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Theory of coherent transition radiation generated by ellipsoidal electron bunches
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We present the theory of coherent transition radiation (CTR) generated by ellipsoidal electron bunches.
We calculate analytical expressions for the electric field spectrum, the power spectrum, and the temporal
electric field of CTR, generated by cylindrically symmetric ellipsoidal electron bunches with hard and soft
edges. This theory is relevant for diagnostics of ellipsoidal electron bunches. Realization of such bunches
would solve the problem of space-charge induced emittance degradation.
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I. INTRODUCTION

For a long time it has been realized that uniformly filled
ellipsoidal electron bunches, also known as “waterbag”
bunches, are the ideal particle distributions for controlled,
high-brightness charged particle acceleration. Because of
their linear internal fields they do not suffer from bright-
ness degradation caused by space-charge forces [1,2]. In
spite of this they were never considered as a realistic
option, because there was no method to create them. In
1997, Serafini was the first to suggest that waterbag
bunches may be created by using high-gradient radio-
frequency photoguns, operated in the space-charge blow-
out regime [3]. In 2004, Luiten et al. presented a practical
recipe which results in an almost ideal hard-edged ellip-
soidal electron bunch [4—6]. The deviation from the ideal
situation is caused by the finite duration of the photoemis-
sion process and results in ““soft” edges; the density does
not fall off to zero abruptly, but over a distance comparable
with the laser pulse length [4]. The existence of waterbag
bunches still needs to be proven experimentally. This
requires a diagnostic method for determining whether an
electron bunch is indeed a waterbag bunch, and to obtain a
measure of the soft edges.

Coherent transition radiation (CTR), created by an elec-
tron bunch experiencing a sudden change in dielectric
constant [7-9], is a well-known diagnostic tool to charac-
terize the spatial distribution of electron bunches [10—13].
The bunch shape is always assumed to be Gaussian, in
which case the CTR temporal electric field and power
spectrum are known analytically [14,15]. This approach
is mainly based on mathematical convenience, since gen-
erally there is little detailed knowledge of the actual bunch
shape. The electric field spectrum of CTR radiated by a
electron bunch with the shape of a sphere [16], and the
form factor of a ellipsoidal electron bunch [17], are also
known analytically but were never considered as a realistic
option for diagnosing electron bunches. We extend the
analytical theory of CTR to ellipsoidal electron bunches
with soft edges, which include all bunch shapes from
perfectly smooth Gaussians to hard-edged ellipsoids.
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This makes the detection possible of realistic waterbag
bunches. The calculations assume monoenergetic electron
bunches with no angular spread.

The remainder of this paper is organized as follows.
Section II starts with a short introduction of coherent
transition radiation (CTR), emitted by electrons traveling
perpendicularly through the interface between a perfect
metal and vacuum. We introduce the form factor for
any spatial distribution, in an analog fashion as in
Refs. [14,18,19]. We only evaluate the coherent part of
the spectrum and ignore the incoherent part, which is valid
because of the large number of electrons ( ~ 10%) present
in a typical bunch. Section II ends with a discussion of the
conditions under which the electric field spectrum of CTR,
created at a dielectric-vacuum interface, can be described
with the expressions for a perfect metal-vacuum interface.

With the general theory of CTR discussed, we focus on
the specific situation of CTR generated by cylindrically
symmetric ellipsoidal electron bunches traveling through a
perfect metal-vacuum interface. In Sec. III we calculate the
form factor of an ellipsoidal spatial distribution, both with
soft and hard edges. In Sec. IV the temporal electric field of
CTR is calculated. To make this calculation physically
relevant, the frequency spectrum has to be cut off at high
and low frequencies. The high frequency components of
the coherent radiation are either cut off by the form factor
or by the dielectric response of the medium. The low
frequency components are cut off due to the finite extent
of the dielectric, resulting in diffraction radiation [20]. To
take this into account we use Babinet’s [21] principle in
Sec. IV to calculate the coherent diffraction radiation of a
dielectric disk much larger than the transverse bunch size
[9,14]. In Sec. V the influence of a finite energy spread and
angular spread of the electron bunch on CTR is discussed.
A summary is presented in Sec. VI.

