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Impedance of small obstacles and rough surfaces
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We calculate the longitudinal impedance for small obstacles of arbitrary shape located on the surface
of a round perfectly conducting pipe. Calculations are carried out in a small-angle approximation that
assumes a smallness of the angle between the surface of the obstacle and the unperturbed surface of the
pipe. As an illustration of the accuracy of this approach, we compare the impedance of the triangular
mask and an ellipsoidal protrusion in small-angle approximation with a more general result known from
the literature. We also apply our theory to the calculation of the impedance due to the roughness of
the wall surface in terms of the spectral function characterizing statistical properties of the microscopic
surface landscape. [S1098-4402(98)00019-6]

PACS numbers: 41.75.—i, 41.20.—q

I. INTRODUCTION of the beam to the real part of the impedance. Using
Kramers-Kronig relation between the real and imaginary

Impedanqe calculation is an important part of accel, arts of the impedance, we find the total impedance for the
erator physics that often helps one to understand beao stacle

dynamics and optimize the parameters of the machine. As an illustration of the accuracy of the small-angle ap-

Trying to minimize the !mpedance, the design of new ac roximation, we compute the impedance for two different
celerators usually requires smoother surfaces and small h . : ; )

. X .~ Shapes whose impedance is known from the literature: a
obstacles in the vacuum chamber. Numerical calculatlonts

of the impedance for small obstacles are often difficult t riangular mask [5] and a small ellipsoidal protrusion [6]

: . . We show that our result for these shapes agrees in the
perform because of the necessity of a fine mesh and high o ;
. : imit of shallow shapes and has an addition numerical fac-
accuracy of calculations. On the other hand, using th

N%or if the angles are not small.
smallness of the obstacle, one can try to develop a sim- . ; o
o ; : . As another practically important application of the
plified perturbation theory that would give an analytical : : .
theory, we derive the impedance of a perfectly conducting

expression for the impedance. ; :
The goal of this paper is to develop such a theoryrough surface. As was recently pointed out in [7],

for small obstacles located on the surface of a roun joughness impedance can play an important role for short

. X unches (see, e.g., [8]). Our formula reduces calculation
perfectly conducting pipe of an accelerator chamber. Fo(r)f the impedance for such surfaces to the integration of
simplicity, we limit our consideration by longitudinal P 9

impedance only, although transverse impedance can al éhe spectral function characterizing statistical properties

be found using the same approach. 31 the microscopic surface landscape.

An important assumption that we will use in the deriva-
tion is a small-angle approximation. It means that the Il. RADIATION FROM A SMOOTH OBSTACLE
angle between the surface of the obstacle and the un- IN PIPE
perturbed surface of the pipe is almost everywhere small
compared to unity. A similar approach has been use%
previously in a number of papers for periodic [1-3] and
arbitrary [4] axisymmetric perturbations where the pipe ra
diusb was assumed to be perturbedds) = by + €s(z),

We consider a Fourier component of the relativistic
eam propagating along the axes of the pipe with the
currentlye ~‘@'*i®z/c |n a circular pipe of radiug, the
‘beam carries the radial electric field

with e being a small formal parameter. Our result can be 20

considered a generalization of the previous papers appli- E’(r,z) = F - e, 1)
cable for an arbitrary three-dimensional shape. It reduces

to Warnock’s result [4] in the axisymmetric case. wherek = w/c, c is the speed of light, anél is the unit

This requirement excludes from consideration sharwector in the radial direction. In Eqg. (1) and following,
objects, but allows one to develop a general theoryve drop the time dependent facter«’.
applicable for an arbitrary shape of the obstacle in a wide In a smooth pipe, the beam field is perpendicular to the
frequency range. wall surface and the electric field satisfies the boundary

As the first step in the derivation, we find the amplitudescondition of zero tangential field for the perfectly con-
of the propagating waves radiated into the pipe wherducting wall. With an obstacle, however, the electric field
a beam passes by the obstacle. We then calculate tij#) will have a tangential component on the wall. We can
energy of the waves and relate the radiative energy lossasily find this component assuming that the shape of the
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obstacle is given by the equation respectively. The amplitude of each modg,, can be

r = b(z,0) @) found by integration of the tangential electric fietdE?
T over the wall surface [9],

where we use the cylindrical coordinatesd, andz with . c o 27 B

the axes directed along the pipe axis. Throughout this a,, = TN dz doH,, - X EY),

paper we will assume that the angle between the obstacle e 0

surface and that of the round pipe is small, which means (8)
IVb| < 1. 3) whereH, ,, is the magnetic field of the mode, an , is

the mode norm defined as
This is the condition of small-angle approximation. We c
will also assume that the height of the obstacle is smallV,,, = T an
compared to the pipe radius, .

