used to
compare the performance of both approaches. Finally,
some conclusions are drawn in Sec. IV. The details of the
analytical computations to determine the final beam pa-
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rameters of the classical multiturn injection are derived in
Appendix A.

II. NUMERICAL SIMULATIONS

A. The model

The model used to study the proposed injection tech-
nique consists of a simple focusing/defocusing (FODO)
cell with a sextupole and an octupole magnet located at the
same longitudinal position, both represented in the single-
kick approximation [15]. For the application under study,
only the horizontal plane is relevant. Therefore, the evolu-
tion of the beam dynamics can be obtained by using a 2D
one-turn polynomial transfer map of the form

 

X̂

X̂0

 !
n�1 � R�!�n�� X̂

X̂0 � X̂2 � �X̂3

 !
n

: (1)

The components of the vector �X̂; X̂0� are dimensionless
coordinates allowing to set the coefficient of the quadratic
term of the map (1) to one [15]. R�!�n�� represents a
rotation matrix of an angle !�n� � 2���n� and � depends
on the ratio between the strength of the sextupole and the
octupole weighted by the value of the optical beta-function
at the location of the nonlinear magnetic elements [6],
namely,

 � �
2

3

K3

K2
2

1

�
:

In terms of the usual development of the magnetic field into
multipoles up to order m, one has that
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where ��s� is a function equal to 1 in dipoles and 0 else-
where. The coefficients Kn; Jn, respectively, the normal
and skew normalized integrated multipole strengths, are
defined according to

 Kn �
1

B0�

@nBy
@xn

‘ Jn �
1

B0�
@nBx
@xn

‘: (3)

In Eqs. (2) and (3), B0� stands for the magnetic rigidity of
the reference particle, Bx; By are the transverse compo-
nents of the magnetic field, and ‘ is the physical length
of the magnetic element. In the following it will be as-
sumed that Jn � 0 for n 	 1.

The relation between the physical coordinates �x; x0� and
the standard Courant-Snyder ones �x̂; x̂0� is given in
Ref. [16] and also reported in Eq. (7), while the adimen-
sional normalized coordinates �X̂; X̂0� are derived accord-
ing to

 �x̂; x̂0� � ��X̂; X̂0� where � � 1
2K2�3=2: (4)

The angle!�n� is indeed a function of the turn number and,
for the results presented in Secs. II B and II C the time
dependence of !�n� is always chosen linear. The general
expression of the tune variation is expressed as

 ��n� �

8><>:
�a � ��a � �b��

n�1
n1�1�

p if n 
 n1

�b if n1 < n 
 n2

�b � ��b � �c��
n�n2

n3�n2
� if n2 < n 
 n3;

(5)

where �a; �b; �c are the initial, intermediate, and final tune
values, respectively, n1, n2, n3 represent the turn number of
transition between the stage of resonance crossing, which
occurs in the interval ��a; �b�, and constant tune, constant
tune, and linear ramp to merge islands after injection,
respectively. Finally, p is a parameter used to change the
functional dependence of the tune variation on n during the
resonance crossing. It allows changing from a linear sweep
to a power law, thus changing the speed of resonance
crossing.

It is worth stressing that in the numerical and analytical
computations reported here the special adimensional nor-
malized coordinates are used.

B. Results of simulations: Fourth-order resonance

The numerical simulations focused on two resonances,
namely, the fourth and the third order. In the first case, the
injection occurs over four turns. The value of the coeffi-
cient � is kept constant throughout the process and equal to
�1:5. The initial beam distribution is chosen to be
Gaussian in both position and angle with a sigma of 0:02
in both dimensions. The number of initial conditions is 106

equally shared among the four injected islands. The
resonance is crossed in 2� 104 turns and the tune variation
is defined by ��a; �b; �c� � �0:245; 0:250; 0:255�,
�n1; n2; n3� � �13 000; 500; 6500� and p � 1. The results
concerning the evolution of the beam distribution are
shown in Fig. 1. The beam is injected using the outermost
island lying along the positive horizontal axis, which is
supposed to be located beyond the blade of the injection
septum. At the end of the first four turns, the injection
process proper is over. The beam ellipses are distorted due
to the nonlinear effects. The next stage consists in changing
the tune so to sweep through the resonance and then to
merge the four beamlets into one single structure. The final
stage of the beam evolution is rather striking as the beam
distribution is not at all Gaussian, but it is a hollow distri-
bution, with the beam spread over an annulus in phase
space.

