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Optics of a two-stage collimation system
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We derive the exact specification that a two-stage betatronic collimation insertion must satisfy to cut
the halo of a proton beam down to its ultimate limit which is the aperture of the secondary collimators.
Our result is a set of correlated phase advances between primary and secondary collimators. We then
determine the number of jaws needed to reach a given level of performance. We also specify the optic
of a momentum collimation insertion. [S1098-4402(98)00024-X]

PACS numbers: 29.27.Eg, 41.85.Si

[. INTRODUCTION the amplitude of the secondary halo down to the ultimate

. . . limit of the aperture of the secondary collimators. Exist-

In superconducting proton colliders of both high en-. S A .
ing collimation systems in high energy proton machines

ergy and high beam current, the control of beam Iossegre, or were, all made of two 1D systems (see the caption

is mandatory. Local power deposition associated to beam, .. '
f Fig. 3). No calculated or measured performance exists.
losses can be larger than the quench level of superconduct;

ing magnets by several orders of magnitude [1]. In addi- he sole documented case is the HERA collimation sys-

. : . : S tem [4]. In all these studies, taking apart the 1D case, the
tion, the large size of_the rings at high energy implies ke.epbest arrangement of jaws was found for a predefined op-
ing the transverse size of the magnets small for obviou

; VIOUBe. The solutions found are therefore some kind of local
cost reasons. Therefore the geometrical aperture delimited” . . X . .
. S minima, in the hypothetical space of all possible optics.
by the vacuum chamber must be kept to its bare minimum. ; . ) .
In this paper, we do not consider a particular optic.

Beam losses are mostly related to beam dynamics. Not f% : : . !
) ; ather, we derive the optical constraints between a primary
above the dynamic aperture, the transverse motion of the

. : e aw and its associated secondary jaws which minimize
particles becomes chaotic and can form a halo diffusing to; . . .
; ‘the size of the secondary halo issued from the primary

wards the geometrical aperture. The transverse extensign . .
of the halo is limited by absorbing these protons in collimad2¥: The constraints are expressed by correlated betatronlc
phase advances between primary and secondary jaws. The

tors 'ghat are made of metallic blocks, which are ca]led JaWS5 1 d result is an exact specification that an optic must satisfy
The jaws inserted close to the beam are called primary col:

limators and define the primary aperture which is normally0 prowde.an optimum collimation system for a given
. .~ “number of jaws.

chosen to be larger or equal to the dynamic aperture in or-

der not to intercept stable particles. At all energies the

absorption of protons in primary jaws is substantially dis- IIl. DEFINITION AND NOTATIONS

tant from unity [1]. Protons which are not absorbed canbe \we use horizontal and vertical betatron coordinates

scattered elastically off the jaw, thus forming a secondarys well as horizontal dispersion normalized with the
halo which can also induce quenches. Secondary jaws afgynsformations

therefore necessary to limit the extension of the secondary N S d o= ND
halo to a value smaller than the geometrical aperture or, X=Nax, Y=Ny, and y =N.D, (1)
otherwise said, to allow for the choice of a small but safewhich expand as

geometrical aperture. X 1 1 0 X

The geometrical size of the secondary halo, normalized ( /> = — (a B ) ( />, 2

to the aperture of the collimators, depends on the number X T \Tx Pr AL

of jaws, on their relative locations, and on the optic of thefor x coordinates, and similarly faf. We groupf( andY

insertion where they are installed. o in four-vectors notedi = (X, X’,Y,Y’). The vectorA is
An exact treatment of a two-stage collimation syS-yansported between two locations with = M,4,. The

tem considered as an optical device, i.e., disregardingsnsfer matrixMy, is made of two clockwise rotations,

true scattering in collimator jaws, exists for the one-gne for each proper plane, where the angles of rotation
dimensional (1D) case and in the special two-dimensiona), andu, are the betatronic phase advances; i.e.,
(2D) case of an optic with equal phase advance in the two

transverse dimensions [2]. The problem of a 2D system COSpLy  SINpy 0 0

with an arbitrary optic was solved with numerical meth- p7,, — | ~ SINHx  COSK. 0 0 A3)
ods in conjunction with the approximate concept of phase 0 0 COSpy — SINpy
modulation with some success [2,3], but without cutting 0 0 —sinu, cosu,
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PRST-AB 1 J.B. JEANNERET 081001 (1998)

The normalized invariant amplitudes are

Yo Y2
Ax — (X2 + X/2)1/2, Ay — (Y2 + Y/2)1/27 (4)
which can be added to form the combined betatronic K (0]
invariant amplitude o \K: K
A= (A2 + A2 (5)
a Gaw \
Ill. BETATRON COLLIMATION
Ny Xg niy Ny, Xo