|6(6,7) — byl < by. 4) XfrdrdG(EnJ”m X H, + H' X E, ). .

n,m

In the small-angle approximation, the tangential com- )
ponentE; of the beam electric field (1) on the surface of Having found the amplitudes of the radiated waves, we
the obstacle is can calculate the energy lost by the beam per unit time

s 20y g 1 as a result of the radiation. This energy is carried out to
E; = Do e 0, bo bo(z,0),b.(z,0) |, (5) infinity by the propagating eigenmodes; hence
where the three terms in the brackets denote radial, P = Z ZP,”,,(Ia,j’ml2 + |an_,m|2), (10)
azimuthal, and axial components, respectively, and the TE,TM n,m
subscript indicates the derivative with respect to thewhereP, ,, is the energy flow in the eigenmode of unit
indicated variable. amplitude. The summation in Eqg. (10) goes over the

The total electric field in the pipe with the obstacle canmodes with the cutoff frequency below.
be represented as a sum of the vacuum beam field (1) andFinally, we can relate the energy loss of the beam to the
the radiation fieldE”, E = E® + E", where the latter real part of the impedance [10]

satisfies the boundary condition 2P
. , ReZ(w) = 5. (11)
Ellvan = —E; lwan » (6) Iy
so that the sunE” + E’ has a zero tangential component Il. EIGENMODES
on the wall.

Because of the small-angle approximation, the tangen- In this section, we write down the expressions for the
tial field E? is a small (first order) quantity proportional €lectric and magnetic fields in TM and TE modes in the
to the angle between the tangent to the surface and tHdraight circular pipe and calculate the energy flux and
pipe axis. Since we assume that the height of the obthe norm of the modes.
stacle is also small compared to the pipe radius [Eq. (4)], The electric and magnetic fields in the T mode of
in order to find the radiation field in the first approxima- frequencyw are

tion, we can use the boundary condition (6) on the surface Epm = (Epm + Z2E.um)e' 7k, (12)
of the round piper = by [rather than on the surface of -
the obstacle = b(r,z)]. This introduces a second order H,, = H, e 7, (13)

error that is proportional to the product Bf andb — by,  wherez is the unit vector in the direction, and

and can be neglected. Hence the electromagnetic problem w2 A\
reduces to solving the Maxwell equations in the circular Epm= L{"h(un,m b—>e’”", (14
pipe with a given nonzero tangential electric field on the bo 0
wall. The solution can be found in textbooks on electro- im0k A\
dynamics; below we will follow the formulation given in Epm =" % J,ﬁ(,un,m b—)d”"
Ref. [9]. 0 0
The radiated fieldar from the obstaclean be repre- ~ O kym r\
iy . : —p—2"y — Je™? 15
sented as a superposition of eigenmodes in the smooth n\ Knm bo € (15)
pipe, TE,,, and TM,
P — e ) im0
E" = Z ZaerEnim’ 7z — *oo, (7) .7'[,1,," =T cr Jn('u”m bo)e
TE,TM n,m
where we denote modes propagating in the positive + 9M]ﬁ(ﬂn,m L)eine, (16)
and negative directions with the plus and minus signs, cbo b
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wherek, , = k% — (unm/bo)?, J. is the Bessel func- Note that, in contrast to the TM modes, the norm of the
tion of ordern, and w, , is the mth root of J,. The TE modes is positive.

