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In this paper we present a complete linear synchrobetatron coupling formalism by studying the transfer
matrix which describes linear horizontal and longitudinal motions. With the technique established in the
linear horizontal-vertical coupling study [D. Sagan and D. Rubin, Phys. Rev. ST Accel. Beams 2, 074001
(1999)], we found a transformation to block diagonalize the transfer matrix and decouple the betatron
motion and the synchrotron motion. By separating the usual dispersion term from the horizontal
coordinate first, we were able to obtain analytic expressions of the transformation under reasonable
approximations. We also obtained the perturbations to the betatron tune and the Courant-Snyder functions.
The closed-orbit changes due to finite energy gains at rf cavities and radiation energy losses were studied
by the 5� 5 extended transfer matrix with the fifth column describing kicks in the 4-dimension phase
space.
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I. INTRODUCTION

The synchrobetatron coupling (SBC) comes from dis-
persion at rf cavities and the path length dependence on the
amplitude of betatron motion. The dispersion at an rf
cavity makes the longitudinal kicks received from the
cavity affect the betatron motion. Since the longitudinal
kicks depend on the arrival time of the particles, the
longitudinal motion is coupled to the betatron motion.
On the other hand, particles with different betatron ampli-
tudes have different path lengths which affect the arrival
time. So betatron motion is also coupled to the longitudinal
motion.

Traditionally many authors treated SBC with the Hamil-
tonian dynamics approach [1,2], which is a general and
complete description and naturally covers effects of non-
linearities. It is very useful for the study of synchrobetatron
resonances since in such cases one can focus on only the
resonant term of the synchrobetatron potential. How-
ever, the Hamiltonian approach is cumbersome for the
off-resonance cases which are most common for storage
ring operations. In the linear case, a parallel approach is the
matrix formalism first proposed by Chao in Ref. [3] which
described the construction of the 6� 6 transfer matrices
and the decomposition of the coupled motion to the eigen-
modes of the one-turn transfer matrix. Reference [3] also
described an iterative procedure to include the nonlinear
effects. Chao later applied the method to compute the beam
tilt angle between x-z plane due to rf cavities [4].

Recently the study of low-alpha lattices stimulated
Shoji’s work on the path length effect which yielded an
important result of bunch lengthening due to betatron
emittance and dispersion [5]. On the other hand, Ref. [6]
studied the SBC-induced closed-orbit change by consider-
ing the dipolelike kicks in the horizontal betatron phase

space due to the sudden changes of energy at a nonzero-
dispersion rf cavity. The authors derived the horizontal
closed-orbit changes induced by the finite energy gains at
the rf cavities and verified with both simulations and
experiments.

In this paper, we will study the linear synchrobetatron
coupling under the transfer matrix framework without
considering diffusion and damping due to radiation.
Since the vertical motion is not essential to the SBC, we
do not consider it for simplicity reasons. We then study the
4� 4 horizontal-longitudinal transfer matrix in the same
manner as the horizontal-vertical coupling is studied [7].
Namely, we try to decouple the horizontal and longitudinal
motions by using a coordinate transformation to block
diagonalize the transfer matrix and obtain the normal
modes, in this case, the pure betatron mode and the pure
synchrotron mode. We first study the fixed-energy case in
which no rf cavity exists (or the rf gap voltage is set to
zero). The transformed coordinates include the usual beta-
tron coordinates and momentum deviation coordinate. But
the longitudinal phase coordinate is modified by a term
involving Dx0� �D

0x� which corresponds to the bunch
lengthening effect studied by Shoji [5]. In cases with rf
cavities, we first apply the previous fixed-energy trans-
formation to separate the dispersion term. Since the syn-
chrotron motion is usually slow, the coupling (off-
diagonal) blocks of the transfer matrix for the new coor-
dinates are small. Therefore we can perform the block
diagonalization procedure proposed in Ref. [7] approxi-
mately yet with high precision. The transformation matrix
is expressed analytically with the usual parameters such as
the Courant-Snyder parameters, dispersion functions, and
the rf voltage slope. When the normal modes are obtained,
we can calculate their contributions to the beam width and
bunch length. Perturbations to horizontal betatron motion
due to SBC, including changes to the betatron tune and
Courant-Snyder functions are also obtained.*Electronic address: xiahuang@slac.stanford.edu
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It is well known that SBC causes changes to the beam
orbit [6,8–11]. In this study we find the closed orbit in the
4-dimension phase space in an analytical form through the
5� 5 extended transfer matrix method [3], with the fifth
column containing the 4-dimension kicks the beam re-
ceives from rf cavities and dipole magnets. Both finite
energy gains at rf cavities and radiation energy losses in
bending dipoles are considered. The radiation energy loss
is random by nature. However, since usually hundreds of
photons are emitted in one revolution, much more than the
number of dipole magnets in which emission happens, we
consider the radiation energy loss as a steady and uniform
process. The radiation energy losses contribute additional
terms to the horizontal closed-orbit change. The above
results are verified with the accelerator modeling code
AT [12].

