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Spatial resolution in optical transition radiation beam diagnostics
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An evaluation of the optical transition radiation (OTR) single particle image dimension is obtained
using diffraction theory based on a realistic description of the radiation source. This approach allows
the analysis of the effect of the finite size of the emitting screen and of the imaging system. The role of
practical experimental conditions in treating the intensity tail problem is estimated. It is shown that, by
exploiting the polarization properties of OTR, a considerable enhancement in the spatial resolution can
be achieved, which becomes very similar to that of a standard point source. [S1098-4402(98)00017-2]

PACS numbers: 41.60.—m, 41.85.Ew, 41.75.Ht

[. INTRODUCTION In contrast to [3], it was shown that, unlike standard
diffraction patterns from a point source, OTR images
from a single particle have a minimum at the center. In

for charged particle beam diagnostics, suggested initiaIIY7] attention was also drawn to the fact that the OTR

by Wartski [1] and later developed by Rule and Fiorito . .
[2y3] - the[la]lst decade has bert)en ex>r/JIoited at a number?SOIUt'on depends strongly on the way full width at half

of accelerators with beam energies ranging from 1 Me\}Ea)i'mum (FWH(;\A) or :jms W|q|t_hs ﬁre.deflngd,(?ecz_abusg of
[4] up to 4 GeV [5]. With modern powerful optical the long energy dependent tail in the intensity distribution,

detectors, OTR based devices prove to be compac'fmd is influenced by the sensitivity of the detector.

reliable and inexpensive, radiation and heat resistant’ In this paper we try to give a more general and
: P v ... _consistent treatment of the phenomenon with the purpose
capable of high time resolution, and cause very little

disturbance to the beam because the thickness of targecff clarifying those aspects that have so far been leftin the

is only a few microns or less. The technique has alreadﬁﬁadow'

given excellent results and is considered one of the basic
diagnostic tools for future projects. Il. OTR SOURCE

Until recently, certain doubts about the ability of Normally, it is mostly the source that defines its image;
OTR to measure the profile of very high energy beamsye therefore found it natural to start our examination by
existed because it was believed that its spatial resolutiogjying attention to the source properties. For OTR this is
would decrease with increasing beam energy. The origipot trivial, given that the charged particle field diverges at
of the argument came from the fact that decreasingmall distances from the particle location.

the “effective” angle of emissiord ~ y~" (y is the We start by considering the transition radiation emerg-
relativistic factor of the beam) would give a limit of the ing in the backward direction when a chargemoving
order of 1y in the two-point resolution, due to the well- i, yacyum with constant velocity enters normally into
known diffraction phenomena. On the other hand, they perfect conductor whose surface coincides with plane
decrease of the emission angle is strictly related to the _ (Fig. 1). This problem is well known and details
linear increase with energy of the transverse extensiopsn pe found in many books (see, e.g., [8]). Hence we
of the electromagnetic field of the charged particle.give here only a few formulas that illustrate our conclu-
often identified as the OTR source. For a wavelengttyinns and are useful for further analysis.

A in the optical domain, the above Ilmltlng resolution  The moving charge field can be described by a super-
would render OTR useless for beam profile measuremenisysition of plane waves (pseudophotons) whose electric

already at a few GeV. _ _ components, transverse to the charge velocity, are
However, more detailed considerations [3,6,7] show

that the spatial resolution is mainly determined by the E9 ( _ _ATIq iofuy. _ Hxy
. 2, % 0) e ,

angular acceptance of the optical system used to detect the Y 2 + a?
radiation rather than by the effective emission angle and w cosy
does not significantly differ from that due to the standard a=—, Aoy = %[ . ] (1)
diffraction limit for this case. vy sing

In [6] the first serious analysis of the problem waswherew is the radiation frequency anglis the angle that
given, and a correct calculation of the OTR intensityvector» makes with thex axis; %, , can thus be inter-
distribution in the image plane was made, in the contexpreted as the transverse components of the pseudophoton
of geometrical optics, for a highly relativistic regime. wave vector. The boundary conditions on the conducting