II. COHERENT TRANSITION RADIATION

In this section a brief introduction of CTR is given. We
assume that the electrons are traveling perpendicularly
through an interface between a perfect metal and vacuum.
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At the end of this section we show that this is an accurate
model for CTR in the THz regime, for any realistic metal-
vacuum interface.

A. Electric fields of CTR

As is well known [7], the electric field spectrum Ey(r, @)
of transition radiation (TR) emitted into the vacuum, by a
single electron traveling perpendicularly through a perfect
metal-vacuum interface, is given by

—ef3sinf el@/or

Eylr, ) = (2m)*egc(l — B%cos?0) r M

where e is the electronic charge, c is the speed of light in
vacuum, g is permittivity of free space, and 8 = ¢ with v
the velocity of the electron. The observation vector » makes
an angle 6 with the z axis. At ¢+ = 0 the electron is located
in the origin.

If the electron is located at rpatt= 0, we can write
Eq. (1) forr > r; as

o) —eBsind
y w =
0 (2m)ege(l — BPcos?6)
X Me—im/c)wr;—f(w/ v @

r

with n = * the unit vector in the direction of observation
and r; the projection of r; on the x-y plane. A sketch of the
situation is shown in Fig. 1 for illustration.

Equation (2) can be used to calculate the CTR radiated
by an bunch of N electrons traveling through a perfect
metal-vacuum interface. We define p(r) as the electron
density distribution of the bunch. We assume that all
electrons travel in the z direction with the same velocity,
and that each electron is located at a different position r; at
t = 0. The electric field spectrum of the total CTR can then

metal

vacuuim

FIG. 1. Snapshot of electron traveling with speed v = ve,,
taken at r = 0 to illustrate the definition of the coordinates.
The position of the electron at r = 0 is r;. The half-space z <
0 is occupied by a metal, the half-space z > 0 is vacuum. The
observation vector r makes an angle 6 with the z axis.

be written as

ei(m/c)r

—eNsinf o) —. 3)

2m)?epc(1 — B*cos?h)

Ey(r, o) =
The term f(w) is called the form factor and is given by

N
f(w) _ % Z e*i(w/c)n-r;fi(w/v)zj_ (4)
j=1

Because N is typically very large, we can replace the
summation in Eq. (4) with an integral over the electron

distribution function A(r) = f(e';/
flw) = fh(r)e*i(w/c)n-rffi(w/v)zdjir. )

Note that A(r) is subject to the normalization condition
fh(r)d3r = 1. (6)

Since we replaced the summation over the spatial distribu-
tion of the electron bunch with an integral over a well-
behaved continuous function, we cannot describe the in-
coherent part of the transition radiation with Eq. (5).
Calculation of the incoherent part would require taking
into account the exact position of each electron. However,
the electron density distribution scales with N, while in
general, the local density fluctuations scale with VN [19].
Because of the large number of electrons in a typical bunch
(N ~ 10%), the fluctuations and thus the incoherent radia-
tion can safely be neglected. We will therefore proceed
with the coherent radiation only.

B. Power spectrum of CTR

The total energy W radiated into the vacuum can be
calculated by integrating the Poynting vector over a surface
in the far field, and over time

_ 1 f[ E(r, 1) X B(r. 1) - dAdL, (7
Mo

where dA designates a surface area element in the far field
and u( the permeability of free space. We can substitute
the Fourier expansions of E(r, f) and B(r, r) into Eq. (7),
and use the fact that only Fourier components of equal
frequency give a contribution to the integration over time,
resulting in the following expression:

2
W _ 412 ﬂlEg(r, w)|?, (8)
dwd) Mo

for the energy radiated per unit frequency and unit solid
angle into the vacuum.