This paper is organized as follows. Section I is this
introduction. Section II describes the block diagonalization
of the 4� 4 transfer matrix in the fixed-energy case.
Section III presents the matrix formalism of the synchro-
betatron coupling. Section IV is the calculation of closed-
orbit changes induced by finite energy gains at rf cavities
and radiation energy losses. Section V shows simulation
results and the comparison to the theory. Section VI gives
the conclusions.

II. BLOCK DIAGONALIZATION FOR
A FIXED-ENERGY RING

The 4-dimension coordinate vector is X � �xT; lT�T ,
where the horizontal coordinate vector is x � �x; x0�T and
the longitudinal coordinate vector is l � �c�; ��T . The c�
coordinate instead of the phase coordinate � � �s �

h
R c�,

where �s is the synchronous phase, h is the harmonic
number, and R is the average ring radius, is used to avoid
the appearance of scaling factors h=R in the transfer ma-
trix. Note a negative c� indicates the particle is behind the
synchronous particle. The coordinates at the entrance and
the exit of an accelerator component are related through its
transfer matrix T which can be divided into 2� 2 blocks
M, E, F, and L such that

 T �
M E
F L

� �
: (1)

In general, the coupling blocks E, F of a single component
are nonzero only for dipole magnets. For time-independent
components (which include most common accelerator
components except rf components such as rf cavity, rf
dipoles, and rf quadrupoles), the coupling blocks have
two zero matrix elements such that

 E � �0; e� and F � fT

0

� �
; (2)

where e and f are 2-component column vectors and 0’s are
zero vectors of suitable sizes. The zero elements in matrix
E and F are consequences of the fact that the horizontal

coordinates do not depend on the arrival time of the parti-
cles and the horizontal coordinates do not cause energy
changes in such components. The L blocks for rf cavities
and other components are

 L rf �
1 0
w 1

� �
and Lother �

1 �
0 1

� �
; (3)

 w �
e
E
dV
cd�
� �

eV0 cos�s

E
h
R
; (4)

where V0 is the gap voltage and E is the beam energy. The
� parameter is related to the fractional phase slippage
factor and is nonzero only for dipole magnets if we assume
all particles have the same velocity c, the speed of light.

The transfer matrix for an accelerator section is the
matrix product of the transfer matrices of the sequence of
components which it consists of. For any sequence of
components not containing an rf cavity, condition Eq. (2)
still holds. The symplecticity requirement of the transfer
matrices of such sections is equivalent to: M and L are
symplectic and

 M J2f � e; J2 �
0 1
�1 0

� �
: (5)

The e vector and � parameter for a section from point 1 to
point 2 can be written in integral forms

 e 21 �
Z s2

s1

M�s2js�
0
ds
�

 !
; (6)

 �21 � �
Z s2

s1

e1�s2js�
ds
�
; (7)

where s is the arclength along the reference orbit, s2js
means ‘‘from s to s2,’’ � is the bending radius, and e1 is
the first element of e.

The one-turn transfer matrix with an rf cavity in the ring
can be derived in the following way. Suppose the rf cavity
is located at point 2 and we want to calculate the transfer
matrix at an arbitrary point 1. The transfer matrices be-
tween point 1, 2 and at the rf cavity are

 T 21 �
M21 E21

F21 L21

� �
; T12 �

M12 E12

F12 L12

� �
;

Trf �
I 0
0 Lrf

� �
;

(8)

where M21 and M12 are the horizontal transfer matrices
between the points, I is the 2� 2 identity matrix, and L21

and L12 differ from the 2� 2 identity matrix by their �1; 2�
elements of �21 and �12, respectively. The one-turn trans-
fer matrix at point 1 is

 T � T12TrfT21 �
M1 E1

F1 L1

� �
; (9)

which can be expressed as
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 T �
M12M21 �E12LrfF21 M12E21 �E12LrfL21

F12M21 �L12LrfF21 F12E21 �L12LrfL21

� �
:

(10)

We first consider the case when there is no rf cavity or
the cavity is turned off. This corresponds to w � 0 and
Lrf � I. Consequently, E1 and F1 satisfy conditions
Eqs. (2) and (5). We intend to introduce a transformation
X � UXn to block diagonalize the new transfer matrix
Tn � U�1TU. It can be shown that this is achieved by

 U �
I D1

�D�1 I

� �
; U�1 �

I �D1

D�1 I

� �
; (11)

where

 D 1 � �I�M1�
�1E1 (12)

and D�1 is its symplectic conjugate [7]. We may introduce a
column vector d1 � �D1; D

0
1�
T so that D1 � �0;d1�.

Equation (12) defines the dispersion functions D1 and D01
at point 1. One can also show that

 E 21 � D2 �M21D1 (13)

from T2T21 � T21T1. The new transfer matrix is found to
be

 T n �
M1 0
0 L1;n

� �
; with L1;n �

1 ��
0 1

� �
; (14)

where L1;n is the new longitudinal transfer matrix and �� is
a constant of the ring given by

 �� � �
I Dds

�
; (15)

which is related to the usual momentum compaction factor
�0 by �� � �2�R�0. We have shown that

 �� � �1 �H 1 sin2�	x; (16)

where 	x is the betatron tune, �1 is the �1; 2� element of L1,
and the H -function along with its associated phase pa-
rameter are defined by
 

H �
1

�
�D2 � ��D� �D0�2�; (17a)