We first consider circular collimators in normalized
coordinates. The normalized apertures of the primarylG. 1. The line of the scattered particles at the primary
and secondary collimators arg andn, rms transverse collimator parametrized withn;, a, K, ¢) transforms at the

: . . .Jocation of a secondary collimator to another line which crosses
beam units, respectively. These numbers are fixed @e circle of radiust, when K — K, whatevera and ¢ see

our problem in the sense that cannot be varied t0 Eq. (10). A flat jaw at azimuth,, is sufficient to cut at
optimize a collimation system but must rather fit to amplituded = n,; see text.

external parameters like the dynamic aperture or the

effective geometrical aperture of the ring. Similarly,
will see in Sec. lll A that the relative retractiofn, —
n1)/n; must be kept constant once it has been chosen a
shall therefore b_e substantially larger than, for ex_ampleintercept.Azw is minimized ifX, andY, are maximized,
local closed orbit changes. We use the approximation o se the aperture of the secondary collimators is fixed
of slow transverse diffusion of the primary halo, with ;g ny. Using the invariance of, , andA, ,, this condition

the consequence that the impact parameter at the primafé’equivalent to asking fak, = ¥ = 0. With these two
collimator is small compared ta;. More precisely, ?Onditions in Eq. (8) we gét 2 .

we consider the impact points to be at the surface o ]

the collimator while both betatronic oscillations are at _ Kcosg tanw. —= Ksing ©)

their maxima; i.e.,X) = Y, = 0 with X5 + Y3 = n?. n, cosa’ By = sina

In Sec. lIIA, we will minimize the extension of the These conditions allow one to compute the sole free

secondary halo after it is cut by the secondary collimatorgarametersu, = u.(a, ¢,K) and wy = py(a, ¢, K).

treated as black absorbers, thus neglecting the formatiopvhile o and ¢ are free variablesk is restricted to its

of a tertiary halo. maximum allowed value corresponding to the smallest
Using the transverse azimuth to define the point of possible A, = n, (see Fig. 1). This is obtained by

impact on the primary collimator, the coordinates of thethe substitution of Egs. (9) into Eq. (8) with agaii =
particles before scattering are Y5 = 0. We get

Ao = (n, cosa, 0, n; sina,0). (6) K =K. =+nk —n?, (10)

The scattering process adds an arbitrary valu&g@nd  \hich is independent of both andé. Writing

Y), using here, for simplicity, an isotropic distribution. ) N

With the use of the polar coordinatés and ¢ in the tanuo = Kc/my = (ny — nj)/*/m

X(-Y, plane (see Fig. 1), the coordinates at the primary or  CoSwo = ni/n (11)
collimator after scattering are o i

W€ The phasesu, and u, are the free parameters of our
oblem. The efficiency of the secondary collimator is
easured by the smallest amplitude ., that it can

tanuw,

;11 = (n; cosa, K cOs¢,n; sina, K sing). @) Egs. (9) become

sing
sina
(12)
The normalized angl&. is the largest scattering angle
which passes the secondary jaw and, as it shall be, the cor-
responding largest amplitude #5 max = Azcut = (n% +
K»)'2 = n,. The two conditions stated by Egs. (12)
form our central result. They fix univocally the location
nj COSa COSp, + K COS¢h Sinuy of a secondary jaw to cut the secondary amplitudes to its
A, = —ny COSa sinp, + KQOS¢ COSpLx 8) lower limit A, = n, for « and¢. They are governed by
ni sina cosuy + Ksing sinuy the single parametew, (see also Table Ill). The phase
—nisina sinu, + Ksing cosu, wo depends on the choice of the ratip/n,. Therefore,