C. Perfect metal-vacuum interface

It can be shown [8] that, as far as transition radiation is
concerned, we can regard a dielectric as a perfectly con-
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ducting metal if the following condition is satisfied:
1 — Bcosh
L < 1’
/€, cosf

where g, is the dielectric constant of the dielectric.
Consequently, for all values of 8 and &,, there always
exists an angle @ at which the dielectric cannot be regarded
as a metal. However, for y = \/Tl—? > 1 only a small
fraction of the total radiation is emitted at those angles.
Since the typical dielectric constant of a real metal is of the
order of 107 for frequencies in the THz regime [22], we can
use the perfect metal-vacuum expression for CTR in the
remainder of this paper, without seriously limiting the
applicability of the theory.

()]

III. FORM FACTOR AND POWER SPECTRUM OF
ELLIPSOIDAL ELECTRON BUNCHES

In this section we evaluate the form factor for three
different electron distributions with ellipsoidal symmetry.
First, we evaluate the form factor of a uniformly filled
ellipsoidal electron bunch with hard edges; second, for
the case of an electron bunch with a Gaussian distribution;
third, we use these two distributions to construct an elec-
tron distribution with ellipsoidal symmetry, that falls off
smoothly from a uniform value to zero. This will serve as a
model for a uniform filled ellipsoidal electron bunch with
soft edges. To this purpose we write Eq. (5) as a one-
dimensional integral, by assuming that A(r) is a function

only of the radial coordinate of a spheroid; R =

VX2 + y? + a?z?, where « is defined as the aspect ratio
of the electron bunch in the lab frame. Note that the

electron bunch can be oblate (a > 1), spherical (a = 1),
and prolate (0 < a < 1). A spheroid is an ellipsoid having
two equal semiaxes, in our case x and y. We will refer to it
as an ellipsoid in the remainder of this paper.

The form factor of an electron distribution with ellip-
soidal symmetry can be written as

Flo) =T / " h(R) sin<R®9>idR, (10)
a Jo c @%

where

o—(1/200,00w/oF L

+ (0,0 9)?]sin(R,0%) — R,0% cos(R,02)

0 = (ap)'y/a?B2sin20 + 1. (11)

The electron density distribution of a hard-edged uni-
formly filled ellipsoidal electron bunch is given by

Seif |R| = R,;
he(R):{wg if [R| ‘ (12)

0 if [R|>R,

where R, is the transverse radius of the ellipsoidal electron
bunch. Substitution of Eq. (12) into Eq. (10) leads to the
corresponding form factor [17]:

sin(R,0 %) — (R,0 %) cos(R,0 2)

felw) =3 — (13)
‘ (R,02)
The next is a Gaussian electron distribution,
o 2 2
h(R) = o [R/Co)], 14

where o, is the root-mean-square transverse dimension of
the electron bunch. Substitution of Eq. (14) into Eq. (10)
leads to the corresponding form factor

folw) = e~(1/2[0,0@/AF, s

We can model a uniformly filled ellipsoidal electron
bunch, that falls off smoothly from the uniform value to
zero, by writing the electron distribution function as the
convolution of a hard-edged distribution of size R, and a
Gaussian distribution of size o,:
R,

hoog(R) = Ah, ® hy — A /

_Rz

)] o

where erf is the error function [23]. The normalization
constant is given by

o LR=£2/oD] 3¢

3a
A= -
42w R}, (1 + 3%0)

a7)

If we calculate the form factor by substituting Eq. (16) into
Eq. (10), we obtain

fe@g(w) = o2
1+ 3R_,5)

Note that Eq. (18) reduces to Eq. (13) in the limit of
vanishing o,:

Ol_iTOfe®g(w) = fe(w) (19)

In the limit of vanishing R;, Eq. (18) reduces to Eq. (15):

(R,0 2 (1%

The three different electron distributions and the corre-
sponding form factors are plotted in Figs. 2(a) and 2(b) for
o; = 0.2R,, which has been chosen for illustrative pur-
poses. If we compare f, with f,g., We see that the latter is
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FIG. 2. Plot of the three different electron distributions (a),
form factors (b), and power spectra (c) belonging to the different
electron bunches discussed in this paper; the ellipsoidal electron
bunch with hard edges (4, and f,), the Gaussian electron bunch
(h, and f,), and the ellipsoidal electron bunch with soft edges
(hegq and f.g,). In all plots o, = 0.2R,.

decreasing faster due to the soft edges. However, f,q, is
only slightly affected by the soft edges for frequencies

2c
< N<©
w = 1@_

The power spectrum can now easily be calculated using
Egs. (3), (8), (13), (15), and (18). Figure 2(c) shows a plot
of the power spectrum, emitted by the three different
electron density distributions.