integern can take both positive and negative values, cor-

responding to the right and left circular polarizations of IV. IMPEDANCE OF TM MODES

the waves. The variable accounts for the direction of _

the propagation; it is equal te-1 for modes propagat- We can now cglculate the rfeal part of the |mpgdance'for
ing along thez axis and—1 for modes propagating in @n obstacle of given shape given by Eq. (2). First, using
the opposite direction (the superscriptiiv and H* in  EQ. (5), we find the tangentlal electric f|_eId on the su_rface
the previous section correspondsato= +1). We define  ©Of the obstacle and, using Eq. (8), we find the amplitudes
kn.m SO that above the cutoff, ,, > 0; below the cutoff of the radiated waves. With given amplitudes, using

k. is purely imaginary with Int,, ,, > 0. Eqg. (10), we find the energy radiated by the beam and,
A simple integration gives the energy floR,, in a  Using Eq. (11), we find the real part of the impedance.
TM mode of unit amplitude Since the radiated energy is a sum over all eigenmodes

in the pipe, the total impedance will be represented by
P, = 1 @knmp2 T (o) (17)  contributions from TM and TE modes,
5 8 s n.mvn n,mj s
and the norm of the mode Z=1Zm + Zme. (26)

Num = —4Ppp . (g) In this section, we will focus on the derivation @y,

] ] ) leaving consideration dfrg for the following section.

absolute value equal to four times the energy flow in thegsitive realw resulting from the calculations outlined

mode. above is given by the following expression:
For TE modes we have o w
Enp = Epme e, (19) ReZm(w) = > > > ReZyulw,0), (27)
n=—wom=] o==*1
Hym = (H ,m + 2H,p)e (20)  where
here k A
wher Rezn m(a)s 0-) = 5 . |Sn(k + ok, m)lza
2 > 2 5
Vim r inf bycknm
Hzn,m = > Jn Vapom 7 |€ (21)
bO by k> Mn,m
by ’
. il/n’mUkn,m / L iné
Hom =15 J”(”””” b0>e ReZu(w,0) =0, k< =, (28)
0
A knm I
) noKy,, Jn<Vn,m L)emﬁ’ (22) and
r b() o
30 = [ desies (29)
fnm i.M‘IYl(VnmL)eln()
' cr " b 1 (2
. S(z) = — do Ab(z,0)e™?, 30
. é len,m Jlll(vn’m L)eine, (23) ( ) 27T ,/;) ( ) ( )
cbo bo where Ab = b(z,0) — by and the prime denotes the

knm = K2 — Wnm/bo)?, andv,,, is themth root of the ~ derivative with respect to the argument. We remind
derivativeJ/. As aboven varies from—x to o, ands  the reader here that for propagating TM modgs, =

accounts for the direction of the propagation. (K2 — ,u,%,’m/b(% > 0.
Calculating the energy flow in the mode, one finds Using the Kramers-Kronig relation between the real part
, 1 ; R (1 n? )ﬂ( ) 2) of the impedance and the full impedance (see, e.g., [10])
nm = o WKnmVy - 5 MaPam), . o / /
8 Vi Z(w) — _L] ReZ/(a) Ydw ’ (31)
and the norm of the mode is equal to four times the energy TJ-w O T W@
flow one can find the total impedancé by integration of

ReZ(w). This calculation is performed in Appendix A,

Nym = 4Ppm . (25) | and the result is

2k 1 Y % ()i _
ZTM((U) = _Zk—((z))f ]7 dz duié(z)[iz(u)] elk(z u)+ikymlz u|, (32)

2
bOC n,m
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where the asterisk denotes complex conjugation.
Introducing the Fourier componehyf(x)

$a(k) = i [, dk 5,(z)e'™*, (33)

we obtain

Zrn(w) = boc% mf f K AS, () [, (V)] dmmj ] dz du e'*rmlz—ul=i(Au=kz) (34)

The internal integral over andu can be easily computed if we assume, for convergencekthahas a small positive
imaginary part, due, e.g., to a weak damping of the modes,

zre - . A1rik
ikymlz—ul—i(Au—kz) _ n,m —
]ﬁw fimdz due (k - 8(k — A), (35)
which reduces the impedance to
8mik 13, (V)
z = - A2 da , 36
milw) = =7 me (K + AP — Uy + 102 (39)

where we explicitly indicated that, ,, should be treated as having a small positive imaginary part. From this integral,
we see that the real part of the impedance arises from the singular points of the integral where the denominator of the
integrand vanishes.
In case of axisymmetric obstacte= b(z), all harmonics withn # 0 vanish, and only terms with = 0 contribute
to Egs. (32) and (36). In this limit, Eq. (32) reduces to the result obtained in Ref. [4].