The application of optical transition radiation (OTR)
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In Eq. (5),J; is the Bessel function of the first kind and
the function{ of dimensionless variables entirely defines
the radiation field evolution in space. At= 0, |Z|> can

be considered the source intensity distribution. Formally
the integral over must be taken from zero to infinity. In
this case,

7 2
1£2,0,0,kp)l? = ‘ W . ®

where K; is the modified Bessel function. The ex-
pression on the right-hand side of Eq. (6) is known as
the Weizséacker-Williams distribution of pseudophotons.
Therefore Eq. (6) treats the OTR source as a bunch of
pseudophotons and transition radiation simply appears as
a reflection of the charge field. On the other hand, as
directly follows from Eq. (5), the waves with> 1 are
rapidly attenuated as the distance from the origin in-
creases. These waves correspond to short distance static
fields and do not give an appreciable contribution to the

FIG. 1. The moving charge field can be represented by a s&hrmation of the image. The value= 1 (x = k) is the
of pseudophotons whose wave vector transverse and IongiIUdrlhaximum achievable for real photons

nal components are andw /v, respectively. Transition radia- . . -
tion appears as a result of the interaction of pseudophotons with It IS @ well-known concept that free fields originated
the conducting boundary. by discontinuities in the motion of charged particles,

or in the dielectric properties of media, need to travel
for a distance called the “formation zone” before being

surface give rise to a radiation that propagates into fregomplgtely “disentangled” _from the parFicIe .field an.d
space, away from the boundary. In the case of an ideé’}cqu'”nt? allr?fttr;]e properties of a I’adlatl_?ﬂ field. tThlsd
conductor, the transverse components of the radiatiotT f_ex_a_c y ;Nhaf appens in our case. € most use
electric field can be obtained directly from Eq. (1): efinition of the formation zone Is

¢)\
NY

AN

E (ww) = 4mrig ik Ry I =A/27(1 — Bcosh). @
xy % v %+ a?’ For ultrarelativistic particles this length can be very large
k, = k2 — %2, k=w/c. (2)  along the particle path, but for a backward radiation it is
. _ . of the order ofA /4.
The z component is found by using di" = 0 that gives Figure 2 shows the field radial distributions
) . E] + %,E] |£(2,0,kz, kp)| and |£(1,0,kz,kp)| at different dis-
E, = _T. (3) tances from the origin plane (propagation path). It

S ) ) is evident that within less than a wavelength the two

Because at relativistic energies, which are those of practiyisyriputions become identical, i.e., within the formation
cal interest, the longitudinal field component is consider,gne the pseudophoton field transforms into a real photon
ably smaller than the transverse ones, for simplicity, it isje|q, and this transformation eliminates the discontinuity

not further taken into account in this paper. atp — 0.
By superimposing all plane waves of Eq. (2), one ob-  yc|uding the short range field, we can conclude
tains the radiation field as a function of space coordinategyat the effective source distribution is determined by
. 5 ) . SRR

g Xy o |{(1_,0,0,kp)| . Thg resolytlon provided by this (ﬁstp— _

El(z,p 0)= E[ dn 55 ¢"e™ . (4)  pution can be considered in a natural way as the intrinsic
one. In reality, the diffraction phenomena produced by

me:e p_'s the radlgl v_ector_ IylngAlfrtl the;,y plane, SO every finite optical system introduce limits that consider-
atx = pcos¢ andy = psing. er integration over ably modify this value.

angley, Eq. (4) can be written in the form

2qk | cos¢ [ll. PROPAGATION THROUGH AN OPTICAL
Er I . s ’k ak 5 '
w2 p.0) v [sump ]g(w 0.kz.kp) SYSTEM
[ 1? —iwT=F When the OTR source is properly defined, in order to
£lrn 1w, u) = [T, o By)2°¢ A1) find its image it is necessary to calculate the OTR field