tan = tan cosé tan = tan
/"LX /"LO COSa ’ /‘L,V /"LO

A. Phase advances

For arbitrarya and ¢ angles, we transport the particle
with A, = M;A; using Egs. (3) and (7) to a location
of yet unspecified phase advances and u, where a
secondary collimator is located and get
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this ratio must be fixed before choosing the optic of aUsing Egs. (10), (12), and the definition (11), we finally
cleaning insertion. Its value also fixes the location of allget
secondary collimators. These formulas indicate that an
optimum collimation for all possibler and ¢ would need
an infinity of collimators, with an optic able to offer an which is the normalized equation of a line witt,. the
infinity of pairs of phase advancég,, u,) which satisfy  shortest distance to the origin anl its slope. With
Egs. (12). this result the effect of an optimized secondary jaw is
Before compromising on the number of collimators, easily interpreted. WitlK,. the smallest scattering angle
it must be noticed that for givefw, ¢), the secondary cutwheny = ¢ (remembering that the optimization was
collimator at(u,, uy) Need not be circular. A single flat done for the scattering anglé), the line of Eq. (20)
jaw at theX-Y azimutha; = tan '(Y»/X,) is sufficient  delimits a half-plane of scattering anglds, cos¢ +
(see Fig. 1). With Eq. (8), the azimuth of the jaw must bek| sin¢p > K. intercepted by the jaw and the comple-
; ; ; mentary half-planek, cos¢ + K, sing < K. passin
Sina COSpy + tanu SIﬂ(ﬁSI.ﬂ,uy . (13) the jaw)./ Sevgral secondary jaw}s labeled WitE theirgcor—
COSa COSpLy + tanpuo COS¢ SiNpuy responding central scattering azimth, ¢;,i € [1, my))
In practice, the transverse adjustment of the jaws, i.e., atefine a polygon of ordem, (if m, = 3) which de-
eithern; or n, beam units of the central orbit, can be madelimits the area of scattering angles which are not inter-
only by the use of an opposite jaw in the same tank, toeepted. The secondary halo is therefore delimited in the
gether forming a pair with their respective azimusl)jsand 4D phase space at the location of the primary jaw by a
a; + m (see [5]). Therefore, the determinatione®f by 2D polygon, labeled by the index;, located in a plane
its tangent in Eq. (13) in the ran§e 7 /2, = /2] modulo  parallel to the axes’ and Y’ at (X; = n; cosa, Y, =
is univocal. For later use in Sec. 1l B we compute also n; sina). This polygon has an inscribed circle of radius
K.. The largest amplitude of the secondary halo is there-

K,cos¢ + K,sing = K., (20)

tana; =

cosa; = m C0Sx , sina; = m Sia (14)  fore A2 (m,) = ni + K2, (mg) With Kna(m,) the dis-

My COSfLx 12 COSUy tance of the most remote apex of the polygon relative to
The result is obtained for ces with cosa; =  the originX’ = Y’ = 0 (see Fig. 2).
X2/ny = (ny/ny) cosu,(cosa + K. tanu, cos¢) and In addition to the optimization made by using the cor-
Eqg. (14) then by rewriting Eg. (12) asK./n; = related phase advances of Eg. (12), a second optimiza-
tanu, cosa/cos¢ and usingl + tar? u, = 1/co$ u,. tion is now made by requesting that for given the
The derivation is identical for sia; = Y,/n;. polygon is made regular. This minimizes batha(m;)

From now on we will consider flat collimators only. and the surface of the polygon. The scattering angles
¢; used to compute the phases of the secondary jaws
B. Geometry of the secondary halo in the phase space Shall therefore be equally distributed around the azimuth
with (¢; = ¢o + 2(i — 1)7/my, i € [1,my]). Varying
For a given pair of primary impact and scattering angles
(a, ) and its associated secondary jaw located at op-
timized phase advancedg., u,) oriented at the trans-
verse azimutha; obtained, respectively, with Egs. (12) Y’
and (13), we compute the domain of scattering angles at 1
the primary collimator which are projected at the edge of
the secondary jaw. The scattering angles in ¥eY|
plane are parametrized with the free azimyth

A -
K, = K cosy, K, = Ksiny . (15)
The edge of the secondary jaw is parametrized with
X, cosa; + Yrsina; = ny. (16) X ’1
We rewriteX, andY, from Eq. (8),
X, = n; coSa cosu, + K, sinu,, a7)
Y, = n;Sina cosu, + Ky sinu, . (18)
. . FIG. 2. The polygon delimited by the secondary jaws in the
With Egs. (17), (18), and (14) in Eq. (16) we get X'-Y' plane. Heren, = 4. The scattering azimuth are chosen
. ) 2 equidistant to form a square which minimizes the surface and
Kinjcosatanu, + KyniSinatanu, = ny — ni. the extension of the polygon. The largest angle passing the

(19)  secondary jaws i max = l|OA|l = V2K..
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¢ rotates the polygon but does not modify the distribu- %
tion of the combined secondary amplitude. The angje 0
can therefore be freely chosen as long as isotropic scatter-

ing is considered. But in practice the outscattering rate is C
largest atp = a + 7, a value to which one jaw must be % D
adjusted by choosing, adequately. B

C. A finite number of collimators E

In a real collimation system, both the numbey, of n 118
primary andm;, of secondary jaws must be finite and 1%
small. The choice ofz, andm, is made a bit complicated
by an effective correlation between them. We first discuss 0
the case of the primary jaws.

