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We derive the exact specification that a two-stage betatronic collimation insertion must satisfy
the halo of a proton beam down to its ultimate limit which is the aperture of the secondary collim
Our result is a set of correlated phase advances between primary and secondary collimators.
determine the number of jaws needed to reach a given level of performance. We also specify th
of a momentum collimation insertion. [S1098-4402(98)00024-X]

PACS numbers: 29.27.Eg, 41.85.Si
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I. INTRODUCTION

In superconducting proton colliders of both high e
ergy and high beam current, the control of beam los
is mandatory. Local power deposition associated to be
losses can be larger than the quench level of supercon
ing magnets by several orders of magnitude [1]. In ad
tion, the large size of the rings at high energy implies ke
ing the transverse size of the magnets small for obvi
cost reasons. Therefore the geometrical aperture delim
by the vacuum chamber must be kept to its bare minim
Beam losses are mostly related to beam dynamics. No
above the dynamic aperture, the transverse motion of
particles becomes chaotic and can form a halo diffusing
wards the geometrical aperture. The transverse exten
of the halo is limited by absorbing these protons in collim
tors that are made of metallic blocks, which are called ja
The jaws inserted close to the beam are called primary
limators and define the primary aperture which is norma
chosen to be larger or equal to the dynamic aperture in
der not to intercept stable particles. At all energies
absorption of protons in primary jaws is substantially d
tant from unity [1]. Protons which are not absorbed can
scattered elastically off the jaw, thus forming a second
halo which can also induce quenches. Secondary jaw
therefore necessary to limit the extension of the secon
halo to a value smaller than the geometrical aperture
otherwise said, to allow for the choice of a small but s
geometrical aperture.

The geometrical size of the secondary halo, normali
to the aperture of the collimators, depends on the num
of jaws, on their relative locations, and on the optic of
insertion where they are installed.

An exact treatment of a two-stage collimation sy
tem considered as an optical device, i.e., disregard
true scattering in collimator jaws, exists for the on
dimensional (1D) case and in the special two-dimensio
(2D) case of an optic with equal phase advance in the
transverse dimensions [2]. The problem of a 2D sys
with an arbitrary optic was solved with numerical me
ods in conjunction with the approximate concept of ph
modulation with some success [2,3], but without cutt
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the amplitude of the secondary halo down to the ultim
limit of the aperture of the secondary collimators. Exi
ing collimation systems in high energy proton machin
are, or were, all made of two 1D systems (see the cap
of Fig. 3). No calculated or measured performance exi
The sole documented case is the HERA collimation s
tem [4]. In all these studies, taking apart the 1D case,
best arrangement of jaws was found for a predefined
tic. The solutions found are therefore some kind of lo
minima, in the hypothetical space of all possible optics

In this paper, we do not consider a particular opt
Rather, we derive the optical constraints between a prim
jaw and its associated secondary jaws which minim
the size of the secondary halo issued from the prim
jaw. The constraints are expressed by correlated betatr
phase advances between primary and secondary jaws.
end result is an exact specification that an optic must sa
to provide an optimum collimation system for a give
number of jaws.

II. DEFINITION AND NOTATIONS

We use horizontal and vertical betatron coordina
as well as horizontal dispersion normalized with t
transformations

$X ­ Nx $x, $Y ­ Ny $y, and $x ­ Nx
$D , (1)

which expand as√
X
X0

!
­

1
sx

√
1 0

ax bx

! √
x
x0

!
, (2)

for X coordinates, and similarly forY . We group$X and $Y
in four-vectors noted$A ­ sX, X 0, Y , Y 0d. The vector$A is
transported between two locations with$A2 ­ M12

$A1. The
transfer matrixM12 is made of two clockwise rotations
one for each proper plane, where the angles of rota
mx andmy are the betatronic phase advances; i.e.,

M12 ­

0BBB@
cosmx sinmx 0 0

2 sinmx cosmx 0 0
0 0 cosmy sinmy

0 0 2 sinmy cosmy

1CCCA . (3)
© 1998 The American Physical Society 081001-1
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The normalized invariant amplitudes are

Ax ­ sX2 1 X02d1y2, Ay ­ sY2 1 Y 02d1y2, (4)

which can be added to form the combined betatro
invariant amplitude

A ­ sA2
x 1 A2

yd1y2. (5)