(5) transmission through the elements of the optical system.
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08 [ e T T e e e which, according to the theorem, can be obtained from the
F 1 1 known field on the surface Considerings the conductor
8L | @ + ®) boundary, the functio in the right-hand side of Eq. (8)
[ =0 1 z=0.16A | . .
04l I is exactly represented by the or y field components
— T 1 of EqQ. (4),n is the unit vector normal to this boundary,
< o2f W andr’ is the vector from an arbitrary poimR;(x;,,ys) on
c%: A 1 - ] the boundary to the poinP;(£, ), so thatr’ = |r/| is
3 oF A the distance between these two points. The integral in
S 03 I @ | Eq. (8) is actually calculated across the whole boundary
O I surface. As indicated in Fig. 3, three different sets of
=~ 02 T coordinates(x;, y;), (£,7), and (x,y) are used for the
1 source, lens, and image planes, respectively. Substituting
01 s Eq. (4) computed at = 0 into Eq. (8), one can derive
0 ““‘]““‘ the following expression fot/_(P;):
0 05 1 15 2 25 0 05 1 15 2 25 3 k Ky
o 000 = 325 [ o [ an s
FIG. 2. The dimensionless functiah represents the normal- ek ke
ized radial distribution of the OTR field in the backward di- X e'™Ps — <f + ?Z’> 9)

rection at different distances from the plane of origin for . o
By = 1000. The radial coordinate is given in units of the where#' = r’/a. Equation (9) shows explicitly that the

wavelength. Solid lines correspond to= « and dashed ones field on the lens surface is built up from spherical waves
tor =1 emanating from every point of the source with amplitudes
varying from point to point. Now we can use the standard

To do this we follow the ordinary technique [9] based ;implification corresponding to the Fresnel approximation

on classical Kirchoff diffraction theory. For the sake of " the diffraction theory

simplicity, let us approximate the optical system by a thin e ~ et o (k/20) [(E=x, P +(n—y,)*] (10)
abberation-free lens located at distangeendb from the r! a
source and image planes (Fig. 3). The validity of Eq. (10) assumes that the distance between

We will first find the field on the lens surface nearest tothe source and the lens is large compared to their
the source. In principle it can be deduced directly fromtransversal dimensions and, therefore, we can neglect
Eq. (5); however, it is more convenient for this purpose tovariation of the field amplitude along the wave front.
apply the well-known integral theorem of Helmholtz and With the same accuracy we can git= a/r' =~ 1.

Kirchoff [10] As is known, a thin lens simply introduces a phase
delay that is a function of the coordinates on the lens

ikr' ikr'
U-(P) = if[v i (e >— ? ﬂ}ds. 8) surface

dar an \ 7/ r’ on

Here scalar field/_(P;) stands for one of the OTR field
components at an arbitrary poift, on the lens face,

h(&, n) = e—i(k/lf)(fz*'ﬂz), (11)

where f is the lens focal length. Hence the field on the
lens face opposite to the source is

Us(P)) = U_(P)e” *2DE 7 (12)
A At this surface we can again apply the Kirchoff integral
P theorem, thus finding the field amplitude on the image
g . plane. Under the assumption that the obliquity factor
P J is equal to 2, and using a similar simplification as in
¢ { Eq. (10), this gives, for an arbitrary poimt(x, y) of the
> image,
0 a b \ z k €ikr
P UP)=-— | U+(P) ds;
2mi Jy, r
k e”‘b ; 2 2
Wy Xy ~ Uy (P))e! K/ 2DIE+ =y g
N Tl 1
&en (13)

FIG. 3. Image of the OTR source is formed by a thin lens!n EQ- (13) the in'Fegration is carried out over the lens
placed at distances and » from the source planéx,,y,) and  aperture. Collecting the results throughout Egs. (9)—
the image planéx, y). (13), omitting common phase factors not depending on
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integration variables and recalling th&t P) refers to one 2 J cos¢ | Ji(kdp/a)
of the OTR field components, we find 0 ¢

sing p
k2 _ 1 COSgp - J2m(59) J2m(5ps)
Ex,y(P’ w) = 9 3. ch - E{Sin } Z R ’
(2m)3i abv ¢ )= 4 Ps
kd
y f o A,y o*Ps pi(k/2a)p} <& + 1) R, = —8mm, 6=—. (18)
%2 + a? k a