Such an effect is due to the fact that the islands’ size is
also changing during the whole process, being a function of
the linear tune [17]. In particular, the size tends to zero
while approaching the exact resonance condition. This
means that, whenever the tune is sufficiently near to the
resonant value, the islands become so small that almost no
beam can be transported towards the origin.
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FIG. 1. (Color) Multiturn injection by means of trapping in stable islands of transverse phase space. Four turns are injected and the
beamlets merged by crossing the fourth-order resonance. The tune variation is reported in the upper part of each plot. As a result a
hollow beam in the transverse phase space is generated.
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The projected beam distribution along the horizontal
phase space axis is shown in Fig. 2, where the beamlets
just after injection (left part) as well as the final beam (right
part) are shown. The three peaks visible in the left part are
indeed the result of the projection of the four injected turns
shown in Fig. 1 (center right part). Therefore, the single
central peak is indeed the superposition of two injected

turns. The different width of the three distributions is an
effect of the distortion of the beam ellipse induced by the
nonlinear effects. The hollow beam distribution shown in
the right part of Fig. 2 reflects the observation made that the
final beam is not at all Gaussian.

A possible solution to this issue is rather straightfor-
ward. As the fourth-order resonance is stable an additional

 

FIG. 2. Projected distribution functions for the four-turn injection right after the injection (left) and at the end of the merging process
(right). The two islands centered at the origin with opposite angles are projected onto the central peak visible in the initial distribution
function.

 

FIG. 3. (Color) Final distribution function for a variant of the proposed four-turn injection with a fifth injected turn so to generate an
almost uniform distribution. The beam distribution after the end of the injection process is shown on the upper left part, while the final
distribution is reported on the upper right part. The projected beam distribution is shown in the lower part: the final profile for the
configuration plotted in Fig. 2 is also shown for comparison (shaded area).
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turn could be injected first at the origin of phase space. In
practice this implies that the origin of phase space is
displaced by the closed bump created by kickers beyond
the position of the septum blade. Once the first turn is
injected, the bump amplitude is reduced so that the stable
island is beyond the septum blade, but not the central orbit:
in this condition the injection process can continue for four
additional turns. The properties of the first injected turn,
i.e., number of particles and sigma, can be used to paint the
shape of the final beam distribution, e.g., to fill the hole in
the center. Such a feature of the final beam distribution
might even turn out to be an interesting point in some
conditions, such as when dealing with high-intensity
beams. In fact, it is well known that the largest space-
charge tune shift affects particles in the beam core. This
explains why efforts are devoted to reducing the beam
density around the origin of phase space, in particular, by
developing techniques to generate flat or hollow bunches in
the longitudinal phase space [18–20]. Therefore, the pro-
posed approach could be used to shape the beam distribu-
tion so to reduce the space-charge effects at injection,
where they are particularly harmful. As an example, the
final beam profile for a possible variant is shown in Fig. 3
together with the one plotted in Fig. 2. The parameters of
the tune sweep are the same as those used to generate
Fig. 1. The new final beam distribution is obtained by
injecting an additional turn at the center of phase space.
The parameters, i.e., the number of particles and the sigma,
of the injected turns are reported in Table I.

It is important to stress that the simulations presented
here do not take into account the Coulomb interaction
between the particles, hence the observation made should
be confirmed by detailed numerical simulations taking into
account also space-charge effects. On the other hand, one
could argue that, due to the peculiar beam distribution,
space-charge effects should be highly reduced, hence the
final beam distribution might be preserved even under the
influence of Coulomb interaction.

Finally, it is worthwhile stressing that during the whole
injection process no particle’s loss is observed.

C. Results of simulations: Third-order resonance

A study of the possibility of using the third-order reso-
nance to perform multiturn injection is also carried out.