III. BETATRON COLLIMATION

We first consider circular collimators in normalize
coordinates. The normalized apertures of the prim
and secondary collimators aren1 and n2 rms transverse
beam units, respectively. These numbers are fixed
our problem in the sense thatn1 cannot be varied to
optimize a collimation system but must rather fit
external parameters like the dynamic aperture or
effective geometrical aperture of the ring. Similarly, w
will see in Sec. III A that the relative retractionsn2 2

n1dyn1 must be kept constant once it has been chosen
shall therefore be substantially larger than, for examp
local closed orbit changes. We use the approximat
of slow transverse diffusion of the primary halo, wi
the consequence that the impact parameter at the prim
collimator is small compared ton1. More precisely,
we consider the impact points to be at the surface
the collimator while both betatronic oscillations are
their maxima; i.e.,X 0

0 ­ Y 0
0 ­ 0 with X2

0 1 Y 2
0 ­ n2

1.
In Sec. III A, we will minimize the extension of the
secondary halo after it is cut by the secondary collimat
treated as black absorbers, thus neglecting the forma
of a tertiary halo.

Using the transverse azimutha to define the point of
impact on the primary collimator, the coordinates of t
particles before scattering are

$A0 ­ sn1 cosa, 0, n1 sina, 0d . (6)

The scattering process adds an arbitrary value toX 0
0 and

Y 0
0, using here, for simplicity, an isotropic distribution

With the use of the polar coordinatesK and f in the
X 0

0-Y 0
0 plane (see Fig. 1), the coordinates at the prim

collimator after scattering are
$A1 ­ sn1 cosa, K cosf, n1 sina, K sinfd . (7)

A. Phase advances

For arbitrarya andf angles, we transport the partic
with $A2 ­ M12

$A1 using Eqs. (3) and (7) to a locatio
of yet unspecified phase advancesmx and my where a
secondary collimator is located and get

$A2 ­

0BBB@
n1 cosa cosmx 1 K cosf sinmx

2n1 cosa sinmx 1 K cosf cosmx

n1 sina cosmy 1 K sinf sinmy

2n1 sina sinmy 1 K sinf cosmy

1CCCA . (8)
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FIG. 1. The line of the scattered particles at the prima
collimator parametrized withsn1, a, K , fd transforms at the
location of a secondary collimator to another line which cros
the circle of radiusn2 when K ­ Kc whatevera and f; see
Eq. (10). A flat jaw at azimuthajaw is sufficient to cut at
amplitudeA ­ n2; see text.

The phasesmx and my are the free parameters of ou
problem. The efficiency of the secondary collimator
measured by the smallest amplitudeA2,cut that it can
intercept. A2,cut is minimized ifX2 andY2 are maximized,
because the aperture of the secondary collimators is fi
to n2. Using the invariance ofAx,2 andAy,2, this condition
is equivalent to asking forX 0

2 ­ Y 0
2 ­ 0. With these two

conditions in Eq. (8) we get

tanmx ­
K cosf

n1 cosa
, tanmy ­

K sinf

n1 sina
. (9)

These conditions allow one to compute the sole f
parametersmx ­ mxsa, f, Kd and my ­ mysa, f, Kd.
While a and f are free variables,K is restricted to its
maximum allowed value corresponding to the small
possible A2,cut ­ n2 (see Fig. 1). This is obtained b
the substitution of Eqs. (9) into Eq. (8) with againX 0

2 ­
Y 0

2 ­ 0. We get

K ­ Kc ­
q

n2
2 2 n2

1 , (10)

which is independent of botha andf. Writing

tanm0 ­ Kcyn1 ­ sn2
2 2 n2

1d1y2yn1

or cosm0 ­ n1yn2 ,
(11)

Eqs. (9) become

tanmx ­ tanm0
cosf

cosa
, tanmy ­ tanm0

sinf

sina
.

(12)

The normalized angleKc is the largest scattering ang
which passes the secondary jaw and, as it shall be, the
responding largest amplitude isA1,max ­ A2,cut ­ sn2

1 1

K2
c d1y2 ­ n2. The two conditions stated by Eqs. (1

form our central result. They fix univocally the locatio
of a secondary jaw to cut the secondary amplitudes to
lower limit A2 ­ n2 for a andf. They are governed by
the single parameterm0 (see also Table III). The phas
m0 depends on the choice of the ration1yn2. Therefore,
081001-2
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this ratio must be fixed before choosing the optic of
cleaning insertion. Its value also fixes the location of
secondary collimators. These formulas indicate that
optimum collimation for all possiblea andf would need
an infinity of collimators, with an optic able to offer an
infinity of pairs of phase advancessmx , myd which satisfy
Eqs. (12).