Using Egs. (17) and (18), Eq. (16) can be reduced to
X f d& dme K/ OLECTx/M)Tn(ysty/M]

qg 1 |cose x2dn [k,
(14) Exy(P,0) = ZWUM{SingD}] x2+a2<k * 1)
where M = b/a is the lens magnification. The last X Z RmM
integral taken across the lens surface describes the effects m=1 %
of the optical system on the image due to diffraction k) 2a)p?
from the finite lens aperture. For symmetry reasons, X | dpse P J1(eps)Tam(8ps) . (19)
a cylindrical coordinate system is more convenient for
further calculations. In addition to the notations in
the source plane; = p;cos¢ and y; = p,sSing, we
introduce similar ones in the image plane= ¢ M cose
andy = oM sing. Assuming the lens radius to g the
diffraction pattern in Eq. (14) is easily evaluated

—

A few remarks should be made here. As was already
noted, in accordance with Kirchoff's principle the inte-
gration overp, is extended over the whole surface of
the source. Therefore this approach based on diffraction
theory allows, in a simple way, to take into account the
finite size of the OTR target, in contrast to [6], where infi-
nite transverse dimension of the conducting boundary was

f dg dm oI TEC /MY (43 /0]

2mad kd
_ 2ma J1< >’

kp ;p

p= \/p% + 0% + 2ps0code — ).

implicitly assumed. Meanwhile, as was recently estab-
lished in [11], influence of the target finite size on the OTR
spectral and angular characteristics is observable when the
target extension is smaller in magnitude thap. This
value is often thought of as the particle field characteris-
tic transverse size. For a long wavelength radiation, this

effect is important already at medium energies. Particu-
larly, it can play an important role in bunch length mea-
surements by means of coherent transition radiation. Inthe

Equation (14) then becomes

kd
Ex,y(Ps (1)) = 1 ]dpv] d'x%i"

Q)i bv %2 + a? case of visible light, it becomes noticeable for extremely
o 2 [ K Ji(kdp/a) high beam energiegy = 10°). In the following we will
X s oik/200p] <; + 1) -, assumey < 10° and, therefore, consider that the conduc-

tor has infinite dimensions in the, y, plane.

(16) The exponential factor in Eq. (19) introduces correc-
tions due to the spherical form of the wave front and the
extension of the OTR source. It noticeably differs from
unity in the region

IV. SINGLE PARTICLE OTR IMAGE

As can be seen from Eq. (16), except for the exponential | L
factor ¢i*/200} and the multiplicand in parentheses that ' @King p; = Ay as the characteristic size of the OTR
will be shown not to affect the image appreciably, Eq. (16)S0UTCe, we can always approximate the exponent with 1
is nothing other than the convolution of the OTR sourceVhenever
radial distribution with the well-known diffraction limited M < a, (21)
image distribution of a point source [the so-called point ) ..
spread function (PSF)]. After trivial integration over thus neglecting the sphericity of the wave front or,
equivalently, utilizing Fraunhofer's approximation. Even
fzwd {cos;//} inp. codli—d) _ o _{cos¢ }J( ) if the condition in Eq. (21) is not satisfied, significant
o i sing [€ ~ “Msing TP effects are expected only at the periphery of the image,
(17) while, as follows from Fig. 2, the radiation intensity peaks
in the spatial region extending over a fe\ls around the
the evaluation of the integral ovep can be done by axis. Thus the corrections produced by this exponential
using an addition theorem on Bessel functions. Omittingactor are generally small and Fraunhofer type diffraction
intermediate steps, the final result is is the main contribution to the image formation. A similar

ps = VAa. (20)
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conclusion was derived in [6], but without adequategiven by the Poynting vector
justification.
With the above assumptions, the integral oygrin S(p,w) = Lz (E.* + IE),IZ) (27)
Eqg. (19) can be evaluated analytically 4
that defines the radiant energy flux through the unit sur-