Even in this case it is possible to complete the injection
process without any particle loss. As an example, the beam
evolution is shown in Fig. 4. In this case the initial
Gaussian distributions feature a sigma of 0:017 and
3� 106 initial conditions are shared in the three injected
distributions while � � �5. The parameters for the
tune variation are ��a; �b; �c� � �0:328; 0:340; 0:350�,
�n1; n2; n3� � �13 000; 500; 6500�, and p � 1. The distri-
bution projected along the X̂ axis is shown in Fig. 5. The
investigation of the possibility of injecting a fourth turn led
to different results with respect to the case of the fourth-
order resonance. In fact, the third-order resonance is well
known to be generically unstable [15]. This implies that the
particles injected near the origin will be lost rather quickly.
Because of the time dependence of the model used in the
numerical simulations, the unstable area around the origin
grows in size as long as the tune is moved away from the
resonant value. Therefore, no particle is lost, but an ex-
tended halo is generated, as one can clearly see in Fig. 6. In
this case the distribution injected at the center of the phase
space has the same properties of the other three and no
offset is applied. This observation leads to the conclusion
that injecting a fourth turn around the origin is not a viable
option for the proposed multiturn injection based on the
use of the third-order resonance.

D. Dependence of the final beam parameters
on injection process

In the proposed process, the successive injected turns are
merged into a single beam by applying an appropriate tune
variation after which the final beam distribution is ready to
undergo the usual process of, e.g., storage or acceleration.
At this stage it is important to avoid any emittance blowup,
which might occur in case the final beam distribution is not
matched with the nominal optics of the circular machine in
which the beam was injected. This might lead to halo
generation and, eventually core-emittance blowup and
beam losses in case the machine acceptance is reached.

The best way to evaluate the performance of the pro-
posed approach consists of evaluating the betatron mis-
match due to the shape of the beam distribution at the end
of the injection and merging processes. To quantify the
betatron mismatch, it is customary to start from the statis-
tical definition of beam emittance � and optical parameters

TABLE I. Parameters of the beam distributions of the five injected turns used to generate the
final beam distributions shown in Fig. 3. The offset is expressed in the adimensional coordinates
and it is referred to the nominal position of the fixed point at the center of the island.

Hollow distribution Quasiuniform distribution
Number of Offset Number of Offset

particles ��X̂;�X̂0� 	 particles ��X̂;�X̂0� 	

First turn � � � � � � � � � 2:704� 105 �0:02; 0:00� 0:038
Last four turns 2:5� 105 �0; 0� 0:02 2:5� 105 �0:00; 0:00� 0:020
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FIG. 4. (Color) Multiturn injection by means of trapping in stable islands of transverse phase space. Three turns are injected and the
beamlets merged by crossing the third-order resonance. The tune variation is reported in the upper part of each plot. As for the four-
turn injection, a hollow beam in the transverse phase space is generated.
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�; ��; �� [16] in terms of the second-order moments of
the beam distribution [21–23]. Using the notations intro-
duced in the previous sections it can be shown that the
following holds:

 hx2i � ��� hxx0i � �
�� hx02i � ���: (6)

In the equations quoted above, the symbol h�i stands for the
average over the beam distribution of the specified vari-
able. It is worthwhile mentioning that, whenever the beam
distribution is not centered at the origin, the second-order
moments in Eqs. (6) are the central ones, i.e., referred to

the mean value of the beam distribution. This approach is
equivalent to fit an ellipse to the phase space distribution,
where the fit parameters are its surface, amplitude, and
orientation.

If the nominal Twiss parameters 
;�; �, i.e., those
relative to the nominal optics, are used to transform
Eqs. (6) to normalized phase space via the well-known
transformation rules [16]

 x̂ �
x����
�
p x̂0 �


����
�
p x�

����
�

p
x0; (7)

 

 X̂

0

600

1200

1800

2400

3000

x 10 2

-0.7 -0.42 -0.14 0.14 0.42 0.7

dN
/d

X
 (

pa
rt

ic
le

s 
pe

r 
0.

00
7 

bi
n)

^

 X̂

0

600

1200

1800

2400

3000

x 10 2

-0.7 -0.42 -0.14 0.14 0.42 0.7

dN
/d

X
 (

pa
rt

ic
le

s 
pe

r 
0.

00
7 

bi
n)

^

FIG. 5. Projected distribution functions for the three-turn injection after the injection (left) and at the end of the merging process
(right). The two islands centered at the origin with opposite angles are projected onto the central peak visible in the initial distribution
function.