Before compromising on the number of collimator
it must be noticed that for givensa, fd, the secondary
collimator atsmx , myd need not be circular. A single fla
jaw at theX-Y azimuthaJ ­ tan21sY2yX2d is sufficient
(see Fig. 1). With Eq. (8), the azimuth of the jaw must b

tanaJ ­
sina cosmy 1 tanm0 sinf sinmy

cosa cosmx 1 tanm0 cosf sinmx
. (13)

In practice, the transverse adjustment of the jaws, i.e.
eithern1 or n2 beam units of the central orbit, can be mad
only by the use of an opposite jaw in the same tank,
gether forming a pair with their respective azimuthsaJ and
aJ 1 p (see [5]). Therefore, the determination ofaJ by
its tangent in Eq. (13) in the rangef2py2, py2g modulop

is univocal. For later use in Sec. III B we compute also

cosaJ ­
n1

n2

cosa

cosmx
, sinaJ ­

n1

n2

sina

cosmy
. (14)

The result is obtained for cosaJ with cosaJ ­
X2yn2 ­ sn1yn2d cosmxscosa 1 Kc tanmx cosfd and
Eq. (14) then by rewriting Eq. (12) asKcyn1 ­
tanmx cosay cosf and using1 1 tan2 mx ­ 1y cos2 mx .
The derivation is identical for sinaJ ­ Y2yn2.

From now on we will consider flat collimators only.

B. Geometry of the secondary halo in the phase space

For a given pair of primary impact and scattering ang
sa, fd and its associated secondary jaw located at
timized phase advancessmx , myd oriented at the trans-
verse azimuthaJ obtained, respectively, with Eqs. (12
and (13), we compute the domain of scattering angles
the primary collimator which are projected at the edge
the secondary jaw. The scattering angles in theX 0

1-Y 0
1

plane are parametrized with the free azimuthc

Kx ­ K cosc , Ky ­ K sinc . (15)

The edge of the secondary jaw is parametrized with

X2 cosaJ 1 Y2 sinaJ ­ n2 . (16)

We rewriteX2 andY2 from Eq. (8),

X2 ­ n1 cosa cosmx 1 Kx sinmx , (17)

Y2 ­ n1 sina cosmy 1 Ky sinmy . (18)

With Eqs. (17), (18), and (14) in Eq. (16) we get

Kxn1 cosa tanmx 1 Kyn1 sina tanmy ­ n2
2 2 n2

1 .
(19)
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Using Eqs. (10), (12), and the definition (11), we fina
get

Kx cosf 1 Ky sinf ­ Kc , (20)

which is the normalized equation of a line withKc the
shortest distance to the origin andf its slope. With
this result the effect of an optimized secondary jaw
easily interpreted. WithKc the smallest scattering ang
cut whenc ­ f (remembering that the optimization wa
done for the scattering anglef), the line of Eq. (20)
delimits a half-plane of scattering anglesKx cosf 1

Ky sinf . Kc intercepted by the jaw and the compl
mentary half-planeKx cosf 1 Ky sinf , Kc passing
the jaw. Several secondary jaws labeled with their c
responding central scattering azimuthsa, fi, i [ f1, msgd
define a polygon of orderms (if ms $ 3) which de-
limits the area of scattering angles which are not in
cepted. The secondary halo is therefore delimited in
4D phase space at the location of the primary jaw b
2D polygon, labeled by the indexms, located in a plane
parallel to the axesX 0 and Y 0 at sX1 ­ n1 cosa, Y1 ­
n1 sinad. This polygon has an inscribed circle of radi
Kc. The largest amplitude of the secondary halo is the
fore A2

maxsmsd ­ n2
1 1 K2

maxsmsd with Kmaxsmsd the dis-
tance of the most remote apex of the polygon relative
the originX 0 ­ Y 0 ­ 0 (see Fig. 2).

In addition to the optimization made by using the c
related phase advances of Eq. (12), a second optim
tion is now made by requesting that for givenms the
polygon is made regular. This minimizes bothKmaxsmsd
and the surface of the polygon. The scattering ang
fi used to compute the phases of the secondary
shall therefore be equally distributed around the azim
with sssfi ­ f0 1 2si 2 1dpyms, i [ f1, msgddd. Varying

X ’

1

Y ’

1

K
c

φ
1

.
A

FIG. 2. The polygon delimited by the secondary jaws in
X 0-Y 0 plane. Herems ­ 4. The scattering azimuth are chos
equidistant to form a square which minimizes the surface
the extension of the polygon. The largest angle passing
secondary jaws isK4,max ­ kOAk ­

p
2 Kc.
081001-3
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f0 rotates the polygon but does not modify the distrib
tion of the combined secondary amplitude. The anglef0
can therefore be freely chosen as long as isotropic sca
ing is considered. But in practice the outscattering rat
largest atf ­ a 1 p , a value to which one jaw must b
adjusted by choosingf0 adequately.