1. Primary collimators

We considered circular collimators in Sec. Il to sim- FIG. 3. TheX-Y primary impact distribution of the simulation
plify our calculations. In practice, it is often desirable toon the primary collimator jaws. The small circles are the

define a circular primary aperture. One reason is to fifcaltering sources of the central impact approximation for
which the betatronic phase advances were computed (see

toa C|rcglar vacuum qhamber which def|n.es an approx'fext). With m, = 2, the largest amplitude before scattering
mately circular normalized aperture when integrated ovejg alreadyAomax = lOD|l = v2n,. With m, = 3, the jaws
an arc cell. Another reason might be the need to fit taare arranged to form an octagonal primarg/ apertg@ax =

a nearly circular dynamic aperture. On the other hand||OE| = n,/codw/8) = 2n,/(2 + /2)V2.

in practice, the circular aperture must be approximated by

flat jaws which have an adjustable distance to the beam. )

They shall be arranged to form a regular polygon to limit, 2. Secondary collimators

at best, the primary amplitudes which are larger than the 1 help in choosing the number of secondary jaws,
specified valuen; (see Fig. 3). The phase advances ofye give for a set ofin, values in Table | the variable
the secondary jaws shall be computed for the centrak (., ) discussed in Sec. Il B, the associated maximum
impact points of the primary jaws (see Fig. 3), definedsecondary amplitudet, ma(m,), and the relative surface
by the central azimuthda; = (i — D7/[2(m, — 1)],  §/k?2 of the regular polygon which delimits the secondary
i €[1,m,]). Atthe central location, the primary aper- hajo in the phase space. Numerical values are computed
ture isAg = ny, while at the apex of the polygon it is with n; = 6 andn, = 7. Any numberm, of secondary
jaws can be considered, but aboxg = 4 the changes per
Aomax = , (21)  my unit are small. WithA; na(m, = 3) = 9.4, the case
’ cogm /4(mp — 1] my; = 3 can be readily discarded and we further limit our

discussion to(m, = 3,m, = 4) and (m, = 3,m, = 8).

as deduced by trigonometry from Fig. 3. Primary impac : . .
maps are, of course, not limited to the central poin{We must now take into account the effective primary

of the jaw but rather continuously distributed all along ampl|tudes_wh|ch limit the performance obtamed by the
the surface of the jaws. For later use, we define ar.?econdary jaws. We therefore define an effective average

approximate average primary amplitude over the Wholé)f the maximum secondary amplitude

azimutha with 1
Acff,max(mp»ms) = \/neff(mp)2 + ) [Kc + I<max(n/ls)]2 >

ni

Aoert(mp) = nege(mp) (23)
1 n with nere(m,) taken from Eq. (22). We also define the
o |\ + cogm/4(m, — D[’ (22)  total number of jaws

With only m, = 2 primary jaws (usually oriented hori- Miaws = mp(L + my). (24)

zontally and vertically), the largest primary amplitude be-Both Actt max andm;j,s are given in Table II.

fore scattering iAo max = V2n; = 1.41n, (see Fig. 3), The difference of the effective performanée . =
which is a too large value if high performance is manda.3 between the two casés:, = 3, m, = 4) and(m, =
tory. With m, = 3 jaws, thus defining an octagonal pri- 3, m; = 8) (see Table IlI) is marginal, ruling out the case
mary aperture, a much better performance is obtained wittm, = 3, m; = 8). To make full use of eight secondary
Aomax = n1/codar/8) = 1.08n; (see Fig. 3). jaws, five primary jaws must be considered, with a result
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TABLE I. Extension of the secondary halo for different numbersof pairs of secondary jaws per primary impact point. The
variablem, is also the order of the polygon discussed in Sec. IlIB. The expressions,fgrare obtained by the geometry of
regular polygons and the maximum amplitudes are givemhy, = ni + K. We used the collimator apertures = 6 and

n, = 7 to computedmax numerically.

g Kmax Ao Amax S/K? S/K?
3 2K. 4n3 — 3n} 9.4 33 5.19
4 V2K, 2n3 — nt 7.9 4 4.00
8 2K./(2 + +/2)1/2 (4n? — 2n} + V21D)/(2 + V2) 7.2 8\/(2 — VD)2 + V2) 3.31
o0 K. no 7 T 3.14

close to the ultimate limifA.x = 1y, but at the price of The effective maximum amplitude of Eq. (23) fits well
a quite prohibitive number of jaws amounting to 45 (seeto the end of the distribution/N/dA and is therefore
Table II). a good indicator of the limit of the secondary halo.
We therefore further consider the casg = 3 with  The distributions shown in Fig. 5 confirm that the case
m, = 4 secondary collimators per primary one. The(m, = 3,m, = 8) is not worth the additional hardware
phases in Table Il are computed with Egs. (12) for theinvestment while four secondary collimators for each of
central impacts on the primary jaws = 0,7 /4, 7/2  the primary azimuths, i.e., twelve pairs of secondary jaws
with four equidistant scattering angles = [« + (i —  with three primary collimators, is a quite good choice.
)7 /2,i = 1,4]. These correlated phases constitute arhis conclusion about the number of jaws was already
specification for an optic to offer the smallest secondarybtained by Kaltchev [3,6] who developed a numerical
halo extension for the given number of jaws. algorithm to minimize the size of a polygon in th&-Y’
plane.