IV. TEMPORAL ELECTRIC FIELD OF CTR
GENERATED BY ELLIPSOIDAL ELECTRON
BUNCHES

To reconstruct the CTR pulse in space and time domain,
the inverse Fourier transformation has to be performed:

Ej(r,1) = f El(r, w)e ' dw. (21)

If we substitute Eq. (3) into Eq. (21) we can write

—eN B sinf 1

Ejr 0 = G eec(l = B2c0s20) 7

ff(w)e*“‘”odw,
(22)

with 7y = 7 — £ At this point we need to address a problem
with the form factor. The coherent power spectrum is
nonzero at w = 0 [see Fig. 2(c)]. According to Eq. (22)
this implies a DC offset in the radiation pulse, which is
physically impossible. This is a consequence of the as-
sumption of an infinitely large metal-vacuum interface. In
reality the polarization currents, responsible for the CTR,
are spatially restricted to the transverse size of the metal-
vacuum interface. They therefore create coherent diffrac-
tion radiation (CDR) at the edges of the interface [20].
CDR will be generated only at wavelengths larger than the
spatial dimensions of the interface, i.e., small w, since
smaller wavelengths will add up incoherently. As we
show below, CDR leads to the cancellation of CTR for
w — 0.

A. Coherent diffraction radiation

Diffraction radiation can be calculated by applying
Kirchhoff’s diffraction theory to the fields incident on the
interface [21], in our case the fields of the electron bunch.
For an electron traveling perpendicular through a circular
aperture the expressions for diffraction radiation are well
known [9], and can be used to model the finite extent of the
perfect metal-vacuum interface, using Babinet’s principle
[21]. The necessary assumption of a circular interface is
not a problem, we are only interested in the general influ-
ence of the CDR, independent of a particular geometry.
Since a circular interface maintains the cylindrical sym-
metry of the problem, it is a natural choice. We choose the
radius of the interface a >> R,. This allows us to model the
bunch as a point particle with charge —eN, passing through
the center of the circular interface. Under these assump-
tions we can write

ES(r, w) = —eN B sinf i@/
o\, w (277)2806’(1 _ ,8200829) p
X f(w)[1 — d(w)], 23

for the spectrum of the electric field of the total coherent
radiation E§'(r, ), which describes both CTR and CDR.
The function d(w) describes the diffraction radiation and is
given by [9,14]
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d(w) = Jo<a sind %)[% % X, <% 9

e e )
A Pale el ) oo

with J,, and K, the mth order regular and modified Bessel
functions, respectively. Figure 3 shows a plot of the fre-
quency dependence of E§/(r, w) for a hard-edged ellipsoi-
dal electron bunch. Note the break in the frequency scale,
which serves to illustrate the spectrum at both low and high
frequencies. The values in the upper right corner indicate
the parameters used in the plot. The important feature of
the plot, however, is the fact that E§'(r, @) — 0, as @ — 0.
The DC offset in the radiation is thus indeed removed by
taking CDR into account.
The expression in Eq. (23) can be simplified to

—eNBsind eitw/or
(2m)*egc(1 — B>cos?6)

EY(r, o) =

[f(@) — d(w)]
(25)

This is allowed because f(w) =~ 1 when d(w) # 0. This is a
direct consequence of the assumption R, < a, and is the
mathematical consequence of treating the electron bunch
as a pointlike particle with charge —eN, passing through
the center of the circular interface. If we look at Eq. (25),
we see that the total coherent radiation can be described by
subtracting the CDR from the CTR, independent of the
CTR. We can thus continue with calculating the temporal