C. A finite number of collimators

In a real collimation system, both the numbermp of
primary andms of secondary jaws must be finite an
small. The choice ofmp andms is made a bit complicated
by an effective correlation between them. We first disc
the case of the primary jaws.

1. Primary collimators

We considered circular collimators in Sec. III to sim
plify our calculations. In practice, it is often desirable
define a circular primary aperture. One reason is to
to a circular vacuum chamber which defines an appro
mately circular normalized aperture when integrated o
an arc cell. Another reason might be the need to fit
a nearly circular dynamic aperture. On the other ha
in practice, the circular aperture must be approximated
flat jaws which have an adjustable distance to the be
They shall be arranged to form a regular polygon to lim
at best, the primary amplitudes which are larger than
specified valuen1 (see Fig. 3). The phase advances
the secondary jaws shall be computed for the cen
impact points of the primary jaws (see Fig. 3), defin
by the central azimuthssssai ­ si 2 1dpyf2smp 2 1dg,
i [ f1, mpgddd. At the central location, the primary ape
ture isA0 ­ n1, while at the apex of the polygon it is

A0,max ­
n1

cosfpy4smp 2 1dg
, (21)

as deduced by trigonometry from Fig. 3. Primary impa
maps are, of course, not limited to the central po
of the jaw but rather continuously distributed all alon
the surface of the jaws. For later use, we define
approximate average primary amplitude over the wh
azimutha with

A0,effsmpd ­ neffsmpd

­
1
2

(√
n1 1

n1

cosfpy4smp 2 1dg

!)
. (22)

With only mp ­ 2 primary jaws (usually oriented hori
zontally and vertically), the largest primary amplitude b
fore scattering isA0,max ­

p
2 n1 . 1.41n1 (see Fig. 3),

which is a too large value if high performance is mand
tory. With mp ­ 3 jaws, thus defining an octagonal pr
mary aperture, a much better performance is obtained
A0,max ­ n1y cosspy8d . 1.08n1 (see Fig. 3).
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FIG. 3. TheX-Y primary impact distribution of the simulatio
on the primary collimator jaws. The small circles are t
scattering sources of the central impact approximation
which the betatronic phase advances were computed
text). With mp ­ 2, the largest amplitude before scatteri
is alreadyA0,max ­ kODk ­

p
2 n1. With mp ­ 3, the jaws

are arranged to form an octagonal primary apertureA0,max ­
kOEk ­ n1y cosspy8d ­ 2n1ys2 1

p
2 d1y2.

2. Secondary collimators

To help in choosing the number of secondary jaw
we give for a set ofms values in Table I the variabl
Kmaxsmsd discussed in Sec. III B, the associated maxim
secondary amplitudeA2,maxsmsd, and the relative surfac
SyK2

c of the regular polygon which delimits the seconda
halo in the phase space. Numerical values are comp
with n1 ­ 6 and n2 ­ 7. Any numberms of secondary
jaws can be considered, but abovems ­ 4 the changes pe
ms unit are small. WithA2,maxsms ­ 3d ­ 9.4, the case
ms ­ 3 can be readily discarded and we further limit o
discussion tosmp ­ 3, ms ­ 4d and smp ­ 3, ms ­ 8d.
We must now take into account the effective prima
amplitudes which limit the performance obtained by
secondary jaws. We therefore define an effective ave
of the maximum secondary amplitude

Aeff,maxsmp , msd ­
q

neffsmpd2 1
1
4 fKc 1 Kmaxsmsdg2 ,

(23)

with neffsmpd taken from Eq. (22). We also define th
total number of jaws

mjaws ­ mps1 1 msd . (24)

Both Aeff,max andmjaws are given in Table II.
The difference of the effective performancedAmax ­