 � tan�1 D
�D� �D0

; (17b)

where�,� are Courant-Snyder parameters. We may define
the fractional phase slippage factor on a section between
point 1 and point 2 by

 �� 21 � �
Z s2

s1

Dds
�

: (18)

It has been shown that

 �� 21 � �21 �
������������������
H 1H 2

q
sin� 21 � 
1 � 
2�; (19)

where  21 �
R
s2
s1
ds=� is the betatron phase advance from

point 1 to point 2.
The new coordinates at any location after transformation

are related to the original coordinates by
 

x �Mxn � �nd; (20a)

c� � c�n �Dx0n �D0xn; (20b)

� � �n: (20c)

We recognize xn � �xn; x0n�T are just the betatron coordi-
nates. The momentum deviation coordinate is not changed
by the transformation. But the longitudinal phase coordi-
nate is different by

 Dx0n �D0xn � �
��������������
2JxH

q
cos� � 
�; (21)

where Jx is the horizontal betatron action variable and  is
the phase variable [13].

III. MATRIX FORMALISM OF
SYNCHROBETATRON COUPLING

When the rf cavity is turned on, its longitudinal transfer
matrix deviates from the identity and is now

 L rf � I�W; W � w
0 0
1 0

� �
: (22)

Inserting it to Eq. (10) we get the one-turn transfer matrix

 T � T0 � w~T; T0 �
M0

1 E0
1

F0
1 L0

1

� �
; (23)

where the superscript 0 denotes quantities when the rf
cavity is off and

 

~T �
~M1

~E1
~F1

~L1

 !
�

1

w
E12WF21 E12WL21

L12WF21 L12WL21

� �
: (24)

We may apply the procedure in Ref. [7] directly to block
diagonalize matrix T in Eq. (23). However, it is easier to
relate the elements in the transformation matrix to the well-
known parameters such as dispersion functions and rf
parameters in the following way. We first apply the trans-
formation described in the previous section and then apply
the procedure of Ref. [7] to decouple the new transfer
matrix. After the first transformation, the off-diagonal
blocks of the transfer matrix are small because the main
dispersion effect is separated. Hence, in the second trans-
formation we can apply some approximations to derive
explicit expressions for the transformation matrix and the
final transfer matrix.

After the first transformation, the transfer matrix is

 T n � U�1TU � T0
n � w~Tn; (25)

where
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 T 0
n � U�1T0U �

M0
1 0

0 L0
1;n

 !
and

~Tn � U�1 ~TU �
~Mn

~En
~Fn ~Ln

 !
:

(26)

Following Sagan-Rubin [7], we want to find the trans-
formation matrix

 V �
�I C
�C� �I

� �
(27)

to block diagonalize the matrix Tn. According to the
Sagan-Rubin procedure, we define

 H � w�~En � ~F�n � (28)

and let

 � �
4kHk

Tr�Mn �Ln�
2 ; (29)

where Mn and Ln are diagonal blocks of Tn, the � pa-
rameter and C matrix are then

 � �

����������������������������
1

2
�

1

2

�������������
1

1� �

svuut
;

C � �
H

�
�������������
1� �
p

Tr�Mn �Ln�
:

(30)

The elements of the H matrix have been calculated to be

 

H11 � �2w
���������������
�1H 2

q
sin�	x cos��	x �  12 � 
2�; (31a)

H12 � �w
���������������
�1H 2

q
� �� sin� 12 � 
2� � 2 ��12 sin�	x cos��	x �  12 � 
2��; (31b)

H21 � �2w

���������
H 2

�1

s
sin�	x�sin��	x �  12 � 
2� � �1 cos��	x �  12 � 
2��; (31c)

H22 � w

���������
H 2

�1

s
f ����1 sin� 12 � 
2� � cos� 12 � 
2�� � 2 ��12 sin�	x��1 cos��	x �  12 � 
2� � sin��	x �  12 � 
2��g:

(31d)

It follows that

 kHk � w2 ��H 2 sin2�	x: (32)

Equations (27) and (29)–(32) constitute an analytic form of
the decoupling transformation for the general case. In the
following we simplify the expressions for the off-
resonance cases in which Tr�Mn �Ln� is not close to
zero. To this end we observe that w is usually a small
quantity (e.g., w � 0:008 m�1 for SPEAR3) and � is on
the order of w2 so that �

�������������
1� �
p

	 1� 3�=8 �
1�O�w2�. To first order of w we have

 C � �
H

2�cos2�	̂x � cos2�	s�
; (33)

where we have used Tr�Mn� � 2 cos2�	̂x and Tr�Ln� �
2 cos2�	s by definition. The parameter 	̂x is related to the
unperturbed betatron tune 	x by cos2�	̂x � cos2�	x �
1
2wH 2 sin2�	x since it has been shown that Tr� ~Mn� �
H 2 sin2�	x. To guarantee the symplecticity of the new
transfer matrix, we must have

 � �
������������������
1� kCk

p
�

�����������������������������������������������������������
1�

w2 ��H 2 sin2�	x
4�cos2�	̂x � cos2�	s�2

s
: (34)

The transfer matrix for the decoupled coordinates may
be written as

 T d � V�1TnV �
Md 0
0 Ld

� �
; (35)

where Md and Ld are given by [7]