D. Simulation for continuous primary impact

To check the relevance of the effective maximum E. Existing solutions

amplitude of Eq. (23), we integrated numerically the With a symmetric optic[u,(s) = u,(s)], the sec-
amplitude distribution of the secondary halo with aondary halo is cut atA,. = 1.32n, [2] with a ratio
simple simulation program. We used the primary and

secondary apertureg = 6 andn, = 7. Primary impacts

are uniform an_ng thg inner surface of the jaws. SpattgrinqABLE ll. Secondary collimator locationg:, and x, and
angles are uniform in th&-¢ plane. The tracking is jaw orientationse, for three scattering azimuths and four
made with the transfer matrix (3) in which the phasesscattering angleg). One can addr to any of these phases
(uy, ) are taken from Table Ill. At each collimator but then aj,,, must be reevaluated. It is assumed that jaws

it is verified if the particle touches a jaw. The particlesf'”e mounted in transversely opposite pairs, i.e., for each entry

. I d limat dded td in the table there is a jaw a&; and one ata; + 7, for
surviving all secondary collimators are added 14,84,  gperational reasons explained in Sec. IIIA. We listed the value

plot, thus building the density distributio#*N /dA.dA,  «, which is closer to the first quadrant. The lines of the table
of the secondary halo (see Fig. 4), and added also tehere¢ = a or ¢ = a + 7 correspond to plane scattering
a combined amplitude distributiodN /dA (see Fig. 5). and define a 1D collimation system. The existing collimation

The casem, = 8 is also explored and added to Fig. 5 systems in proton colliders cut on plane scattering and only
$ " 7" with horizontal and vertical primary jaws, for example, have

primary and secondary jaws corresponding to lines 1, 2, 9, and
10 of the table.

TABLE I1l. Effective maximum amplitude of the secondary

halo Amax.rr and total number of jaws:;,., as a function of the a 1) Mox My ay

number of primary and secondary jaws, and m,. The

primary jaws are arranged to form a regular polygon in 0 0 Mo — 0

the normalized planéX;, Y,). The secondary jaws are arranged ™ T — Mo — 0

to contain the scattering angles inside another regular polygon O /2 ™ 3m/2 Mo

located in the normalized plar(&1, Y{). The betatronic phase O —/2 T 3m/2 — Mo

advances between primary and secondary jaws are the optimum/4 /4 Mo Mo /4

ones; see text. /4 S5 /4 T — Mo T = Mo /4
/4 37 /4 T — Wo T + o /4

p s Amaxett Mjaws /4 —/4 T + o T — Mo /4

3 4 7.6 15 /2 w/2 — Mo /2

3 8 7.3 27 /2 —7/2 — T = Mo /2

5 4 7.5 25 /2 T /2 T 7/2 — wo

5 8 7.1 45 /2 0 /2 T 7/2 + wo
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A ; ; ; ; ; ; ; 8 associated to orthogonal scatterity = o *+ 7/2) re-
y quires large phase modulation, i.e., large — w, val-
17 ues, along the cleaning insertion. This argument was right
but incomplete. Strict correlation of the phase advances
16 mx and u, is mandatory, and the maximum modulation
Is uy — mx = /2 is needed for some jaws (see Table IlI).
While it may be unfair to compare the performance of ex-
1a isting optics to our nearly ultimate limkmaxersr = 1.08n,
obtained with a yet virtual one, a potential gain remains
13 to be exploited with an optic which satisfies the phase ad-
vances specified in Table lIl.
12
11 F. Sensitivity to errors
0 Phase error The sensitivity of the cut of the secondary
0 8 Ay amplitude associated to a phase ereqr, between a

primary and a secondary jaw is obtained by computing first
of the secondary halo in the case, = 3 and m, = 4 with the modified spatial extensioi andY, of a particle of

continuous primary impact distribution. This distribution is @MPplitudeA; = n, at the new location of the jaw. With

obtained with isotropic scattering. The normalized amplitudesK = K. in Eq. (8) forX;,
A, andA, are in rms beam units. We used collimator apertures

n; = 6 andn, = 7. The two octagons of inner radi; and 5 .
n, indicate that the secondary halo is almost entirely containedX2 = 71 C0Sa COpy + vx) + K. €OSeh sin(uyx + vy).
inside these limits. (25)