f dpsJi(eps)Jom(8ps) face element per unit frequency interval. Equation (26)
0 5 5 was derived for a single particle, and we can call the
im2F1<1 —m, 1 + m:2; x_>, L > 1 distribution of Eq. (27), calculated using the fields of
— ] @& 62 i , (22) Eq. (26), a single particle function (SPF), in analogy with
0 8 <1 the PSF defined for a point source.
' %2 If one now considers a bunch of particles, as long as co-
where, F; is the hypergeometric function. herent effects are negligible, the total beam profile image

When discussing the OTR source properties in thds the convolution of the SPF with the real transverse dis-
first section, we noticed that the limitation= 1 on the tribution of the particles in the bunch. The functigrin
possible values of the transverse wave vector componefd- (26) was used previously to describe the OTR source
appears as the consequence of the transformation of tis®atial distribution. By comparing Egs. (5) and (26), one
charge field into a radiation field. From Eq. (22), thecan conclude that the image distribution is the same as
effect of the finite aperture of the optics introduces athat of the source except for the magnification factor in
new limit » < & that, under normal conditions, is more the denominator and the upper limit of integratioryin
stringent. The above expression for the SPF is consistent with

Taking the result of the integration given by Eq. (22),that derived in [6]. Such a conclusion is a logical
the sum in Eq. (19) can be calculated using the Neumagonsequence of the simplifications used in the course

series that is written as [12] of the analysis for the purpose of arriving at analytical
-, " expressions. Equation (25) is, in fact, obtained under
<E># J,(Iz) = I* Z Tu+n) (u + 2n) the same assumptions made in [6], the most important of
2 } Zn!l(v + 1) which are the ultrarelativistic regime and the applicability

X o Fi(—np + miv + 13, (2), of the Fraunhofer diffraction regime.
The analysis performed shows clearly that Eq. (26)

pov = v #E —1,=2,.... (23) provides the main part of the image intensity distribution
under normal conditions. Other effects, such as those
Settingn =m — 1, u =2, v =1,1 ==x/8, andz =  due to the OTR source extension, finite dimensions of the
60, the summation over: in Eq. (19) results in OTR target, spherical character of the wave front, etc., can
g x ’ be considered higher order corrections and can be easily
% Z sz(BQ)m22F1<1 —m,1+ m;2;%—2> obtained numerically from the more complete expression
6°Q o 6 [EqQ. (19)]. o o |
= 27Ji(x0). (24) For weakly relativistic (or nonrelativistic) regimes,

. _ most of the simplifications used are not justified. More
Collecting all of the results together and making theaccurate calculations are needed, starting from the exact

substitution = k7, we obtain formula of Eq. (9). Furthermore, a similar analysis for
gk [cose Orens 2dt Fhe Ipngitudinal field component must also be performed
E. (P, w) = ~ i s FIrme in this case.
v Sing lJo 1 (By) In the highly relativistic regime, we can conclude that
X W1 =12+ 1)J(kpt), (25) the central part of the OTR SPF is energy independent

. (as far a¥.,s > y ') and defined by the diffraction on
where fiens = d/a is the angular acceptance of the yhe jeng, thus depending only on the lens aperture and the
lens. Under real experimental conditions, it is always,,iation wavelength. The spatial resolution given by the
Olens < 1 :_:md one can consider with a good accuracyeywHMm value of SPF is about 3 times larger than that for
the factor in parentheses to be equal to 2. Keeping ifhe standard PSF. Figure 4 shows the central part of the
mind that according to the definitiop = p/M, where a6 for different values of the lens aperture. It was
p = x> + y?, the final result can be written as follows: gready observed in [6,7] that in defining the width of the

2gk [cose OTR intensity distribution, the energy sensitive long tail
oM {Singo }Z(Glens,O, 0.kp/M). can produce some problems. It was pointed out that by
(26) using the rms definition this tail leads to a large value

of the final resolution. As a means to reduce the tail
Equation (26) specifies the OTR field at the image poingffect on spatial resolution, it was proposed to use a round
P(p,¢). The intensity distribution in the image plane is opaque mask placed in the back focal plane of the lens to