0.3 between the two casessmp ­ 3, ms ­ 4d andsmp ­
3, ms ­ 8d (see Table II) is marginal, ruling out the ca
smp ­ 3, ms ­ 8d. To make full use of eight seconda
jaws, five primary jaws must be considered, with a res
081001-4
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TABLE I. Extension of the secondary halo for different numbersms of pairs of secondary jaws per primary impact point. T
variablems is also the order of the polygon discussed in Sec. III B. The expressions forKmax are obtained by the geometry o
regular polygons and the maximum amplitudes are given byA2

max ­ n2
1 1 K2

max. We used the collimator aperturesn1 ­ 6 and
n2 ­ 7 to computeAmax numerically.

ms Kmax A2
max Amax SyK2

c SyK2
c

3 2Kc 4n2
2 2 3n2

1 9.4 3
p

3 5.19
4

p
2 Kc 2n2

2 2 n2
1 7.9 4 4.00

8 2Kcys2 1
p

2 d1y2 s4n2
2 2 2n2

1 1
p

2 n2
1dys2 1

p
2 d 7.2 8

q
s2 2

p
2 dys2 1

p
2 d 3.31

` Kc n2 7 p 3.14
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close to the ultimate limitAmax ­ n2, but at the price of
a quite prohibitive number of jaws amounting to 45 (s
Table II).

We therefore further consider the casemp ­ 3 with
mp ­ 4 secondary collimators per primary one. Th
phases in Table III are computed with Eqs. (12) for t
central impacts on the primary jawsa ­ 0, py4, py2
with four equidistant scattering anglesfi ­ fa 1 si 2

1dpy2, i ­ 1, 4g. These correlated phases constitute
specification for an optic to offer the smallest second
halo extension for the given number of jaws.

D. Simulation for continuous primary impact

To check the relevance of the effective maximu
amplitude of Eq. (23), we integrated numerically t
amplitude distribution of the secondary halo with
simple simulation program. We used the primary a
secondary aperturesn1 ­ 6 andn2 ­ 7. Primary impacts
are uniform along the inner surface of the jaws. Scatter
angles are uniform in theK-f plane. The tracking is
made with the transfer matrix (3) in which the phas
smy , mxd are taken from Table III. At each collimato
it is verified if the particle touches a jaw. The particl
surviving all secondary collimators are added to aAx-Ay

plot, thus building the density distributiond2NydAxdAy

of the secondary halo (see Fig. 4), and added also
a combined amplitude distributiondNydA (see Fig. 5).
The casems ­ 8 is also explored and added to Fig.

TABLE II. Effective maximum amplitude of the seconda
haloAmax,eff and total number of jawsmjaws as a function of the
number of primary and secondary jawsmp and ms. The
primary jaws are arranged to form a regular polygon
the normalized planesX1, Y1d. The secondary jaws are arrang
to contain the scattering angles inside another regular poly
located in the normalized planesX 0

1, Y 0
1d. The betatronic phase

advances between primary and secondary jaws are the opti
ones; see text.

mp ms Amax,eff mjaws

3 4 7.6 15
3 8 7.3 27
5 4 7.5 25
5 8 7.1 45
081001-5
e

e

a
ry

e

d

g

s

s

to

.

n

on

um

The effective maximum amplitude of Eq. (23) fits we
to the end of the distributiondNydA and is therefore
a good indicator of the limit of the secondary ha
The distributions shown in Fig. 5 confirm that the ca
sms ­ 3, mp ­ 8d is not worth the additional hardwar
investment while four secondary collimators for each
the primary azimuths, i.e., twelve pairs of secondary ja
with three primary collimators, is a quite good choic
This conclusion about the number of jaws was alre
obtained by Kaltchev [3,6] who developed a numeri
algorithm to minimize the size of a polygon in theX0-Y 0

plane.

E. Existing solutions

With a symmetric opticfmxssd ­ myssdg, the sec-
ondary halo is cut atAsec ­ 1.32n2 [2] with a ratio

TABLE III. Secondary collimator locationsmx and my and
jaw orientationsaJ for three scattering azimuthsa and four
scattering anglesf. One can addp to any of these phase
but then ajaw must be reevaluated. It is assumed that ja
are mounted in transversely opposite pairs, i.e., for each e
in the table there is a jaw ataJ and one ataJ 1 p, for
operational reasons explained in Sec. III A. We listed the va
aJ which is closer to the first quadrant. The lines of the ta
where f ­ a or f ­ a 1 p correspond to plane scatterin
and define a 1D collimation system. The existing collimat
systems in proton colliders cut on plane scattering and o
with horizontal and vertical primary jaws, for example, ha
primary and secondary jaws corresponding to lines 1, 2, 9,
10 of the table.