FIG. 4. The contour plot of the distributiodzN/dAdiy

By multiplying the terms on the right-hand side by the
na/ny = 7/6. The present best performance obtaineddentity cosw;/ cosa; and using Egs. (14) and (12), we
with a modulated optic for the LHC collimation inser- get
tion is A, = 1.21n, [3]. It was emphasized in former
studies [2,3] that cutting efficiently on large amplitudes %, = n,cosa, cosv, , (26)

and, similarly, ¥, = n, sinay cosv,. Considering a

dN/dA 4000 [ ‘ ‘ ‘ ] maximum phase errow,, < v, the spatial extension
[a.u] of the particle of amplitude:, is therefore smaller than
3500 ¢ ] ny by cosv. The jaw is therefore intercepting the par-

ticles with an amplituded, > n,/cosv. At first order

in v, we get 84/A = (A — A)/A = v?/2. Numeri-

2500 | ] cally, using a phase error in the collimation insertion
of v < 5° the relative error on the amplitude cut is at
most §A/A < 5 X 1073. The phase,, are the sole
1500 | ] variables governing the amplitude cut in the case of a
linear and uncoupled insertion, taking apart the trivial

3000

2000

1000 r alp c d . e . . .
transverse mispositioning of a collimator, which must be
500 | ] adjusted during the operation of the ring.
vy Linear coupling In a proton collider, the linear cou-
% 7 8 ° 10 A pling must be corrected down to a level where the pe-

FIG. 5. The distributiondN/dA for m, =3 and m, = 4 “70d %)_Lcoulplltng IS ".‘“t‘?h Iar];gtﬁr than Ij[thed betar'ltr(l)lnthperlgd
(upper curve) compared t@, = 3 andm, = 8 (lower curve). [7]- € relalive variation or the amplitudes shall thus be
We used collimator apertures; = 6 and n, = 7. The Small, oréA,,/A < 1 across the collimation insertion.
combined normalized amplitudé is in normalized rms beam On the other hand, the scattering process which populates
units. This distribution is obtained with isotropic scattering. the secondary halo is a strong source of local stochas-

The arrowsa andd correspond (o max andAs max computed i coupling, for the angular distributiodN/d¢é being

with central impacts and are taken from Table Il. The arrows - . . L .
b andc are the effective limits of Eq. (23) for the same two almost isotropic. This effect is intrinsically taken into ac-

cases. The latter ones are much better estimators of the uppe@unt in our approach and the small effect of the residual
limits if the fading ends of the spectra are neglected. linear coupling can be safely neglected.
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Nonlinear effects. We will use a very simplified ap- the angular cuK, made by the collimators, i.e., if
proa_lch of nonlinear perturbations of the regula}r betatron ol =K, 023 ’ (27)
motion. We first make the reasonable assumption that the )
long-term dynamic aperturgy, is larger than the sec- With K. taken from Eq. (10). Withe; =6 and n, =

: ) . _ 2
ondary aperture at which the secondary halo is approxil, the crossover momentum = (a/K.b)" = 2 TeV/c

mately cut, saylay, > n> + 1. With this assumption, the deduced from the equality in Eq. (27) defines the limit be-

motion is nearly regular in the range of amplitudes conJow which the condition (27) is satisfied. Above this mo-

sidered in our problem [8]. The motion can be crudelyme”tum' the isotropic model substantially overestimates
described by the superimposition of a coupling effect, i.e.{he size of the secondary halo cut by the collimators. At
a slow exchange of, andA,, and of a slow variation of he injection momentum of LHC, op = 0.45 TeV/c,

the combined amplituda, often called amplitude smear- the performance of the cleaning insertiomisouopic cur =
ing. The amplitude of every particle drifts slowly be- 8.4 [3]. The limit obtglned W.Ith a numerical model which
tween two limitsAm, < A < Amae With A and Ao, INcludes real scattering, tertiary halo, and multiturn track-

being correlated by a monotonous function. Couplingn9 iSAcu = 8.0 [1], a slightly better value than the result
and smearing can both be neglected when considerin%btamed with the isotropic model. This indicates that the
a single pass through the collimation insertion, similarly'@nge of the crossover momentum is quite large.