V. IMPEDANCE OF TE MODES

Derivation of the impedance for TE modgsg is analogous to the TM case. Below we will outline the calculations
in this case.
The real part of the impedance for TE modes is given by

ReZrg(w _Z > > Rez,u(w,0), (37)

—om=1o=%1

where now
ReZ, (v, ) = n’ Rym(k + ahy )P k> 2
nm\@, T n,m O Knm)l s >
’ bockkn m(wi,, —n?) 7 ’ bo
(38)
ReZ, .(w,0) =0, k< Lo
b
and
R © V2
Rn,m(f) = f dz |:O-kn,m§;/1(z) - b2 Sn(z):| (39)
% 5

The total impedance in this case can be found from the Kramers-Kronig relation and, as shown in Appendix A, is
given by

Z(w) = M i (40)
where
Y mef f dz du Ty (2) [P ()] 70 el (41)
and
Fom(z) = i]% dO [kymb3s.(z,0) — iv?, s(z,0)]e™’ (42)
n,m\Z 27 Jo n,mPySz\Z, nmS\Zs .
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Again, using Eq. (35) one can carry out the integration qvendu and, similar to Eq. (32), obtain
ki n? ]“’ m 215,V
by G =) ST e+ A = (kg + 002

Zrg(w) = — (43)

For the axisymmetric case, whépn = 0 for n # 0, the | system related to the tangential plane at the location of
impedance of TE modes vanishes. the obstacle, withk = byf (see Fig. 1). Recalling the
definitions of Egs. (30) and (33) one can write
VI. TOTAL IMPEDANCE FOR SMALL 1 ° o
OBSTACLES $(kz, ki) = mfmdz dx Ab(x, z)e! "5 (4T)

Our result given by Egs. (32) and (43) is valid for wheres(«., x,) is now expressed in terms of the bump
arbitrary frequency and transverse size (width and lengthghape in the local coordinate system on the surface of the
of the obstacle under the conditions given by Egs. (3wall.
and (4). For example, these equations can be applied For an axisymmetric protrusiom = b(z), one can
for smooth transitions of the length much larger than theshow that in place of Eq. (46) one obtains
chamber radius. In this paper, however, we are mainly dikr [
interested in the limit when the characteristic transverse Z(w) = — f dr, 13(c) k.|, (48)
size of the obstacle, which we denote Ry is much cbo J -
smaller than the pipe radidg. We will also assume that Wwhere
the frequency of interest is not very large compared A 1 * iz
with the inverse transverse size of the obstacle multiplied $(rz) = o f_m dz Ab(z)e"™ . (49)
by the speed of light, so thag < 1. In this limit, as we
will show below, the expression for the impedance can be
significantly simplified. VIl. TWO EXAMPLES

It turns out that in the limitg < by, the main contri-
bution to the sums in Egs. (32) and (43) comes from the In this section, we calculate the impedance of an
terms such thali, .| ~ 1/g, and hence:, m > 1. This ellipsoidal bump and a triangular mask using expressions
means that,, = wnm and kym = ignm/bo, and we from the previous section and compare them with results

can negleck in comparison with in Egs. (32) and (43), known from the literature. o
First, consider a small ellipsoidal protrusion in the
Z(w) = Zmv(w) + Ze(w) chamber, for which

_ Bk [ LA 1} Ab(z,0) = =y = —hoy/g> — 2 — 22, (50)

2 _
cby L Vi — 1%) where hg is the height ang is the width of the ellip-
® 2|5 2 soid (see Fig 2). Assuming that < by, in the limit
[T By (see Fig 2) g that < by
— )\2 + (Vn,m/b0)2

The summation over index can be carried out, and, as
shown in Appendix B, one can obtain the following result:

dkai [* * A2bj
Z(w) = _77;1] dAf dn |3,V =2
0 —o0 —o0

z
\bGA? + n? ~ >
(45) - /
It is convenient to introduce here new variables= ! r
A, kx = n/bo, andk = \/«k? + «2, so that
4ik * > 2
Z(w) = == er dxzf diey |3(kz, k)P =,
Cb() —o0 —o0 K
(46) z
0

-

—_—— - = - —

where we use the notatiof(«,, x,) = bp$,(A). The
variablesx, and k, have a meaning of wave numbers !