 

FIG. 6. (Color) Final distribution function for a variant of the three-turn injection with a fourth injected turn. The distribution at the
end of the injection process is shown in the upper left part, while the final distribution is shown on the upper right part. The projection
of the final beam distribution is plotted in the lower part. The extended halo is visible in both the final 2D beam distribution as well as
its projection along the X̂ axis.
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the key relations

 hx̂2i �
��

�
� hx̂x̂0i �

�


��

�
� 
�

�
�

hx̂02i �
�

2 �

�

�
� 2

� � ���

�
�

(8)

are obtained. The value of the rms emittance can be com-
puted by solving Eqs. (8), namely,

 � � hx̂2ihx̂02i � hx̂x̂0i2: (9)

The meaning of the coefficients ��=� and 
��=�� 
� is
clear: they measure the deviation of the 1	 contour of the
beam distribution from the circular shape it should have in
normalized phase space. In case of perfect matching, one
would have ��=� � 1 and 
��=�� 
� � 0, implying
the trivial relation �� � �, 
� � 
. Of course, Eqs. (8)
should be transformed in the special coordinate system
�X̂; X̂0� where the expression of the mismatch parameters
will be unaffected, but the emittance will be transformed
according to �! �=�2.

In addition to the three parameters introduced so far, it is
possible to introduce a fourth quantity, which was pro-
posed recently as an indicator of the presence of beam
halo [24], namely,

 h �
hX̂4i

hX̂2i2
� 2: (10)

The quantity h is the kurtosis of the beam distribution,
which measures how the distribution is peaked with respect
to a Gaussian. Following Ref. [24], the standard normal-
ization is modified so that h � 0 for Kapchinskij-
Vladimirskij distribution [25], which is known to feature
no halo, while h � 1 for a Gaussian. In the case of a hollow
beam with a spatial distribution like

 �proj�X̂� �
1�������

2�
p

	3
x2e��x

2=�2	2��; (11)

then h � �1=3.
A series of numerical simulations were performed to

determine the dependence of the parameters 
��=�� 
�,
��=�, �final, and h at the end of the injection and merging
processes as a function of the emittance for the injected
beam �initial, the slope of the tune curve during the
resonance-crossing stage (assuming a linear tune varia-
tion), and the exponent p of the tune curve during the
resonance crossing. To test the robustness of the proposed
injection method, the incoming beam was displaced hori-
zontally with respect to the nominal center of the rightmost
island and the whole injection process was studied under
these special conditions. Both the four- and the three-turn
injection schemes were considered. In the four-turn case
(respectively three-turn one), the rightmost island is lo-
cated at X̂ � 0:2209 (respectively 0:1342) and the beam is
displaced by �X̂ � 0:0176 (respectively 0:0192). The re-

sults are shown in Figs. 7–9. Each injected turn is
Gaussian-distributed in both X̂ and X̂0. The number of
initial conditions as well as the tune values ��a; �b; �c�
are reported in the figures’ captions.

It is worth stressing that additional emittance blowup
might occur at the end of the whole process, when the
beamlets have been merged into a single beam. In fact, in
case the final equivalent optical parameters do not match
the theoretical ones, filamentation could lead to an emit-
tance given by [23]

 

�after fil: � H�final;

where H �
1

2

�
��

�
�
�
��
�

�



������
��

�

s
� �


������
�
��

s �
2
�
:

(12)

As far as the dependence on the value of �initial is con-
cerned (see Fig. 7), the mismatch parameters are in all
cases considered almost equal to the perfect matched val-
ues of 0 and 1, respectively. It is clearly seen that �final

depends more critically on the position of the injected
beam. This resembles the case of a standard injection,
where a displacement of the injected beam generates
beam filamentation and, eventually, emittance growth.

The fact that �final tends to a finite value for vanishing
�initial is due to the hollow shape of the final beam distri-
bution. This observation is confirmed by the results for the
parameter h, which tends to the value of �0:5 when
�initial ! 0. Indeed, this is the expected value for a pro-
jected distribution function of the type

 �proj�X̂� �
1

a�
�����������������
1� �X̂a�

2
q (13)

resulting from a phase space distribution ��X̂; X̂0� �
��

�������������������
X̂2 � X̂02
p

� a�, with ��x� being the Dirac delta-
distribution function. The distributions � and �proj repre-
sent a very good approximation of the shape of the final
beam, i.e., after complete filamentation, which is generated
by an initial Gaussian distribution with vanishing value of
the sigma.

As far as the dependence on the value of the slope of the
tune curve is concerned (see Fig. 8), in general the four
observables under study feature a very weak dependence
on it. As for the previous case the mismatch parameters are
essentially equal to the perfect-match case. For the fourth-
order resonance, the value of �final reduces when the slope
is smaller, probably due to the fact the resonance crossing
is more adiabatic. Also in this case, the displaced injected
beam features a poorer performance in terms of �final.