 M d � �2Mn � ��CFn � EnC�� �CLnC�; (36)

 L d � �2Ln � ��FnC�C�En� �C�MnC: (37)

For both of the above equations, the last three terms are on
the order of w2. To second order of w, we have

 M d 	M0
1 � w ~Mn � w2M�2�

d ; (38)

 L d 	 L0
1;n � w~Ln � w2L�2�d : (39)

Explicit expressions have been developed for ~Mn and ~Ln.
The elements of ~Mn are
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~Mn;11 �H 2 sin� 12 � 
2��cos� 21 � 
2� � �1 sin� 21 � 
2��; (40a)
~Mn;12 �H 2�1 sin� 12 � 
2� sin� 21 � 
2�; (40b)

~Mn;21 �
H 2

�1
�cos� 21 � 
2� � �1 sin� 21 � 
2���cos� 12 � 
2� � �1 sin� 12 � 
2��; (40c)

~Mn;22 �H 2 sin� 21 � 
2��cos� 12 � 
2� � �1 sin� 12 � 
2��: (40d)

The additional terms w ~Mn amount to changes to the
Courant-Snyder parameters. For example, the change to
�1 to first order of w is

 ��1 �
wH 2�1

2 sin2�	x
�cos�2�	x � 2 12 � 2
2� � cos2�	x�:

(41)

Also, knowing the traces Tr� ~M�2�
d � � �Tr�~L�2�d � �

� ��H 2 cot�	x=2, we find the total betatron tune change
to second order of w

 �	x � �
wH 2

4�
�

w2 ��H 2

16�sin2�	x
: (42)

From the expressions of H and ~Mn, it is clear that, when
the rf cavity is located in a dispersion-free region and thus
H 2 � 0, there is no dynamic consequence from the cou-
pling between horizontal and longitudinal motions.

The matrix ~Ln is given by

 

~L n �
��12 ��21 ��12

1 ��21

� �
: (43)

The unperturbed longitudinal transfer matrix Ln � L0
1;n �

w~Ln describes the plain longitudinal motion. The correc-
tions due to synchrobetatron coupling is on the next higher
order of w. The matrix Ln can be Courant-Snyder parame-
trized so that

 L n �
cos�s � �s sin�s �s sin�s
��s sin�s cos�s � �s sin�s

� �
; (44)

with �s�s � 1� �2
s and �s � �2�	s, where a negative

sign is chosen to make �s always positive. The unper-
turbed synchrotron tune is given by

 	s �
1

2�
sin�1

� ������������������������������������
�w ��

�
1�

1

4
w ��

�s �
: (45)

The unperturbed longitudinal Courant-Snyder functions
are
 

�s � �
1

2

w� ��12 � ��21�

sin2�	s
; �s � �

� ��� w ��12 ��21�

sin2�	s
;

�s �
w

sin2�	s
; (46)

which are equivalent forms of those found in Ref. [14]. It is
noted that �s is a positive constant and �s is positive but
slightly varies around the ring. Without coupling, the lon-

gitudinal coordinates �c�n; �n� are related to these parame-
ters, the longitudinal action variable Js, and phase variable
 s by
 

c�n �
�������������
2Js�s

p
cos s;

�n � �

�������
2Js
�s

s
��s cos s � sin s�;

(47)

from which we obtain relations between the rms bunch
length, rms momentum spread, and the longitudinal emit-
tance s:

 �2
c�n � �ss; �2

�n
� �ss: (48)

Note that the bunch length varies with location because
particles with different momentum deviation experience
different longitudinal phase slippage. The bunch is longest
at the rf cavity and can be shortened by a maximum of the
�2	2

s=2 part of the original length at halfway across the
ring from the cavity. For fast ramping synchrotrons, it can
be as large as 5% , assuming 	s � 0:1. The synchrobeta-
tron coupling should slightly change the synchrotron tune
and the longitudinal Courant-Snyder functions given
above.

The decoupled coordinates Xd � �xTd ; l
T
d �
T are related to

the original coordinates X by

 X � UVXd �
�I�D1C� C� �D1

�C� � �D�1 �I�D�1 C

� �
xd
ld

� �
:

(49)

The betatron coordinates �xTn ; lTn �T are related to the normal
modes by the transformation matrix V. Since all four
elements of the C matrix in V are nontrivial in general,
the horizontal betatron coordinate xn depends on the lon-
gitudinal phase, as pointed out in Ref. [6]. This is a natural
consequence of the synchrobetatron coupling. In fact, the
longitudinal coordinates c�n, �n also depend on the hori-
zontal betatron coordinates. In terms of the betatron coor-
dinates Xn, the phase space volume occupied by the beam
tilts across the horizontal and longitudinal subspace.
Particles flow in and out between the two subspaces.
However, the total phase space volume is preserved. The
reason for Ref. [6] to suggest that the total phase space
volume is not preserved is because it did not fully consider
the coupling effects on the horizontal betatron motion.