to the case of the residual linear coupling. The par-

ticles which survive to their first pass across the col- H. Secondary halo and quench levels

limation insertion, and which thus have an amplitude Tne jink between the edge of the secondary halo and

n <A <n + 1, will do a few turns before being ab- yhe quench levels in superconducting magnets is not
sorbed. The net efficiency of the system will be only gjrect |t is discussed in Ref. [1] and briefly outlined

slightly degraded by the small change of amplitude aspere — An aperture limitation in the ring delimits a small
soua’Fed to'th.e smearing durlng_ these few turns, Whllg theolume in phase space, in which protons will be captured
COUpI'ng_W'“ Just_mod|fy the azimuth of the_- ;econd IM-"|ocally. The integral of the flux of the halo in that small
pact, which has little or no effect on the efficiency of the,,;;me must be compared to the quench limit. If the edge
system. , y Acu: Of the distributiondN /dA of the secondary halo is
Prlmary_ aperture and nonlinear .effegtsAn Qddltlonal smaller than the aperture of the ririgi,,, the secondary
effect, which is not related to collimation strictly speak- 515 induces no direct losses. Tertiary losses, made of
ing, is, nevertheless, worth being briefly discussed. Ayrqi0ns elastically scattered off the secondary collimators,
proton which is just to touch_ a primary c_oIhmath is also st then be considered and compared to the quench
subject to amplitude smearing and oscillates in a rangfmit On the other hand, it is always important to satisfy

ﬁ1~<_A < ny. Therefore the _effective_ primary aperture o conditionA., < A, because of the steep slope of
is 7i; instead ofz;. The smearing function must therefore dN/dA below A, (see Fig. 5)
cu . .

be evaluated in addition tq,, when designing a collider.
IV. MOMENTUM COLLIMATION

We restrict our discussion to a momentum cleaning in-
If the use of isotropic scattering is adequate to comsertion installed in a straight section, where the dispersion
pare different jaw arrangements, real scattering musfunction is a betatronic trajectory. In that case, the con-
be considered to quantify the performance of a systemiiton D’/D = —a,/B., or, equivalently,y’ = 0 [see
in absolute terms. We give here only a brief outlookEgs. (1) and (2)], must be satisfied at the primary colli-
of a discussion made in [1] where a complete algo-mator [2,9] to ensure that the cut made on the secondary
rithm is described which combines real scattering ancalo does not depend on the relative momentum offset
multiturn tracking. In first approximation, elastic scat- §,. It also strictly reduces the treatment of the momen-
tering of protons in matter is dominated by multiple tum collimation to the betatronic case in a straight section
Coulomb scattering. The angular distribution after scat{2], while outside the straight section the transverse offset
tering of a proton of momenturp through one interac- xz andxs, = D&, must, of course, be distinguished.
tion length of matter is Gaussian with a rms width) . = In the usual case of a ring without substantial vertical
ap~' =3 x 107p~! [rad TeV/c], considering here an dispersion and in contrast with the betatron halo which
aluminum jaw. The quantityr),., is compared to the may drift away from the beam in all transverse directions,
rms beam divergence}; = (45,,m,,/,6'p)1/2 = bp’l/2 = momentum losses are concentrated in the horizontal
6 X 107°p~'/2 rad with the proton mass:, = 0.94 X plane. The most demanding case occurs at ramping
1073 TeV/c? and an average betatronic wavelength=  when off-bucket protons are lost. Most of these protons
100 m. In a proton collider, we use a normalized emit-keep their initial betatronic amplitude at injection [10]
tancee, = 4 X 107 m. The isotropic scattering model and are therefore confined in the range of betatronic
is adequate if the real scattering distribution is wider tharamplitudes A, =~ 2. It is therefore enough to use

G. Isotropic and real scattering
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a single horizontal primary collimator, to which four
secondary collimators must be associated, following the ™
conclusions of Sec. IlIC. Their locations correspond

to the casea =0 of Table Ill, and they limit the
components of the betatron vector after scatteringyte= 10
(nlaKCa z2»I<C)'

In the arc of a ring, the aperture limitation for a 9 |

particle with momentum offset is located near horizontally
focusing quadrupoles where bogh and D, are at their
maximum. In addition, with3, < B, itis thus adequate
to fit the largest horizontal secondary excursivfz +

D&, of the secondary halo with the apertwg. = N, arc 7

at that location. The straight sections of a ring need not be

considered for momentum collimation since the dispersion 6 ‘ ‘ ‘

is usually suppressed in these areas. 0 0.001 0.002 0.003 0004 35,

FIG. 6. The maximum transverse normalized excurst@pRy
A. Amplitude cut with momentum offset of a particle as a function of the relative momentum off8gt
) ) and of the primary collimator aperturg. Each curve is ended
In the general case, a particle reaches the primaryt 5, = §.(n;) where Xmax = Nue = 11.8, a case study for

collimator with a mixing of betatron amplitude and LHC for which we fixed the ratio,/n, = 7/6.
momentum offset. With the dispersign at the primary
collimator, and using the approximation of slow diffusion

(see Sec. lll), we write a high enoughy; must be obtained by matching the
optic such that the corresponding value obtained with
n = x16, + Xg = x16, + A (28)  Eq. (31) is larger tham mip.

and dgflne the Iargest momentum offsgt which can pass V. SUMMARY
the primary collimator asd. = n;/x; with A,g = 0.