a f mx my aJ

0 0 m0 — 0
0 p p 2 m0 — 0
0 py2 p 3py2 m0

0 2py2 p 3py2 2m0

py4 py4 m0 m0 py4
py4 5py4 p 2 m0 p 2 m0 py4
py4 3py4 p 2 m0 p 1 m0 py4
py4 2py4 p 1 m0 p 2 m0 py4
py2 py2 — m0 py2
py2 2py2 — p 2 m0 py2
py2 p py2 p py2 2 m0

py2 0 py2 p py2 1 m0
081001-5
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FIG. 4. The contour plot of the distributiond2NydAxdAy
of the secondary halo in the casemp ­ 3 and ms ­ 4 with
continuous primary impact distribution. This distribution
obtained with isotropic scattering. The normalized amplitu
Ax andAy are in rms beam units. We used collimator apertu
n1 ­ 6 and n2 ­ 7. The two octagons of inner radiin1 and
n2 indicate that the secondary halo is almost entirely contai
inside these limits.

n2yn1 ­ 7y6. The present best performance obtain
with a modulated optic for the LHC collimation inse
tion is Asec ­ 1.21n2 [3]. It was emphasized in forme
studies [2,3] that cutting efficiently on large amplitud

0

500

1000

1500

2000

2500

3000

3500

4000

6 7 8 9 10

 

b c da

A

dN / dA

[a.u]

FIG. 5. The distributiondNydA for mp ­ 3 and ms ­ 4
(upper curve) compared tomp ­ 3 andms ­ 8 (lower curve).
We used collimator aperturesn1 ­ 6 and n2 ­ 7. The
combined normalized amplitudeA is in normalized rms beam
units. This distribution is obtained with isotropic scatterin
The arrowsa andd correspond toA4,max andA8,max computed
with central impacts and are taken from Table II. The arro
b and c are the effective limits of Eq. (23) for the same tw
cases. The latter ones are much better estimators of the u
limits if the fading ends of the spectra are neglected.
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associated to orthogonal scatteringsf ­ a 6 py2d re-
quires large phase modulation, i.e., largemy 2 mx val-
ues, along the cleaning insertion. This argument was r
but incomplete. Strict correlation of the phase advan
mx and my is mandatory, and the maximum modulati
my 2 mx ­ py2 is needed for some jaws (see Table II
While it may be unfair to compare the performance of
isting optics to our nearly ultimate limitAmax,eff ­ 1.08n2

obtained with a yet virtual one, a potential gain rema
to be exploited with an optic which satisfies the phase
vances specified in Table III.

F. Sensitivity to errors

Phase error. The sensitivity of the cut of the seconda
amplitude associated to a phase errornx,y between a
primary and a secondary jaw is obtained by computing
the modified spatial extensions̃X2 and Ỹ2 of a particle of
amplitudeA2 ­ n2 at the new location of the jaw. With
K ­ Kc in Eq. (8) forX2,

X̃2 ­ n1 cosa cossmx 1 nxd 1 Kc cosf sinsmx 1 nxd .

(25)

By multiplying the terms on the right-hand side by t
identity cosaJy cosaJ and using Eqs. (14) and (12), w
get

X̃2 ­ n2 cosaJ cosnx , (26)

and, similarly, Ỹ2 ­ n2 sinaJ cosny. Considering a
maximum phase errornx,y , n, the spatial extension
of the particle of amplituden2 is therefore smaller than
n2 by cosn. The jaw is therefore intercepting the pa
ticles with an amplitudẽA2 . n2y cosn. At first order
in n, we get dAyA ­ sÃ 2 AdyA ø n2y2. Numeri-
cally, using a phase error in the collimation inserti
of n , 5±, the relative error on the amplitude cut is
most dAyA , 5 3 1023. The phasesmx,y are the sole
variables governing the amplitude cut in the case o
linear and uncoupled insertion, taking apart the triv
transverse mispositioning of a collimator, which must
adjusted during the operation of the ring.