With Eq. (49) we can decompose the 4-dimension mo-
tion to the normal modes for any given initial condition. It
also allows us to derive the effects of synchrobetatron
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coupling on the beam sizes �x and �c�. Following the
single mode analysis of Ref. [7], we first consider the
case when only the betatron mode, or mode a, is excited
so that
 

x

x0

 !
� ��I�D1C��

xa
x0a

 !
;

c�

�

 !
� ��C� � �D�1 �

xa
x0a

 !
;

(50)

where �xa; x0a� are the betatron normal mode coordinates
given by

 xa �
�������������
2Ja�a

p
cos a;

x0a � �

��������
2Ja
�a

s
��a cos a � sin a�:

(51)

It follows that
 

x��������
2Ja
p �

�
�

������
�a

p
�D

�
C21

������
�a

p
� C11

�a������
�a
p

��
cos a

�
DC11������
�a
p sin a; (52a)

c���������
2Ja
p � �����aD

0 � �aD� � ��aC22 � �aC12��

�
1������
�a
p cos a �

�C12 � �D�������
�a
p sin a: (52b)

The bunch width and length can be derived from the above
equations by integrating over the bunch distribution. Here
we consider only the off-resonance cases and assume
cos	s 	 1 so that C 	 H=4sin2�	x. We get
 

�2
x;a � �aa � a

wD
���������������
�1H 2

q
sin�	x

sin��	x �  12 � 
2�

� a
w2H 2

4sin2�	x

�
D2 �

1

2
�1 �� cot�	x

�
; (53)

where a is the emittance of the horizontal betatron normal
mode. We see that the term on the order of w varies around
the ring. The leading nonvarying correction term is on the
order of w2. Since the O�w2� terms are very small, we will
drop them in the following for brevity. Similarly for the
bunch length, we obtain
 

�2
c�;a � aH

a
1 � a

w
������������������
H 1H 2

q
2sin2�	x

� �� cos� 12 � 
2 � 
1�

� 2 ��12 sin�	x sin��	x �  12 � 
2 � 
1��; (54)

where H a
1 is the H -function at point 1 evaluated with the

perturbed Courant-Snyder functions.
The same analysis can be applied to the synchrotron

mode, or mode b, to obtain its contributions to bunch width
and length, which are given by

 

�2
x;b � b�bD2 � b�b

w ��D
���������������
�1H 2

q
2sin2�	x

� cos�	x sin��	x �  12 � 
2�; (55)

 

�2
c�;b � b�b � b�b

��
������������������
H 1H 2

q
sin�	x

� cos��	x �  12 � 
2 � 
1�: (56)

Note that �b is an O�w� factor. The momentum spread is
given by

 �2
�;a � a

w2H 2

4sin2�	x
;

�2
�;b � b�b � b�b

w2 ��H 2 sin2�	x
16sin4�	x

:

(57)

So to first order of w we have �2
� � b�b.

The contributions to �2 from mode a and b simply add
up [7], i.e.,

 �2 � �2
a � �2

b; (58)

which applies to all four coordinates. Equations (53)–(57)
show that, because of synchrobetatron coupling, the lon-
gitudinal motion affects the transverse beam size and the
transverse motion affects the longitudinal beam size. The
leading correction term is usually a small term on the order
of w and varies with the horizontal betatron phase advance
around the ring. It is noted that we have recovered Shoji’s
result in Ref. [5] by the first term in Eq. (54) which is
independent ofw and indicates that the bunch length varies
from location to location according to the local
H -function. This is a consequence of the uneven distri-
bution of the path length effect.

IV. CLOSED-ORBIT CHANGE DUE TO ENERGY
GAIN AND LOSS

The finite energy gain at the rf cavity and the radiation
energy loss around the ring are kicks to the momentum
deviation coordinate. These kicks are transferred down-
stream and affect all other coordinates. Therefore the
closed orbit of the beam is changed. To study this effect
in the matrix formalism, we extend the coordinate vector to
Xe � �x; x0; c�; �; 1�T [3]. The corresponding transfer ma-
trix is then 5� 5. The fifth element is included to describe
the kicks received by the particle, namely, the equation

 X 2 � T21X1 � g21 (59)

will now be written as

 X e
2 � Te

21Xe
1; Te

21 �
T21 g21

0 1

� �
; (60)

where g21 is a 4-vector which represents the kick-induced
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shifts of phase space coordinates across the accelerator
section from point 1 to point 2. The closed orbit Xc is
given by the fixed point Xe

c � �XT
c ; 1�T of the extended

one-turn transfer matrix Te [3], i.e., TeXe
c � Xe

c, which
yields

 X c � �I� T��1g; (61)

where the g vector contains the first four elements of the
fifth column of Te and represents the coordinate shifts after
one turn when a particle starts from a point with initial
coordinates of all zeros. We will derive analytic forms for g
and �I� T��1 below.

For an rf cavity, there is an energy kick

 g rf � �0; 0; 0; �T;  �
�E
E
; (62)

where  denotes the sudden change of momentum devia-
tion at the rf cavity. For a dipole magnet, the energy kick
due to radiation energy loss will propagate to the other
coordinates and cause finite changes to them. For example,
the pure sector dipole with bending radius � and bending
angle �L has

 g dipole �

�
�


2�

� ���L � sin�L�
1� cos�L

��1� cos�L �
1
2�

2
L�

�L

0BB@
1CCA; (63)

where ��L=2� is the momentum deviation change on
this dipole magnet. Here we have assumed  is the same as
the momentum deviation gained at the rf cavity. It is seen
that the changes of x, x0, and c� are on the order of �3

L, �2
L,

and �4
L, respectively. Hence, when �L is small, we may

neglect these changes for a single dipole magnet. The g
vectors are zeros for other accelerator components which
do not cause energy gains or losses.