After scattering and the cut of the amplitude by the sec- We derived the correlated betatronic phase advances
ondary collimators, the maximum horizontal betatronicbetween primary and secondary jaws which allow one to
amplitude isA, g = [(n; — x18,)> + K2]"/2. Expand- cut the amplitude of the secondary halo of a two-stage
ing A, g with Eq. (10), the maximum horizontal excursion collimation system down to the aperture of the secondary

in the arc is collimators. We showed that an infinite number of jaws
would be necessary to reach that limit. We derived
Xmadn1, x1,6p) a precise estimator of the effective extension of the

secondary halo for a finite number of jaws. We give a

specification that an optic must satisfy for the case of a

and is plotted in Fig. 6. The largest allowed excursioncou'm"Jltlon system made of three primary Jaws and.twelve

X711, X1, 80) = Nie fixes secondary ones. W_e alsp specified the properties of a
maxil ¢ are momentum cleaning insertion.

= Xarcsp + ()(125,2; - 2”1/\/1519 + n%)l/Z (29)

60(”1) = nl/Xl = [Narc - (fl% - n%)l/z]/\/arc» (30)
ACKNOWLEDGMENTS

I b  ered Fia. 6). the lax X The author is indebted to T. Trenkler who pointed him
values be considered (see Fig. 6), the laXgg excursion to Eqg. (20) and to part of the subsequent deductions,

at sm_all6 values would.be cut at the petatron cleani'ngand to D. Kaltchev with whom he had numerous useful
insertion. The system is completely fixed by Choos'ngdiscussions

n; and computing the dispersion which is needed at the
primary collimator,

obtained withd, = 8.(n;) in Eq. (29). Should large;

Yi(m) = o ”1/\2/3“ —. (31) [1] N. Catalan Lasheras, G. Ferioli, J.B. Jeanneret, R. Jung,
Oc Nare — (n3 — ’11)1/2 D.l. Kaltchev and T. Trenkler, inProceedings of the
. o o International Symposium on Near Beam Physiedited
As for the choice ofn;, a lower limit nymn is fixed by D. Carrigan and N. Mokhov (Fermilab, Batavia, IL,
by the acceptable effective cut of the primary horizontal 1997); CERN LHC Report No. 156, 1998.
betatronic amplitude at the edge of the buckgf,. = [2] T. Trenkler and J.B. Jeanneret, Part. AccBD, 287
ni(1 — 8,/68.) with &, the bucket width. In practice, (1995).

081001-8 081001-8



PRST-AB 1 OPTICS OF A TWO-STAGE COLLIMATION SYSTEM 081001 (1998)

[3] D.I. Kaltchev, M.K. Craddock, R.V. Servranck, and [6] D.Il. Kaltchev, M. K. Craddock, R.V. Servranck, and J. B.

J.B. Jeanneret, iRroceedings of the Particle Accelerator Jeanneret, ifProceedings of the Fifth European Particle
Conference, Vancouver, Canada, 19@dited by M.K. Accelerator Conference, Sitges, Spain, 1986€jted by
Craddocket al. (IEEE, Piscataway, NJ, 1998), p. 1432; S. Myerset al. (Institute of Physics, Bristol, England,
CERN LHC Project Report No. 134, 1997. 1996), p. 1432; CERN LHC Project Report No. 37, 1996.

[4] M. Seidel, Desy Report No. 94-103, Hamburg, Germany, [7] H. Wiedemann,Particle Accelerator Physic§Springer-
1994. Verlag, Berlin, 1995), Vol. 2, p. 29.

[5] N. Catalan Lasheras, G. Ferioli, and J.B. Jeanneret, in[8] F. Schmidt, DESY HERA Report No. 88-02, 1988.
Proceedings of the Sixth European Particle Accelerator [9] P.J. Bryant and E. Klein, CERN SL Report No. 92-40,

Conference, Stockholm, 1998dited by S. Myerset al. 1992.
(Institute of Physics, Philadelphia, PA, 1998), p. 242;[10] N. Catalan Lasheras, CERN LHC Project Report No. 200,
CERN LHC Project Report No. 185, 1998. 1998.

081001-9 081001-9