Ex,y(P’ w) =
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FIG. 4. Normalized OTR intensity distributions in the image 10716
plane (in units off.,,) for different lens angular acceptances
O1ens (By = 1000). Numbers on the curves are valuesigf,. . ©
Spatial coordinates in this figure, as well as in the following 10 %\ N
figures, are expressed in units afM, i.e., the wavelength n_. o
increased by a factor of the lens magnification. 108 ‘MMM«.N" T = = ===
YA sl
| u“lﬂ' ""le]' P 0 e
prevent the passage of photons at angles smaller than the 102 [ N “ = sz
mask angular acceptan6g.sk - —
As follows from our analysis, in the Fraunhofer regime, 106 [ ‘
f[he ef‘fept of the Iensla_perture on t.he image i; to revise the 0 200 400 600 800 1000 1200
integration upper limit in the functiod depending on the pIAM

value of this aperture. This means simply that the IemISZIG 5. Normalized image intensity distributions at the tail
accepts only photons emitted at angles less thap; the /) T =0 (@), O :%.0501 , (b)s Ando = 0 161
presence of the mask thus introduces a new constraint qB), wheref,.,, = 0.1 (8y = 1000). Reference curves in all
the photon angle. From this we can immediately conclud&ubplots are the pseudophoton distributid («/8y)/8y|?
that the effect of the mask is to increase the lower limit of(thick solid lines) and the curvé/u* (dashed lines), where
the integral forf u stands forp /AM.

- 2uk fcose

E.,(P, = .
vy (P, @) vM |sing

}Z(ﬁlens, Omask»0,kp /M) . field that foru < By decreases as/u, while for u >

(28) By it falls more rapidly following an exponential law.
] ] ] It is a well-accepted fact that the region<< By is to
HerefOm,sc = r/f is the angular radius of the mask image pe considered the characteristic dimension of the particle
as seen from the object plane, whiteis the physical field. The two curves are given as references to allow an
radius of the mask. When the mask is large, so thagasy comparison between the subplots in Fig. 5.
Omask > vy, one can derive the approximate expression  Figure 5(a) shows the “undisturbed” caggas; = 0.

for £ The intensity tail reveals the oscillatory behavior, in
B Orens 12dt general, repeating the pseudophoton distribution. The
¢ (Brenss Omask, 0, u) = .. 12+ (By)2 i (ut) period and amplitude of oscillations depend on the value

Jo(ud ) = Jo(ufrens) of f1ens. Figures 5(b) and 5(c) refer @,k = 0.0501ens

~ L0\ UUmask Olens)  (29)  and Omask = 0.101cns, respectively, for6ie,s equal to

u 0.1 andBy = 1000. Both curves are calculated from

Figure 5 gives an idea of the effect of the mask on theEq. (29) and roughly follow thé /u> dependence modu-
intensity distribution in the tail region. In the figure, lated by the difference of the two Bessel functions. For
thick solid lines plot the functiodk(u/B7y)/Bvy|* that,  Om.s > By~ ', the tail intensity becomesg independent
according to Eq. (6), is defined as #(ficns, 0,0, u)|? and is defined entirely by interference of the diffraction
for 0.ns — . The dashed lines correspond to anotherffects from the mask border and lens aperture leading
extreme case that follows from the first one whgm —  to fringes in the intensity. An improvement at the tail
«, namely,|Z]?> = 1/u®. It is worthwhile to remember is clearly achieved and the higher the beam energy the
that K,(u/Bvy)/By describes the particle pseudophotongreater the benefit of using the mask. In this case it is
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also possible to calculate the total power noise, one can lower this limit, but not below0.1% of
* 2 g%c . Biens saturation.
l(w) = o 2mpdpS(p, @) = P 7'” Omack (30) (i) A diffuse background is almost always present,