The one-turn extended transfer matrix can be computed
as usual. For an arbitrary point 1 , we have Te

1 �
Te

12Te
rfT

e
21, from which we obtain

 g 1 � �T12g21 � g12� � T12grf � T12�Trf � I�g21: (64)

Simple calculations show that

 T 12grf �

�
M12 E12

F12 L12

�0BBB@
0
0
0


1CCCA � 

0
B@d1 �M12d2�

�12

1

� 1
CA:
(65)

The T12g21 � g12 term has nothing to do with the rf cavity.
So it does not depend on the location of point 2. In fact it
represents the changes of coordinates in one turn for a
particle with initial coordinate �0; 0; 0; 0�T at point 1
when the rf cavity is turned off. Since energy losses occur
in dipoles, we get a summation over all dipoles in the ring

 T 12g21 � g12 �
XNd
i�1

M1i E1i

F1i L1i

� � 0
0
0
�i

0
BBB@

1
CCCA

� �

P
i

e1iiP
i
�1iiP
i
i

0B@
1CA

0BBBB@
1CCCCA: (66)

Noting that e1i � d1 �M1idi and, assuming all bending
radius are equal so that i � �si=2��, the summations
can be turned to integrals to obtain

 T 12g21 � g12 � ���

d1 �
H

1 M�s1js�d�s� ds2��H
1 ��s1js�

ds
2��

1

 !0BB@
1CCA;

(67)

where we have used
P
ii �  and the integral

H
1 starts

from point 1, completes one revolution, and ends at point 1.
We may simplify the expressions by defining new func-
tions:
 

S�s� �
Z s�C

s

��������������
H �s0�

q
sin� ss0 � 
s0 �

ds0

2��
; (68a)

C�s� �
Z s�C

s

��������������
H �s0�

q
cos� ss0 � 
s0 �

ds0

2��
; (68b)

K�s� � S2�s� � C2�s�; ��s� � tan�1 S�s�
C�s�

; (68c)

where  ss0 is the betatron phase advance from point s0 to
point s and C is the ring circumference. Then we can write
down

 

I
1

M�s1js�d�s�
ds

2��
�

������
�1

p
0

� �1�����
�1

p 1�����
�1

p

 !
S1

C1

� �
(69)

and
 I

1
��s1js�

ds
2��

�
I

1
���s1js�

ds
2��

�
�����������������
H 1K1

q
sin��1 � 
1�: (70)

It can be shown that

 

I
1

���s1js�
ds

2��
�

1

2
��: (71)

Since the first three elements of the g vector have terms on
the order of O�� and the contributions of the third term of
Eq. (64) to these elements are on the order of O�w�, we
will simply drop these contributions. However, the fourth
element of this term is the leading term and is not negli-
gible. It is easy to show that
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g4
1 � wg3

21 � �w
Z s2

s1

��s2js�
ds

2��

� �w
Z s2

s1

���s2js�
ds

2��
� w

������������������
H 2K21

q
sin��21 � 
2�

(72)

with the definition of
 

S21 �
Z s2

s1

��������������
H �s0�

q
sin� s2s0 � 
s0 �

ds
2��

; (73a)

C21 �
Z s2

s1

��������������
H �s0�

q
cos� s2s0 � 
s0 �

ds
2��

; (73b)

K21 � S2
21 � C2

21; �21 � tan�1 S21

C21
: (73c)

If we write down the vector g1 in a form g1 � �gTx ;gTl �
T

with 2-component vector gx and gl representing the hori-
zontal and longitudinal displacement, respectively, we
have
 

gx= �

������
�1

p
0

� �1�����
�1

p 1�����
�1

p

0
@

1
A S1 �

���������
H 2

q
sin� 12 � 
2�

C1 �
���������
H 2

q
cos� 12 � 
2�

0B@
1CA;

(74a)

g1
l = � ��12 �

1
2 ���

������������������
H 1H 2

q
sin� 12 � 
2 � 
1�

�
�����������������
H 1K1

q
sin��1 � 
1�; (74b)

g2
l = � �w

��2
21

2 ��
� w

������������������
H 2K21

q
sin��21 � 
2�; (74c)

where g1
l , g

2
l are the two elements of gl � �g1

l ; g
2
l �
T and in

obtaining the first term of Eq. (74c) we have assumed the
dipoles are distributed around the ring uniformly.