Finally, the exponent of the tune curve seems to have
almost no impact on the properties of the final beam after
crossing the resonance.

From the results of the numerical simulations it is clear
that the expected value of the emittance blowup after
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FIG. 7. (Color) Optical mismatch parameters, final emittance, and halo parameter as a function of the initial emittance of the injected
beam for the four-turn injection (left column) and for the three-turn injection (right column). The solid triangles correspond to injecting
the beam at the center of the rightmost island, while the open circles to injecting the beam displaced from the island’s center. For the
four-turn injection (respectively three-turn) the tune values are ��a; �b; �c� � �0:255; 0:251; 0:248� [respectively �0:328; 0:341; 0:35�],
the number of initial conditions for each injected turn is 2:5� 104 (respectively 106), and the displacement of the off-centered beam is
�X̂ � 0:0176 (respectively 0:0192). In both cases, the constant value of p is 1 and �n1; n2; n3� � �12 000; 1; 7999�.
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FIG. 8. (Color) Optical mismatch parameters, final emittance, and halo parameter as a function of the slope of the tune curve during
the resonance crossing for the four-turn injection (left column) and for the three-turn injection (right column). The solid triangles
correspond to injecting the beam at the center of the rightmost island, while the open circles to injecting the beam displaced from the
island’s center. For the four-turn injection (respectively three-turn) the tune values are ��a; �b; �c� � �0:255; 0:251; 0:248� [respectively
�0:328; 0:341; 0:35�], the constant value of �initial is 0:014 (respectively 0.017), and the displacement of the off-centered beam is �X̂ �
0:0176 (respectively 0:0192). In both cases, the number of initial conditions for each injected turn is 106.
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FIG. 9. (Color) Optical mismatch parameters, final emittance, and halo parameter as a function of the exponent p of the tune curve for
the four-turn injection (left column) and for the three-turn injection (right column). The solid triangles correspond to injecting the
beam at the center of the rightmost island, while the open circles to injecting the beam displaced from the island’s center. For the four-
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injected turn is 106.
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filamentation following the end of the merging process is
almost negligible.

III. COMPARISON BETWEEN NOVEL AND
CLASSICAL MULTITURN INJECTION

TECHNIQUES

A. A simple model for the classical multiturn injection

For a complete performance analysis, it is important to
compare the multiturn injection based on stable islands
with the classical approach [1]. In this case, the closed orbit
is modified so that the injected beam fills regions of the

transverse phase space, usually the horizontal one, at in-
creasing amplitude. A sketch of the principle is shown in
Fig. 10. The position of the closed orbit is initially located
near the blade of the septum magnet. On a turn-by-turn
basis the amplitude of the bump is collapsed and the closed
orbit is moved towards the center of the vacuum chamber.
By assuming that the average position of the beam injected
at turn l with respect to the closed orbit is given by

 
i
l � �l	; 0 
 l 
 N � 1; (14)

where 	 is the width of the beam distribution, assumed to
be Gaussian, �l is the initial mean position of the lth
injected turn and N is the total number of injected turns.

It is clear that the way the closed orbit is changed has a
crucial impact on the properties of the beam after injection.
For this reason two models were considered, namely, with
� being a linear function of the turn number l and a second
one where the position of the injected beam takes into
account the rotation in phase space of the previously
injected beam in order to minimize the value of the closed
orbit change, namely,

 �l � �l�1 cos2�Qx � �0; (15)

where Qx is the linear tune. The two functional forms can
be written in a compact form as

 �l � �0 ��l �

(
�0l
�0

1�cosl2�Qx
1�cos2�Qx

:
(16)

Strictly speaking, the latter form is valid when the frac-
tional part of the tune Qx is smaller than 0:25. It is also
clear that the second model tends to the linear function in
the limit Qx ! 0. Also, it is readily found that in the latter
case the position of the injected beam tends to a finite limit
given by �1 � �0=�1� cos2�Qx�. The different behavior
of the injected beam position as a function of turn number
is shown in Fig. 11. The effectiveness of the second scheme