and we can conclude that the reduction in the tail intensitproduced by external sources or by the beam itself. The
produced by the mask occurs at the expense of the tot&€st procedure for subtracting this background obviously

collected power. depends on the particular case, but the subtraction always
limits the lowest detectable tail intensity.
V. EXPERIMENTAL FACTORS AND OTR A standard approach [7] consists in finding the ellipse
SPATIAL RESOLUTION that contains a given fraction (depending on the back-

ground level) of the total intensity, typically of the order
The most frequent use of OTR in beam diagnosticsof 90%—-95%, and analyzing the projections of only the
is for the measurement of the transverse beam profilgoints inside the ellipse. Although this cut is somewhat
because its high resolution and linearity make it superiogrbitrary, it has the advantage of giving more weight to the
to other imaging devices. The time properties of OTRcore of the beam, the most interesting because the diffuse

also allow fast time resolved measurements. halo does not usually survive transport through complex
In this context, the usual definition of the instrumentoptical systems.

resolution, as the minimum beam size that can be mea- For all of the above reasons, a cut in the OTR tail
sured, is, unfortunately, not unique. The standard deviadistribution can be safely introduced without significant
tion o of a Gaussian distribution, the FWHM, and the |oss of accuracy with respect to any real situation.

second order momentum (rms) are among the most used Figure 6 shows a 3D plot of the single particle

definitions of the beam width under different experimen-OTR intensity distribution together with its projection
tal conditions. While for a defined analytical distribution, obtained with a cutoff at 0.5% of the maximum intensity.
for example, a Gaussian, the relations among these quagompared to the radial SPF in Fig. 4, the projection does
tities are well known, the same is not true for a generithot reproduce the deep minimum at the center, has about

distribution, and the tails, in particular, can produce largehe same FWHM, and has a tail intensity more than twice
deviations. as large.

The beam profile is normally analyzed projecting the
beam image on ther and y planes. This procedure,
first introduced in connection with nonimaging instru-
ments such as secondary emission monitor (SEM) grids
and scanning wires, has some solid foundation in the fact
that motion in these two planes is normally uncoupled
and that highly asymmetric beams are often used. Fur-
thermore, the effects of statistical fluctuations in the beam
distribution are reduced so that smoother beam profiles
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In order to investigate the resolution obtainable by OTR
in this case, we can project Eq. (27) on thaxis

I,(x,w) = f S(\/)c2 + y2, w)dy. (31)

Because of the symmetry of the distribution, an equivalent / | | | ]
result is obtained when projecting on any other axis across g [ () ]
the center of the image. To compute the above integral, — | \ ]
one has to define the region over which the integration 3 06 L \ R
must be performed. In principle, the energy dependent >. - \ 1
long tail exhibited by the OTR image requires extending % 04 L 1
the integration to infinity, but a number of practical £ = | 1
reasons prevents us from doing so. In particular, r ]

(i) the sensitivity of the detector, and its thermal noise, %2 [ T ]
define an absolute lower limit to the measurable intensity. r T ]

(i) The digitalization of the image introduces a thresh- O e T U ——

old in the minimum detectable intensity. A standard X/ AM

frame .grabber for yldeo .rf"‘te signals has aodynamlc ranglgIG. 6. 3D plot of the radial SPF (a) and its projection on
of 8 bits, so that intensities less than 0.4% of the satup,q " "5yis (b) for 0.5% cutoff level. The vertical scale in
ration level cannot be detected. Using a slow digitizingthe 3D plot is the intensity in arbitrary unitséie,s = 0.1 and
device, coupled to a cooled detector to reduce the thermay = 1000.
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while the rms values are strongly dependent from both the
energy and the tail cutoff, as was already anticipated in
[7]. For a fixed cutoff level, there exists a corresponding
energy range above which the growth of rms widths for
all distributions saturates. Such a behavior demonstrates
that the OTR spatial resolution with the rms beam width
definition for high energy beams is determined by the
cutoff, which, in turn, is dictated by experimental factors
and, hence, is unavoidable.