Radiation damping changes the transfer matrix T by a
correction term on the order of  so that it is no more
strictly symplectic. However, since  is usually small and
the correction to the closed orbit due to this effect is on the
order of 2, we will not consider the radiation damping
effect. To work out the matrix inversion for �T� I��1, we
will make use of

 �T� I��1 � U�Tn � I��1U�1; (75)

since the off-diagonal blocks of Tn are on the order of
O�w�. With matrix Tn as found in Eq. (25), we have shown
that

 �Tn � I��1 �
a b
c d

� �
(76)

with
 

a � �M0
1 � I��1; (77a)

b � ��M0
1 � I��1 0 ~E11

n

0 ~E21
n

 !
; (77b)

c � �
~F21
n

~F22
n

0 0

 !
�M0

1 � I��1; (77c)

d � �Ln � I��1; (77d)

where we have dropped all terms on the order of O�w� or
higher and we have

 �Ln � I��1 �
1

��
� ��21

��
w� ��21 ��12

1 � ��12

 !
: (78)

We then proceed to obtain the blocks of �T�I��1 using
Eq. (75) and finally we get the closed orbit with Eq. (61).
The results are given by

 

xc � �

���������������
�1H 2

q
2 sin�	x

cos��	x �  12 � 
2� �

��������������
�1K1

p
2 sin�	x

cos��	x � �1� � D1

�
1

2
�

��12

��

�
; (79a)

x0c �


2 sin�	x

���������
H 2

�1

s
��1 cos��	x �  12 � 
2� � sin��	x �  12 � 
2��

�


2 sin�	x

��������
K1

�1

s
��1 cos��	x � �1� � sin��	x � �1�� � D01

�
1

2
�

��12

��

�
; (79b)

c�c � 
��21 ��12

2 ��
�


2 sin�	x

�
������������������
H 1H 2

q
cos��	x �  12 � 
2 � 
1� �

�����������������
K1H 2

q
cos��	x �  12 � 
2 � �1�

�
�����������������
K1H 1

q
cos��	x � 
1 � �1� �H 2 cos�	x� � 

������������������
H 2K21

q
sin��21 � 
2�; (79c)

�c � 
�
1

2
�

��12

��

�
: (79d)

Note again that we have dropped all terms on the order of w or higher so that the results are valid only for off-resonance
cases. Obviously we have recovered Eqs. (23) and (24) of Ref. [6] as the first term in Eq. (79a). The second term comes
from the propagation of radiation energy losses. The third term comes from the energy variation around the ring. It is worth
noting that the c�c orbit is zero at the rf cavity.
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So far we have considered only one rf cavity in the ring.
However, the same analysis can be easily applied to more
cavities. In fact, if we neglect the interaction between the rf
cavities, which corresponds to higher order terms of the wi
parameters, the one-turn transfer matrix is

 T 1 � T0
1 �

X
i

T1iWiTi1; (80)

where the summation is over all cavities. Equation (80)
means the total effect of all cavities is the linear superpo-
sition of the single cavity effects. It is then straightforward
to modify the results of the one-cavity case for multiple-
cavity cases.

V. SIMULATION

In this section we will verify the theory developed in the
previous sections by comparing the results to simulations
with the accelerator modeling code AT [12]. We use the
machine model of the SPEAR Booster for the calculation.
The SPEAR Booster is chosen because it has appreciable
dispersion functions at the rf cavity. The model consists of
20 periods of FODO lattice over a circumference of

2�R � 133:8 m. The bending radius is � � 11:82 m for
all dipoles. The extraction energy is E � 3 GeV. The rf
frequency is frf � 358:533 MHz and the harmonic number
is h � 160. At extraction, the rf gap voltage is Vrf �
0:8 MV and the one-turn radiation energy loss is U0 �
0:60 MeV. In the simulation, we will consider it as a
storage ring running at its extraction energy. The betatron
tunes are 	x � 6:16 and 	y � 4:23 for the model. At the rf
cavity, the Courant-Snyder functions are �2 � �0:72 and
�2 � 2:09 m and the dispersion functions are D2 �
0:27 m and D02 � 0:06. The horizontal chromaticity is
Cx � �7:9.

We first present a numerical example to verify the trans-
formation Eq. (49). The injection point of the SPEAR
Booster is located in the ring opposite to the rf cavity
where we have �1 � 0:02, �1 � 1:54 m, D1 � 0:24 m
and D01 � 0:01 and the betatron phase advance from the
rf cavity to this observation point is 12 � 0:16 rad modulo
2�. The synchronous phase is set to �s � � and hence
w � 0:0020 m�1. The one-turn transfer matrix for betatron
coordinates Xn at this location is

 T n �

0:550 532 1:306 266 �0:000 447 0:001 018
�0:547 728 0:516 813 0:000 129 �0:000 294
0:000 396 �0:000 910 0:995 433 �4:548 267
�0:000 174 0:000 399 0:002 004 0:995 433

0
BBB@

1
CCCA: (81)

The off-diagonal blocks represents the synchrobetatron coupling effects. We then apply the second transformation V as
determined by Eqs. (27), (31), (33), and (34) to obtain the final transfer matrix:

 T d �

0:550 533 1:306 265 �4:6� 10�10 1:05� 10�9

�0:547 728 0:516 813 1:3� 10�10 �3:0� 10�10

4:1� 10�10 �9:4� 10�10 0:995 432 �4:548 266
�1:8� 10�10 4:1� 10�10 0:002 004 0:995 432

0
BBB@

1
CCCA: (82)
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FIG. 1. (Color) The synchrobetatron coupling induced betatron
detuning �	x obtained by AT tracking is compared to analytic
calculation with Eq. (42). The rf gap voltage is varied from 0.2 to
3.2 MV.
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FIG. 2. (Color) Function S and C as defined in Eq. (68) for the
SPEAR Booster at 3 GeV. The curves labeled ‘‘Int’’ are from
numerical integration with the trapezoidal rule by cutting each
dipole into 100 slices. The ‘‘Non’’ curves are obtained by
calculating the coordinate shifts at the exit of each dipole,
transporting to the observation point and summing up contribu-
tions of all dipoles.
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Elements of the off-diagonal blocks are reduced to the
order of magnitude of 10�10 from the original value of
10�4, indicating the high precision of the approximations
we have made.