(a/By)o/c
0 2 4 6 8 250 500 750
U 7 Iy M-
Lo . aWBY=RE |,
: v=38
. -1
0.8 - sin6=vy 0.8
= 0.6 F0.6 =
3 S
o 3
50.4* *04\%/
= =
0.2 4 0.2
0.0 ~ 0.0
— T N —— T
0 004 008 012 0.16 5 10 15

Rt(a w/c

FIG. 3. Frequency dependence of the electric field spectrum of
the total coherent radiation pulse due to a hard-edged ellipsoidal
electron bunch, including both CTR and CDR. The parameters
used to make the plot are listed in the upper right corner.

electric field of CTR, by evaluating the inverse Fourier
transform of f(w), as long as we keep in mind that the
CDR has to be subtracted. This means that we have to
evaluate the inverse Fourier transform of f(w) and d(w).

B. Inverse Fourier transform of d(w)

Evaluating the inverse Fourier transform of d(w) ana-
lytically is not straightforward and outside the scope of this
paper. Instead we will use the fast Fourier transform (FFT)
algorithm to evaluate Eq. (23) numerically. This will illus-
trate the influence of CDR on CTR quite generally, as long
as the assumption R, < a holds. Note that due to this
assumption it makes no difference whether we calculate
the FFT of Eq. (23) or Eq. (25); both produce the same
result. The result of the FFT, for f(w) = f,(w), is shown in
Fig. 4. The relevant parameters are listed in the upper left
corner. We observe two half-cycle pulses superposed, with
opposite polarity. The long negative pulse is CDR, the
short positive pulse is CTR. The CTR pulse is shown in
more detail in the upper right corner, its shape will be
discussed later. The important feature of Fig. 4 is that the
CDR pulse is almost constant on the time scale of the CTR
pulse, and the CDR electric field strength is much lower.
This conclusion holds generally as long as % > R,0. We

will therefore proceed with the temporal CTR pulse only
and neglect the CDR.

C. Inverse Fourier transform of f(w)

Using Egs. (15) and (18), the form factor of the ellip-
soidal electron bunch with soft edges can be written as

2.0 : : : B (e L LT
_aBy=50R0O |i 50! 1
15 v=11 Z 40 i
| sin® =7 = 304
o=1 \‘-"/@20—
A].O*,E:lps T);[.T:]‘l()’ ‘ —
-+ eN'=100 pC - ;
2 e p ol e ||
= 05+ -1.0 -0.5 0.0 0.5 1.0
= t-r/c (ps)
bLU
o

-1.0 \ \ s \
30 20 -10 0 10 20 30 40 50
t-r/c (ps)

FIG. 4. Plot of temporal electric field, with coherent diffraction
radiation taken into account. The long negative pulse is due to
CDR. The CTR pulse is shown in the inset in the upper right
corner. The parameters used to make the plot are listed in the
upper left corner.
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feag(@) = f'(0)f (o), (26)

where

7(w) -
1+ SR—[Z

Since a product of Fourier components leads to a convo-
lution in time domain, we can use Egs. (26) and (27) to find
the temporal electric field of the ellipsoidal electron bunch
with soft edges.

However, we first calculate the temporal electric field of
the ellipsoidal electron bunch with hard edges. We do this
by calculating the inverse Fourier transform of f¢'(w) and
substituting o, = 0 afterwards. The inverse Fourier trans-
form of f¢' is

T(ty) = ] Fol@)e @ de

7 3 1 1+2(rt2_t%
T2 LA R 2
1+3R—‘27-e i Te

(28)

0 if |t0| > Tes
1 if |t0| = Tes

with 7, = R’C® the duration of the CTR pulse, and f¢'(t)
the inverse Fourier transform of the form factor. If we
assume o, = 0 and substitute Eq. (28) into Eq. (22), we
obtain E (r, 1), the CTR pulse of a hard-edged ellipsoidal

electron bunch,

3 [1+ (0,09)?]sin(R,0%) — R,0% cos(R,0%)

(R0 ) @7

{
Note that E (r, 1) has a parabolic profile with a length of
7,, which corresponds with the CTR pulse calculated with
the FFT shown in Fig. 4.