Linear coupling. In a proton collider, the linear cou
pling must be corrected down to a level where the
riod of coupling is much larger than the betatron per
[7]. The relative variation of the amplitudes shall thus
small, or dAx,yyA ø 1 across the collimation insertion
On the other hand, the scattering process which popu
the secondary halo is a strong source of local stoc
tic coupling, for the angular distributiondNydf being
almost isotropic. This effect is intrinsically taken into a
count in our approach and the small effect of the resid
linear coupling can be safely neglected.
081001-6
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Nonlinear effects. We will use a very simplified ap
proach of nonlinear perturbations of the regular betat
motion. We first make the reasonable assumption tha
long-term dynamic apertureAdyn is larger than the sec
ondary aperture at which the secondary halo is appr
mately cut, sayAdyn . n2 1 1. With this assumption, the
motion is nearly regular in the range of amplitudes c
sidered in our problem [8]. The motion can be crud
described by the superimposition of a coupling effect, i
a slow exchange ofAx andAy, and of a slow variation o
the combined amplitudeA, often called amplitude smea
ing. The amplitudeA of every particle drifts slowly be-
tween two limitsAmin , A , Amax, with Amin and Amax

being correlated by a monotonous function. Coupl
and smearing can both be neglected when conside
a single pass through the collimation insertion, simila
to the case of the residual linear coupling. The p
ticles which survive to their first pass across the c
limation insertion, and which thus have an amplitu
n1 , A , n2 1 1, will do a few turns before being ab
sorbed. The net efficiency of the system will be on
slightly degraded by the small change of amplitude
sociated to the smearing during these few turns, while
coupling will just modify the azimuth of the second im
pact, which has little or no effect on the efficiency of t
system.

Primary aperture and nonlinear effects. An additional
effect, which is not related to collimation strictly spea
ing, is, nevertheless, worth being briefly discussed.
proton which is just to touch a primary collimator is al
subject to amplitude smearing and oscillates in a ra
ñ1 , A , n1. Therefore the effective primary apertu
is ñ1 instead ofn1. The smearing function must therefo
be evaluated in addition toAdyn when designing a collider

G. Isotropic and real scattering

If the use of isotropic scattering is adequate to co
pare different jaw arrangements, real scattering m
be considered to quantify the performance of a sys
in absolute terms. We give here only a brief outlo
of a discussion made in [1] where a complete al
rithm is described which combines real scattering a
multiturn tracking. In first approximation, elastic sca
tering of protons in matter is dominated by multip
Coulomb scattering. The angular distribution after sc
tering of a proton of momentump through one interac
tion length of matter is Gaussian with a rms widths0

mcs ­
ap21 . 3 3 1025p21 frad, TeVycg, considering here an
aluminum jaw. The quantitys0

mcs is compared to the
rms beam divergences0

b ­ senmpybpd1y2 ­ bp21y2 .
6 3 1026p21y2 rad with the proton massmp ­ 0.94 3

1023 TeVyc2 and an average betatronic wavelengthb .
100 m. In a proton collider, we use a normalized em
tanceen . 4 3 1026 m. The isotropic scattering mode
is adequate if the real scattering distribution is wider th
081001-7
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the angular cutKc made by the collimators, i.e., if

s0
mcs $ Kcs0

b , (27)

with Kc taken from Eq. (10). Withn1 ­ 6 and n2 ­
7, the crossover momentump ­ sayKcbd2 . 2 TeVyc
deduced from the equality in Eq. (27) defines the limit b
low which the condition (27) is satisfied. Above this m
mentum, the isotropic model substantially overestima
the size of the secondary halo cut by the collimators.
the injection momentum of LHC, orp ­ 0.45 TeVyc,
the performance of the cleaning insertion isAisotropic,cut ­
8.4 [3]. The limit obtained with a numerical model whic
includes real scattering, tertiary halo, and multiturn tra
ing is Acut ­ 8.0 [1], a slightly better value than the resu
obtained with the isotropic model. This indicates that t
range of the crossover momentum is quite large.

H. Secondary halo and quench levels

The link between the edge of the secondary halo
the quench levels in superconducting magnets is
direct. It is discussed in Ref. [1] and briefly outline
here. An aperture limitation in the ring delimits a sm
volume in phase space, in which protons will be captu
locally. The integral of the flux of the halo in that sma
volume must be compared to the quench limit. If the ed
Acut of the distributiondNydA of the secondary halo is
smaller than the aperture of the ringAring, the secondary
halo induces no direct losses. Tertiary losses, made
protons elastically scattered off the secondary collimato
must then be considered and compared to the que
limit. On the other hand, it is always important to satis
the conditionAcut , Aring because of the steep slope
dNydA belowAcut (see Fig. 5).