in z and x directions, respectively, in a local coordinate /
/

—_—

. FIG. 1. A local Cartesian coordinate systemyz on the
INote that this frequency can be much larger than the cutofkurface and a cylindrical coordinate systegr in the vacuum
frequency~c/by. chamber of circular cross section.
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l L
0.8 .
% 0.6 - .
K i
FIG. 2. Ellipsoidal protrusion on the wall. 04 1 7
02 5
of frequencies such thatk <« 1, the impedance of such e
an obstacle in small-angle approximation can be found 0.2 0.4 0.6 0.8 1
using Eq. (46). Note that the small-angle approximation ho/g

requires thathy < g; this condition guarantees that the G.3. Ratio of the small-angle approximation impedance
angle between the bump surface and the horizontal pla . q (52), andZ given by Eq. (53) as a function of the

in Fig. 2 is small everywhere except the edges where thigjjinsoid aspect ratio.
angle equal90°.

The Fourier image (47) for the ellipsoid (50) can beshape, one finds

easily found
. 2h K
hog? Sink — K COS §(k) = ——2 8K _
§(k) = 08 K — Kk COSK , (51) 5(k) oK (COS > 1). (55)
27T K3 . - . . . .
which gives the following result for the impedance of thePutting this into Eq. (48) gives for impedance in the
ellipsoid: small-angle approximatiorz{ < g)
Zokh? *  sink — Kk COSk ikZohy
Zo = 0_28] Jx SINK_— K COSK Z, = ~2(n2) "5 (56)
) 4by Jo K4 700
7 k2 A more general formula for the triangular mask, valid
— ;20 gg , (52) even for large ratioso/g (but ko, g < by), was derived
24b; in Ref. [5],
where the subscripka indicates that this formula is ikZo
obtained in the small-angle approximation. = - (@, + gho), (57)
. . 47Tb()
This result can be compared with a more general
expression obtained in Ref. [6] and valid, in the limit of Where )
small frequencies, for an arbitrary ratio &f§ and g (but B h 58
g, ho < by), 1 de ™ g sinfzv)['(1/2 — v)I'(1 + ») |’ (58)
5 _
_ _iZOkhozg I ho + |05 ho -1 , andv is defined by
67Tb() 8 8
2hyg
(53) tanry = —. (59)
8
where
hw=3 | € (5
2Jo (&4 (g + a2 9
The ratio Z,,/Z is shown in Fig. 3. It is seen that, < >
for small values ofhy/g, Z,, agrees with the exact ho
formula (53); however, for larger aspect ratios, the small-

angle approximation underestimates the impedance. For
ho/g = 1, corresponding to a semisphere, the small-angle
approximation gives about 2 times smaller result. We
remind the reader here that the assumption of the small-
angle approximation breaks down whien~ g.
Another example where the small-angle approximation
can be compared with a more accurate theory is the case - — — — - — —-

of the axisymmetric triangular mask shown in Fig. 4.F|G. 4. Axisymmetric triangular mask. The dashed line
Using Eq. (49) for the Fourier spectrum of the triangularshows the axis of the pipe.
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sa F and the spectrum(k,, ,), equal to the Fourier image of
I the correlation function,
22 F ]
i ] 1 o
2 3 R R(Kzs Ky) = 2 )2 f dx dz K(x,z)e "2 7Her, (63)
Naig| 3 &
N s 1 Putting Egs. (62) and (63) into Eqg. (61) and performing
16 L = ) . . :
. integration over the surface of a pipe of lendtlyives
1.4 F ]
r boL
12 - ] 80z, k)P) = 57 R(kz, 1), (64)
1 L PSS A TS S SO SO A SO S SN A S S 27T
0.2 0.4 0.6 0.8 1 with the averaged impedance of the rough surface
ho/g
ikZyL K2
FIG. 5. Ratio of the small-angle approximation impedance Z(w) = — 2mbo fd"z deR(Kz’Kx)f~ (65)

Z.., EQ. (56), andZ given by Eq. (57) as a function of the

triangle aspect ratio. For an isotropic surface, such that all directions on

the surface are statistically equivalent, the functi®n
A comparison of the two results is shown in Fig. 5. depends only on the absolute value of the veéqr «.),

Again, we have a good agreement between the two modR = R(x), and Eq. (65) reduces to

els in the limithy < g; however, increasing,/g beyond Kz L [

the limit of the applicability of the small-angle approxi- Z(w) = —1—0] k> dk R(k).

mation leads to the overestimation of the impedance 2bo Jo

by Zyq. As an example of statistical description of the surface,
we consider here a model of a fractal landscape, with
a spectral function decaying as a power of the absolute
value of the vectok,

(66)

VIIl. RANDOM SURFACE

With a small modification, our analysis can also be

applied to the case of a rough surface. We assume that A

such a surface consists of randomly distributed bumps R(k) = <’ K > Ko,

with a characteristic scale of the burgp<k by, and the (67)
frequency of interestv satisfies the inequalitwg/c <« R(k) =0, Kk < Kg.