For all of these considerations, it is clear that a simple
definition of the minimum spatial resolution obtainable
with  OTR is not possible. As already pointed out

ol A I B I I IS in [7], when deriving an experimental beam transverse
08 L ® dimension from an OTR image, the standard rms size
an ] definition still maintains the quality of being shape
'g r 1 independent, but the value is strongly affected by the
> 06 r ] background subtraction procedure.
B r i On the contrary, the FWHM is a well-defined value for
é 04 - B the single particle distribution, but applied to the beam
- - 1 size it can hide relevant aspects of beam shape. On
02 |- . the other hand, different definitions of resolution can be
r | successfully applied to particular experimental situations.
L \7777 4 . . -
0 e e P e o S The more general approach consists in deriving from

20 ZSX/)\MSO Egs. (27) and (31) the SPF for the radial and projected
distributions, respectively, and in using these functions to
FIG. 7. 3D plot of the radial SPF for the-polarized compo- deconvolve the experimental measurement, obtaining the

nent (a) and its projection on the axis (b) for 0.5% cutoff trye peam profile, through a rather cumbersome numerical
level. The vertical scale in the 3D plot is the intensity in arbi- computation

trary units. 6.,s = 0.1 and By = 1000.

A narrower distribution can be obtained by exploiting VI. CONCLUSION
the OTR property of being radially polarized and selecting We have obtained a realistic description of the spatial
only the x or y component of the field by inserting a distribution of the OTR source and used Kirchoff diffrac-
polarizer in the optical path. Figure 7 shows the 3D plottion theory to find the intensity distribution produced by
of the vertically polarized component of the radiation andan individual particle in the image plane of a thin lens. At
the horizontally projected distribution with the same 0.5%ultrarelativistic energies, our result is consistent with that
cutoff. An identical distribution for the vertical plane is found in [6]. In the frame of the model, one can also con-
produced by the component polarized in the horizontakider a number of other effects, for example, corrections
direction. In this case, the FWHM is almost two timesto the Fraunhofer approximation and the influence of fi-
smaller than that of the radial distribution, while the tail nite dimensions of the target. With the same accuracy,
remains the same on average. this approach allows one to make an image calculation

In Table |, the FWHM values of radial and projected for the case when charge passes through an opening in a
distributions for both normal “unpolarized” and polarized conducting screen, e.g., circular hole or slits. Radiation
cases are summarized for different beam energies amfoduced herein is known as diffraction radiation and was
tail cutoff levels. Table Il gives rms values of the shown [13] to be a possible tool for beam diagnostics.
distributions for the same energy and tail cutoff levels. We have demonstrated that the image is strongly
It is evident that the FWHM values are rather constantdominated by the diffraction effects produced by the finite

TABLE I. FWHM values for radial SPF and projected ones in both normal and polarized cases for different particle energies.
Numbers separated by slashes in each column correspond to 0.1%, 0.05%, and 0.01% cutoff levels, respectively.

E, = 0.1 GeV E, = 0.5 GeV E, =1 GeV E, =5 GeV
Radial 7.01/7.01/7.01 7.08/7.08/7.08 7.08/7.08/7.08 7.08/7.08/7.08
Proj. 6.55/6.56/6.57 6.78/6.81/6.85 6.79/6.84/6.89 6.80/6.85/6.91
Proj. (pol). 3.84/3.86/3.87 4.05/4.08/4.14 4.06/4.12/4.18 4.07/4.14/4.20
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TABLE Il. rms values for the same distributions, energies, and cutoff levels as in Table I.
E, = 0.1 GeV E, = 0.5 GeV E, =1 GeV E, =5 GeV
Radial 7.29/7.78/8.32 9.27/10.8/13.6 9.43/11.3/15.5 9.49/11.5/16.8
Proj. 7.67/8.75/10.4 10.9/13.2/22.2 11.2/15.3/27.3 11.2/15.7/30.8
Proj. (pol). 5.43/6.19/7.32 7.72/9.35/15.7 7.89/10.8/19.3 7.94/11.1/21.8
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