 

x’ˆ

x̂

Injected beam

Septum blade

1

2 Qx

FIG. 10. Sketch of the injection model used to simulate the
classical multiturn injection. Two types of reference systems are
shown: the one represented by solid lines refers to the center of
the vacuum chamber, i.e., the position of the nominal closed
orbit once the injection bump is collapsed. The ones represented
by dashed lines refer to the instantaneous closed orbit which
moves together with the amplitude of the injection bump.
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FIG. 11. (Color) Differences between the two models considered for the classical multiturn injection. The position of the injected
beams is shown on the left panel (the disk radius represents the three-sigma level of the Gaussian distribution), while the amplitude vs
the injected turn is plotted in the right panel. The linear increase of the first model is clearly shown (red markers), as well as the
bounded behavior of the second one (blue markers). In all of the cases, the fractional part of the tune is 0:17, while �0 � 6:1.
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in distributing the injected beam in a smaller region around
the origin of phase space is clearly visible.

The parameter �0 is linked with the injection losses, as
the amount of beam intercepted by the septum blade can be
estimated as

 L��0� � 2
Z 1
�0

G�X̂; 0; 1�dX̂: (17)

Therefore, its value has to be determined as a trade-off
between losses minimization (requiring a large value of
�0) and minimization of the final emittance (requiring a
small value of �0). In all the subsequent computations the
value of �0 � 6:1, giving negligible injection losses, was
used. This choice is imposed by the requirement of per-
forming a fair comparison with the novel multiturn injec-
tion for which the losses, according to the results of the
numerical simulations, are exactly zero.

The average beam position and angle at the end of the
injection process are obtained as

 
f
l � i


0f
l � e2�Qxi�N�l�
i

l; (18)

where the complex notation is used and 
0 stands for the
average angle. The final beam distribution, which will be
used to compute the emittance and the optical mismatch
parameters using Eqs. (6), can be expressed as

 �f�X̂; X̂0� �
1

N

XN�1

j�0

G�X̂; 
f
j ; 	�G�X̂

0; 
0fj ; 	�; (19)

and G�x;
; 	� represents a Gaussian distribution function
with mean 
 and width 	.

It is readily seen that the expressions for the mean values
of the coordinates are given by

 hX̂i �
1

N

XN�1

j�0


f
j hX̂0i �

1

N

XN�1

j�0


0fj : (20)

Similarly, expressions for the second-order moments can
be obtained and are reported in Appendix A together with
the corresponding formulas for the emittance and the opti-
cal mismatch parameters. There, the dependence on the
free parameters, such as the number of injected turns and
the position of the injected beam as a function of the turn
number, is derived. As a first observation, the value of the
final emittance depends linearly on that of the initial one.
The slope of the linear relation depends on �0 in the form
of a fourth-order polynomial. The dependence on the tune
and on the model used to change the position of the
injected beam is too involved to be derived analytically.

The mismatch parameters are independent on the initial
value of the emittance, and they are linked only to the
details of the injection dynamics, i.e., how the injected
beam position is varied, and on the linear tune. In this

case the mismatch parameters are rational functions of
polynomials in �0 of degree two (numerator) and four
(denominator).

B. Comparison of final beam parameters

Using the models presented in the previous section, a
comparison of the performance of the classical injection
with the novel method was carried out by means of nu-
merical simulations. The quality factors used to qualify the
two approaches are the optical mismatch parameters,
namely 
��=�� 
�, ��=�, and �final. Their dependence
on the value of the emittance of the incoming beam is
shown in Fig. 12. As already mentioned, �0 � 6:1 and the
linear model for �l was used. Four values of the linear tune
were used for the simulation of the classical multiturn
extraction. These results are compared with those for the
proposed multiturn injection based on the fourth- (left part
of Fig. 12) and third-order (right part of Fig. 12) reso-
nances. It is important to stress that, in the case of the
classical multiturn injection, the quality factors have been
evaluated after a number of turns equal to that of novel
multiturn injection to be compared with.

In agreement with the results of the analytical compu-
tations presented in Appendix A, the optical mismatch
parameters for the classical injection scheme do not de-
pend on �initial, but only on Qx and such a variation is
clearly non-negligible. The novel multiturn injection fea-
tures values almost independent on the initial emittance
and nearer to those corresponding to a perfect matching.
Sensitivity to the number of injected turns, or on the
resonance order, is also observed.