Next we calculate the inverse Fourier transform of

fe(o),

: V2
fg(tO) = /fg(w)e_’“”oclw = 776_(1/2)[(,0/%)2], (31)

Tg

with 7, = ‘T;@. The CRT pulse in the case of a Gaussian

electron bunch Ej,(r, 7) is thus [20]

—eNB sinf \/2_76—(1/2)[(’0/757)2],

El (r, 1) =
(72 1) Q2m)?egc(l — BAcos?l) T,r

(32)

We can now find E’;mg(r, t), the temporal electric field

of the electron bunch with soft edges. To do so we write

feodlt) = 5 fE0) @ fyliy)  (3)

which leads to

—eNsinf —eNBsinf 11
Ej(r 1) = 29) g _ eNBsin 11
0 (2m)*ege(l — BEcos?h) Eieog (1) (2m)?gyc(1 — B%cos?6) r 27Tfe(t0) ® fs(to)
37 (1 B ﬁ) % {0 if |tg| > 7,; (30) (34)
27,r 72 Lif [g] = 7. The result of the convolution in Eq. (33) is
|
1 1 0
s @ fi) =5 [ fiof e
_ \/f 3 V[T fwrnrsen | — 1o 4 (1 4 10) 2tor0/72
814357 (7. Te Te
i1 B () - et ) 2
—-£ — 2l er —er )
2\7; 7 V27, V27,

Figure 5 shows a plot of CTR pulses, corresponding to a
Gaussian, a hard-edged, and a soft-edged ellipsoidal elec-
tron density distribution. The contribution of CDR is not
taken into account in the figure but can simply be added, as
discussed in Sec. IV B. We observe three half-cycle pulses.
We furthermore observe that EZ ¢ (7, ¢) has the highest peak
electric field, because it is the shortest bunch. If we look at

El o o (r, 1), we see that the soft edges in the electron bunch

{

lead to soft edges in the temporal profile of the CTR pulse.
The peak electric field is less with respect to Ef,(r, 1),
which is a consequence of the larger spatial dimension of
the electron bunch due to the soft edges. The shape of all
three CTR pulses appears to be a direct fingerprint of
the corresponding electron density distribution. Note,
however, that the CTR pulse length depends on 6 [see

Eq. (1D)].
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FIG. 5. Plot of the temporal electric field of the CTR pulse, for
the three different electron bunches discussed in this article; the
ellipsoidal electron bunch with hard edges E”,, the Gaussian
electron bunch Eg 2 and the ellipsoidal electron bunch with soft
edges Egmg. The choice 7, = 0.27, has been made for illus-

trative purposes.

8

V. INFLUENCE OF ENERGY AND ANGULAR
SPREAD OF ELECTRON BUNCH

The calculations of CTR in this article assumed mono-
energetic electron bunches with no angular spread. Here
the conditions are discussed, under which this is valid.

A finite angular spread can affect the CTR pulse in two
ways: it can lead to decoherence, and thus less power; and
it can change the angular distribution of the radiation pulse.
The phase differences are induced because the electrons
pass the interface at different times and different transverse
coordinates. Clearly, if the angular spread Ad of the
electron bunch is much smaller than the aspect ratio a of
the bunch, A9 < a, then decoherence due to a finite
angular spread can be neglected. Since TR is emitted at
angles of ~y~!, the angular distribution is not affected if
AY <y L

A finite energy spread has a similar effect on the CTR
pulse as a finite angular spread. The influence on the
decoherence, caused by the different time of passage of
the electrons, can be neglected if the relative velocity

spread % = yzﬂ 1 % < 1. The angular distribution is not

affected by the energy spread if % < 1, because TR is

emitted at angles of ~y !

VI. SUMMARY

We have analytically calculated the electric field spec-
trum, power spectrum, and temporal electric field of CTR,

created by ellipsoidal electron bunches, both with hard and
soft edges.

The theory described in this paper can be used for
diagnosing ellipsoidal electron bunches. These bunches
are of major interest because of their linear self-fields,
which would solve the problem of space-charge induced
emittance degradation.
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