IV. MOMENTUM COLLIMATION

We restrict our discussion to a momentum cleaning
sertion installed in a straight section, where the dispers
function is a betatronic trajectory. In that case, the c
dition D0yD ­ 2axybx , or, equivalently,x 0 ­ 0 [see
Eqs. (1) and (2)], must be satisfied at the primary co
mator [2,9] to ensure that the cut made on the second
halo does not depend on the relative momentum of
dp. It also strictly reduces the treatment of the mome
tum collimation to the betatronic case in a straight sect
[2], while outside the straight section the transverse of
xb andxdp

­ Ddp must, of course, be distinguished.
In the usual case of a ring without substantial verti

dispersion and in contrast with the betatron halo wh
may drift away from the beam in all transverse directio
momentum losses are concentrated in the horizo
plane. The most demanding case occurs at ramp
when off-bucket protons are lost. Most of these proto
keep their initial betatronic amplitude at injection [1
and are therefore confined in the range of betatro
amplitudes Ax,y ø 2. It is therefore enough to us
081001-7



PRST-AB 1 J. B. JEANNERET 081001 (1998)

r
th
nd

a
lly

t b
io

ar
d

n

as

ec
ic

n

on

ng
ng
th

ta

,

e

ces
to
ge
ary
s

ed
he
a

f a
lve
f a

im
ns,
ful

ng,

,

a single horizontal primary collimator, to which fou
secondary collimators must be associated, following
conclusions of Sec. III C. Their locations correspo
to the casea ­ 0 of Table III, and they limit the
components of the betatron vector after scattering to$A1 ­
sn1, Kc, ø2, Kcd.

In the arc of a ring, the aperture limitation for
particle with momentum offset is located near horizonta
focusing quadrupoles where bothbx and Dx are at their
maximum. In addition, withby ø bx it is thus adequate
to fit the largest horizontal secondary excursionAx,b 1

Ddp of the secondary halo with the apertureNarc ­ Nx,arc

at that location. The straight sections of a ring need no
considered for momentum collimation since the dispers
is usually suppressed in these areas.

A. Amplitude cut with momentum offset

In the general case, a particle reaches the prim
collimator with a mixing of betatron amplitude an
momentum offset. With the dispersionx1 at the primary
collimator, and using the approximation of slow diffusio
(see Sec. III), we write

n1 ­ x1dp 1 Xb ­ x1dp 1 Ax,b (28)

and define the largest momentum offset which can p
the primary collimator asdc ­ n1yx1 with Ax,b ­ 0.
After scattering and the cut of the amplitude by the s
ondary collimators, the maximum horizontal betatron
amplitude isAx,b ­ fsn1 2 x1dpd2 1 K2

c g1y2. Expand-
ing Ax,b with Eq. (10), the maximum horizontal excursio
in the arc is

Xmaxsn1, x1, dpd

­ xarcdp 1 sx2
1 d2

p 2 2n1x1dp 1 n2
2d1y2 (29)

and is plotted in Fig. 6. The largest allowed excursi
Xmaxsn1, x1, dcd ­ Narc fixes

dcsn1d ­ n1yx1 ­ fNarc 2 sn2
2 2 n2

1d1y2gxarc , (30)

obtained withdp ­ dcsn1d in Eq. (29). Should largen1

values be considered (see Fig. 6), the largeXmax excursion
at smalld values would be cut at the betatron cleani
insertion. The system is completely fixed by choosi
n1 and computing the dispersion which is needed at
primary collimator,

x1sn1d ­
n1

dc
­

n1xarc

Narc 2 sn2
2 2 n2

1d1y2
. (31)

As for the choice ofn1, a lower limit n1,min is fixed
by the acceptable effective cut of the primary horizon
betatronic amplitude at the edge of the bucketnedge ­
n1s1 2 dbydcd with db the bucket width. In practice
081001-8
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FIG. 6. The maximum transverse normalized excursionXmax
of a particle as a function of the relative momentum offsetdp
and of the primary collimator aperturen1. Each curve is ended
at dp ­ dcsn1d where Xmax ­ Narc ­ 11.8, a case study for
LHC for which we fixed the ration2yn1 ­ 7y6.

a high enoughx1 must be obtained by matching th
optic such that the correspondingn1 value obtained with
Eq. (31) is larger thann1,min.

V. SUMMARY

We derived the correlated betatronic phase advan
between primary and secondary jaws which allow one
cut the amplitude of the secondary halo of a two-sta
collimation system down to the aperture of the second
collimators. We showed that an infinite number of jaw
would be necessary to reach that limit. We deriv
a precise estimator of the effective extension of t
secondary halo for a finite number of jaws. We give
specification that an optic must satisfy for the case o
collimation system made of three primary jaws and twe
secondary ones. We also specified the properties o
momentum cleaning insertion.
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