1. The small-angle approximation also assumes that the . o

typical angle between the tangent to the surface an@ Picture of such a surface is shown in Fig. 6. In order
the horizontal plane is small. We can use a statisticalo avoid divergence at small values af, we limited
description of the rough surface in terms of the correlatiori’® spectrum from below by some small valug The
function and its spectrum. In this approach, the impedancgonstant is related to the rms height of the surface

given by Eq. (46) is averaged over the random distributiorPUmPs

of surface bumps, and the averaged valdéx., «.)|?) is

used in Eq. (46) instead ¢f(«., «,)|>. To carry out the

averaging we start from the equation

(21 ) f dx dy Ab(x, Z)eiKzZ+iK,\-x
T

13(rez, )P =

% f dx/dylAb(xl’zl)efikzz’fimx”

(60)
which directly follows from the definition of(x_, «.).
Averaging this equation gives

1
a 2\ I g/
(15(k;, ko)|?) (277_)4fdxdy dx' dy
X (Ab(x',z/)Ab(x, z))e!*:F e Tikbr=x)

(61)
At this point we introduce the correlation functidf(x, z)
such that

K(x — x',z = 7)) = (Ab(x', 2)Ab(x, 2)),

(62)

064401-7

* 2m7A -
d* = 27Tf kdk R(k) = 7 Ké 1
0 q — 2

where we assumg > 2 for convergence of the integral.

Calculating the impedance with Eq. (66), we find the
impedance of a round pipe whose internal surface is
characterized by the rms height of the burysand
parametetc,

(68)

ikZy q — 2

Z —_ —
@) = = e g -3

d’kq. (69)

The inverse parametek,' can be associated with a
characteristic correlation length of the bumps on the
surfaceleor ~ Ko ' The structures on the surface tend
to be uncorrelated on the distance that is much larger than
l.orr- Equation (69) shows that the impedance not only
depends on the rms height of the bumps, but also on the
correlation between the location of the bumps relative to
each other.
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FIG. 6. (Color) Fractal surfaces fgr= 3.5 andg = 4 (in arbitrary units). Smaller values gf give more “spiky” profiles.

IX. CONCLUSION where
In this paper, we derived a general expression for 7 () = i Z fw ReZ, m(w',o)dw’ a2)
the longitudinal impedance, Egs. (36) and (43), of a ™" T o o — ’

o==*1

rotrusion of arbitrary shape located on the surface of a L . .
Berfectly conducting Xi:ylindeical pipe. We assumed thatand REZ, . s given by_ Eq. (28). /In the last integral, in
the height of the protrusion is much smaller than the pip prder to avoid smgularlw el = w’, One has to assume
radius, and we also used a small-angle approximation f at ha_s a small positive Imaginary part, as shown in
the shape of the protrusion. These general expressions f {9- .1i Slnt(_:e Rg”t’ﬁ I ire]ro belovlv thelc:z)ff freql;ency,
the impedance can be significantly simplified in the Iimitthg I(?u'?o%;afrlgnugic n %COtrgpooe);lgr? thgofesal rg)r:iws
of relatively small frequencies g/c < 1, with the result d f _w? ~ yc'“"’”;) 0 h 'gF' 7 (Not
given by Eq. (46). The impedance in this limit is purely and trom 0 C'“”’m/. 0, @s shown in g. /. ( ote
inductive and can be easily computed for an arbitrar)}hat the real part 01: the impedance is an even function of
shape of the protrusion. In two examples, we showed the{{e\(/qvuency for :je"ﬁ" ) the lonaitudinal b
our result agrees with previously calculated impedance fo € , n(_)w /2e |£1e_ 2e 02n9/|2u ina f wave n;m;] er
these specific shapes. Those examples also demonstréﬂéﬂ(w ) = (0"/c* = p,,/b) " as a function of the

the accuracy of the small-angle approximation—eve omplex variablew’, SO that it is an analytic function in_
when this approximation is formally not valid, it still he complex plane with two cuts going along the real axis