The evolution of the final emittance is also a crucial
figure of merit. In fact, a smaller final emittance, hence
smaller blowup with respect to the value of the injected
beam emittance, implies less mechanical aperture required
in the machine or, alternatively, a smaller amount of beam
losses at injection. From Fig. 12 it is clear that �final

behaves as predicted by the analytical estimates reported
in Appendix A. The linear dependence of the final emit-
tance from the initial one is also a feature of the novel
multiturn injection process. Furthermore, provided the
emittance of the incoming beam is not too small, the
proposed injection is superior to the classical one in the
sense that it generates smaller final emittance. Of course,
for �initial ! 0, �final tends to a finite value in the case of the
novel multiturn injection, while �final ! 0 for the classical
multiturn injection. Hence, for rather small values of �initial

the classical injection is performing better. These observa-
tions hold true, at least qualitatively, for both the four- and
three-turn injection. The use of the linear dependence on l
of �l makes the comparison between the classical and the
novel injection rather in favor of the latter as far as the final
emittance is concerned. The use of the second model for �l
improves the situation, but the injection based on stable
resonances is still superior. The underlying principle is
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responsible for this behavior. In fact, even though the
beamlets are injected at rather large amplitudes, the reso-
nance crossing allows moving them towards the center of
the phase space thus reducing the value of the final emit-
tance. In this respect the key ingredients are the trapping in
the stable islands, to ensure that whenever the islands are
moved the beam inside will follow, and the tune variation
to displace the islands. It is clear that these elements are
completely missing in the classical injection, thus making
impossible to manipulate the injected beam emittance
efficiently.

Finally, it is worth stressing that the beam will undergo
filamentation once the injection process is over. In this
sense the already larger final emittance of the classical
injection will blow up even more due to the fact that the
mismatch parameters are larger (see previous comments)
and hence the factor H will be larger.

IV. CONCLUSIONS

In this paper a novel method to perform multiturn injec-
tion is presented. Such a technique is the time-reversal
equivalent of the multiturn extraction recently proposed.
The approach is based on the use of stable islands of
transverse phase space generated by nonlinear magnetic
element such as sextupoles and octupoles.

The proposed approach proved to work well according
to the results of numerical simulations performed on a
simple model describing the horizontal betatronic motion
in a FODO cell with sextupoles and octupoles. No particle
losses are observed in the cases studied and based on the
use of either the fourth- or the third-order resonance. An
interesting feature of the proposed method is that it allows
generating hollow distributions in the transverse phase
space. This feature could be extremely interesting in the
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FIG. 12. (Color) Optical mismatch parameters and final emittance as a function of the initial emittance of the injected beam for simple
model of the classical multiturn injection (markers) and the proposed multiturn injection based on the fourth-order resonance (left) and
the third-order one (right). Four values of the linear tune have been considered for the classical multiturn injection.
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case of multiturn injection of high-intensity, space-charge-
dominated beams.

A detailed analysis of the performance of the novel
method entailed the construction of a simple model of
the classical multiturn injection. For such a model, figures
of merit like optical mismatch parameters and final value
of the beam emittance, were computed analytically to-
gether with their dependence on other free parameters. A
comparison between the two injection methods showed
that the novel one is superior not only in terms of optical
mismatch parameters, but also in the emittance blowup
during injection defined as the ratio between the final and
the initial, i.e., injected, beam emittance.

The next stage will be the detailed study of whether the
peculiar transverse beam distribution could be conserved
whenever space-charge effects are included in the numeri-
cal simulations and, in case, whether such a beam shaping
is indeed beneficial for space charge. A good benchmark
case could be the study of a H� injection based on the
proposed approach.
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APPENDIX: ANALYTICAL COMPUTATION OF
FINAL BEAM PARAMETERS FOR CLASSICAL

MULTITURN INJECTION

The computation of the second-order moments of the
final beam distribution (A1) can be obtained rather
straightforwardly by applying the definition, namely,

 

hX̂2i � hX̂i2 � 	2 �
1

N

XN�1

k;l�0


k
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0
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1

N

�
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(A1)

where the superscript f was dropped from the average
values and the phase space coordinates, and �k;l is the
Kronecker delta defined as

 �k;l �
�

0 if k � l
1 if k � l:

(A2)

Observing that �initial � 	2, then by applying Eqs. (6) one
obtains
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where " stands for the right-hand side of Eq. (A3) and the
relation 
k � �0 �
k and similarly for the 
’s was used.
These results show that �final depends linearly on the initial
value of the emittance and that the mismatch parameters
are independent on �initial.

The previous equations can be recast in a different form
to make explicit the dependence on the key parameter �0,
namely,
 �
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