The betatron detuning due to synchrobetatron coupling
[Eq. (42)] is checked against AT by comparing the betatron
tune from AT tracking to the analytic calculation with
various rf voltage. The initial condition for AT tracking
is �1� 10�5; 0; 0; 0; 1� 10�6; 0�T . Small deviations of x

and � are chosen to avoid significant nonlinear detuning
effects. The result is shown in Fig. 1.

If radiation is turned on in simulation, the finite energy
gain at the rf cavity will cause changes to the closed orbit
as studied in the previous section. To calculate the closed-
orbit change, we need to calculate the functions S, C, K,
and � defined in Eq. (68). It is found that numerical
integration through a dipole does not make much differ-
ence from simply transporting the coordinate shifts at the
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FIG. 3. (Color) The one-turn coordinate shifts due to radiation energy losses and finite energy gains at the rf cavity for the SPEAR
Booster at 3 GeV. The four plots are x, x0, c�, and � shifts, respectively.
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FIG. 4. (Color) The SBC-induced closed-orbit changes calculated in three different ways for the SPEAR Booster at 3 GeV. The
changes to xc, x0c, c�c, and �c are shown in the four plots. The three curves are from AT (AT), matrix inversion (Mat), and the analytic
solution (Ana), respectively.
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dipole exit to the observation point. In Fig. 2 we show
functions S and C for the SPEAR Booster ring calculated
with both methods. The one-turn coordinate shifts, or the g
vector is plotted in Fig. 3. There are two curves in each
plot, one is from Eq. (74), the other is from direct matrix
multiplication with the transfer matrix of each accelerator
element given by AT and the coordinate shifts of each
element obtained by tracking through it with zero initial
coordinates in AT.

We then compare the closed-orbit changes obtained with
three different ways: (i) AT (using the function findorbit6),
(ii) direct matrix calculation with Eq. (61), and (iii) the
analytic solution in Eqs. (79a)–(79d). The results are
shown in Fig. 4. Good agreement between the three curves
are seen, verifying the analysis in the last section. The S
and C functions are calculated with simple summations in
the analytic approach. It is worth pointing out that all three
terms in Eq. (79a) are important in determining the closed-
orbit change for xc.

The same closed-orbit calculation is done for the
SPEAR3 ring. We only show the closed-orbit changes in
Fig. 5. Note dispersion at the rf cavity for the SPEAR3 ring
is zero. So the terms in Eqs. (79a)–(79d) involving H 2

have no contribution.

VI. CONCLUSIONS

In this study we fully analyzed the linear synchrobeta-
tron coupling by block diagonalizing the 4� 4 horizontal-
longitudinal transfer matrix. We found the transformation
between the usual �x; x0; c�; �� coordinates and the normal
modes and the transfer matrix for the normal modes in

analytic forms in terms of the Courant-Snyder functions,
dispersion functions, and the rf voltage slope parameter.
This enabled us to predict the 4-dimensional motion of a
particle knowing only the initial condition and those com-
mon parameters. The effects of synchrobetatron coupling
on the horizontal betatron motion, including changes to the
Courant-Snyder functions and the betatron tune are also
presented. We then studied the beam width and the bunch
length under synchrobetatron coupling. We readily recov-
ered Shoji’s result of dispersion-dependent bunch length-
ening [5]. We found that the beam width and the bunch
length slightly oscillate around the ring with the betatron
phase advance measured from the rf cavity. We pointed out
that the bunch length varies around the ring due to phase
slippage, a fact that is often overlooked. We also pointed
out that the phase space volume is preserved under SBC
when not considering radiation induced diffusion and
damping.

Following Ref. [6], which studied the horizontal closed-
orbit changes due to finite energy gains at rf cavities, we
fully explored the problem by looking for a closed-orbit in
the 4-dimension phase space, considering both finite en-
ergy gains at rf cavities and radiation energy losses in
dipole magnets. We recovered the horizontal closed-orbit
change result in Ref. [6] and found additional terms due to
energy losses.

We carried out simulations with the accelerator model-
ing code AT [12] to verify the analysis. We found that the
block diagonalization transformation matrix had high pre-
cision despite the approximations we made to get the
analytic solution. The closed-orbit results of AT also
agreed well with the theory.
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FIG. 5. (Color) The SBC-induced closed-orbit changes calculated in three different ways for the SPEAR3 ring. The changes to xc, x0c,
c�c, and �c are shown. The three curves are from AT (AT), matrix inversion (Mat), and the analytic solution (Ana), respectively.
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