SR ) i p
gives, within a numerical factor, the right expression for@s shown in Fig. 8. As shown in this figur,,,(«")

the impedance is real on the edges of the cuts and takes positive and

Extending our consideration, we applied it to the casdegalve signs there. With this definition, we can now

of a rough surface. For such a surface, the result can b%hange the inte.gration path of Fig. 7 to two contodis
nd C,, shown in Fig. 9, that go on the upper and lower

expressed in terms of the spectrum of the roughness. I?\d es of the cuts passing around the cutoff points
a simple example of a fractal landscape, we showed how9 P 9 P ’
to calculate the impedance. Our result indicates that not i ReZ, (o', 0)dw’
; e ; Z, m(w) = - .
only rms height of the surface is important, but correlation ’ 7w Je +c, w — w
properties of the landscape should also be taken int

consideration.

(A3)

Riote that the summation over is removed in Eq. (A3)
because the contributions from negative valuesrodre
now included in the lower branches of the contodrs
ACKNOWLEDGMENTS andC,. It turns out that the integral in Eq. (A3) does not
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Im w'

APPENDIX A

To calculate the total impedance of TM modes, we
will represent it as a sum of contributions from different
eigenmodes, m [see Eqgs. (27) and (31)], FIG. 7. Complex planew’ and the integration path for

®  ® Eq. (A2). The points A and B correspond to the cutoff fre-

Zrm(w) = Z Z Zum(w), (A1) quency—cp,.m/bo andcu, . /bo, respectively. The frequency
n=—wm=1  has an infinitesimally small positive imaginary part.

w
.—>_‘
B

Re
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Im w - R
»
- >
Kn,m=<0 T kn,m>0 o
NS \S AN >
A B k. _<0 Re o' N \
Knm*0 ‘ wm . A T B (:0. .
\ yaN »
—L < <
FIG. 8. Complex planaw’ with cuts indicated by the wavy '@ ¢ c, .Reo
line. The first cut goes along the real axis freme to A, and ' K
the second one from B t®. Functionk, ,(w’) takes positive
and negative values on the edges of the cuts, as shown in the .
figure. N s

.. . FIG. 9. Complex planew’ with the integration contours’;
depend onr, and both positive and negative valuesoof  andc,. The pathC; + C, can be closed by adding infinitely
on the right-hand side give the same result. large semicircles shown by dashed lines.

Using Eg. (29) we get

loop in Fig. 9 (with the cutoff frequency nowcv, /by
1S, (k + k)l —f f dz dus,(2) [5, ()" rather thantcu,,,../bo). The only difference arises from
et okon) a—1) the fact that the real part of the impedance, Eq. (38), has
X e , (A4) 3 singularity atw = 0. As a result, after closing the
and contour of the integration, there will be two residues in
the integral: one ab’ = » and the other ab’ = 0. This
Zym(®) = — f f dz dus(z) [5 ()] leads to the expression Eq. (40) in which the first term in
' wb0c2 the numerator is due to the residuewat and the second
" f do’ ' ko) () one is due to the residue at the origin.
C+C, o —w kn,m(wl)
(A5) APPENDIX B

We can now close the integration path by infinitely . For large values ok andm, one can use the following

large semicircles as shown in Fig. 9. The contributionIdentlty for the roots of the Bessel functions [11]

to the integral from those semicircles will vanish because ~ nf ﬂ (B1)

of the exponential factoe 7 '™ %n.(=4 jn the integrand, e ’

if we chooseo =1 for z —u >0 and o = —1 for
. , where the function is defined implicitly by the

z — u < 0. Then the integral reduces to the residue al f) pHcttly by

bquation
o' = w, and we obtain as a result Eq. (32). q |
Calculations for TE modes are completely analogous xf(x) =+/f2 =1 — —. B2
to the TM case with the same transformation of the / ! f (B2)
integration path from the one shown in Fig. 7 to the cIosIedDUtting Eq. (B1) into Eq. (44) gives

B Skm‘ A5,V
Z(@) = e 1[‘“ A2+ (nf/bo)?
_ 8kmi f? A2[3,(W))?
- f dm dn Y f dA 5 s I (B3)
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