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Measurement of the modulus and phase of the linear coupling coefficien
by analysis of the transverse beam profile
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Laboratório Nacional de Luz Sı´ncrotron, Cx. Postal 6192, CEP 13083-970, Campinas, Brazil
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We study the dynamics of transverse oscillations near the linear coupling resonance excited b
of skew quadrupoles at the Laboratório Nacional de Luz Sı´ncrotron UVX electron storage ring throug
the analysis of the beam profile. Transverse coherent oscillations were excited with a fast
and the profile of the oscillating beam was observed by focusing visible synchrotron radiation f
bending magnet onto a fast charge-coupled device camera. Using a single resonance approxim
calculated the border of the time-averaged transverse beam profile as a function of the complex c
coefficientk, which characterizes the distribution of coupling fields along the storage ring. A l
squares fit of the calculated beam profile border to the experimentally obtained isointensity co
provided a new method to determine both the modulus and the phase ofk. The values obtained fo
the modulus are in good agreement with those from the conventional normal mode tune sep
technique, and the values obtained for the phase ofk agree with calculations based on the model latt
and the known skew quadrupole distribution. [S1098-4402(98)00016-0]

PACS numbers: 41.85.Ew, 29.20.Dh
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I. INTRODUCTION

Coupling between the horizontal and vertical moti
(betatron coupling) is widely recognized as an import
performance limitation in storage rings used as synchro
radiation sources or as colliders. Coupling produces
tatron tune shifts and vertical dispersion, reduces the
namic aperture [1], and increases the vertical emitta
(with a corresponding decrease in light source brillian
or collider luminosity [2]). Clearly, an increased couplin
may also be beneficial, e.g., providing enhanced Tousc
lifetime for a low energy beam by decreasing the elect
beam density. Linear coupling (i.e., coupling by line
fields) may be caused by tilted quadrupoles, vertical clo
orbit deviations in sextupoles, and solenoidal fields in
tectors, whereas nonlinear coupling may be produced
interaction with the electric fields of ions trapped in t
electron beam [3] as well as by space charge or beam-b
forces [4]. Close to a resonant condition, the dynam
of linear coupling can be described by a single comp
parameter: the coupling coefficientk. The measuremen
of jkj is routinely done by measuring the separation
tween the oscillating frequencies of the normal modes
the coupled system [5]. Other techniques to measure
pling usually involve transversely exciting the beam a
observing the resulting coherent oscillations. The per
bation can be a kick [6] or continuous wave excitation [
More recently, observations of coherent oscillations o
turn-by-turn basis at two different locations in the stora
ring have allowed the experimental determination of b
the modulus and the phase ofk from a Hamiltonian de-
scription of the coupled dynamics [8–10].

In this work, we present an experimental study of
linear coupled transverse beam dynamics in the vicinity
1098-4402y98y1(5)y054001(9)$15.00
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thenx 2 ny ­ 3 resonance excited by skew quadrupol
We introduce a new experimental technique to obtain
parameters characterizing the strength of the reson
(namely the modulus and phase of the coupling coe
cient). The method consists of observing the time evo
tion of the transverse beam profile for a few millisecon
(a short time compared to the synchrotron damping ti
but a long time compared to the betatron oscillation peri
after exciting the beam with a fast (few hundred nanos
onds) horizontal kick. The acquired image is a project
onto thexy plane of the phase space density distribut
function rsx, x0, y, y0d integrated over a very large num
ber of turns (but still small enough that the system m
be considered Hamiltonian). Many of the geometric ch
acteristics of the phase space orbits reveal themselve
this time-averaged profile, allowing the direct observat
of several aspects of the phase space geometry clo
the resonance and the experimental determination of
parameters describing the resonance strength. In the
ticular case of the linear coupling resonance (specifica
the difference resonance [11]), the phase space geom
is described by the complex coupling coefficientk and the
averaged distribution presents an axis of symmetry rot
with respect to the symmetry plane of the machine, as w
as distortions of its outermost contour. The rotation an
can be correlated with the real part of the coupling
efficient Refkg, while the detailed geometry of the out
contour of the averaged beam profile strongly depe
on its imaginary part Imfkg. The Hamiltonian formalism
[11,12] applied to the resonance region of interest provi
a transverse map from which the beam profile contour
be extracted. The reverse process allows the determ
tion of both Refkg and Imfkg given the beam contour b
a least-squares minimization. The procedure is app
© 1998 The American Physical Society 054001-1



PRST-AB 1 P. F. TAVARESet al. 054001 (1998)

ic
a

or
o
b

th

fly
to
e

s
re
i
e

In
a

an
.

ro
b

es
gi
g

le
ts
s

th

f

w

we

o-

-

ndi-
s

n
e

the

y

an

ial
the

ber
nd
to the experimentally obtained averaged contours wh
yields experimental estimates of the modulus and ph
of k.

A similar technique has already been used to expl
the phase space close to the one-dimensional sextup
excited third-integer resonance and can, in principle,
used to study more complex resonance structures wi
fairly simple and inexpensive experimental setup.

This paper is organized as follows: In Sec. II we brie
review the application of the Hamiltonian formalism
the study of the linear coupling resonance and derive g
metrical properties of the integrated beam profile a
function of the coupling coefficient. Those results a
used to establish an image analysis algorithm to determ
experimentally the coupling coefficient. In Sec. III w
describe the Laboratório Nacional de Luz Sı´ncrotron
(LNLS) UVX storage ring and the experimental setup.
Sec. IV we present the experimental results and comp
them to those from other measurement methods
calculations. The conclusions are presented in Sec. V

II. OUTLINE OF THE THEORY

The Hamiltonian that describes transverse elect
motion close to a linear coupling resonance excited
a distribution of skew quadrupoles is given by [11]

Hsx, x0, y, y0, sd ­
1
2

x02 1
1
2

y02 1
1
2

Kqssdx2

2
1
2

Kqssdy2 1 Kssdxy , (1)

where x and y are the transverse electron coordinat
primes denote differentiation with respect to the lon
tudinal coordinates, Kqssd describes the normal focusin
quadrupoles, and

Kssd ­
ec
E

≠Bxssd
≠x

is the skew quadrupole strength.1 Here E is the electron
energy,e is the electron charge, andc is the velocity of
light. The Hamiltonian (1) can be written in a suitab
form for study by the method of variation of constan
[12], whose skeleton is given by the perturbed solution

ussd ­
q

2aubussd cosfcussd 1 Fug ,

whereu denotes eitherx or y planes. The functionsbussd
are the betatron functions (periodic functions over
ring circumferenceL) and cussd are the corresponding
betatron phases. The method looks for new equations
the new variablesau andFu. As a function of these new

1The functionKssd is zero everywhere except inside the ske
quadrupole, where it is assumed to be constant and equal toKs.
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variables, the coupling term in (1) is

H1sax , ay , Fx , Fy , sd ­ 2Kssd
q

bxssdbyssdaxay

3 cosfcxssd 1 Fxg

3 cosfcyssd 1 Fyg . (2)

By changing the independent variable tow ­ 2psyL and
expanding the periodic Hamiltonian in Fourier series,
obtain

eH1sax , ay , Fx , Fy , wd

­
X
q

Ä
kq

Äp
axay cosfFx 2 Fy 1 Dw 1 argskqdg ,

(3)

where

kq ­
1

2p

Z L

0

q
bxssdbyssd Kssd

3 exphifcxssd 2 cyssd 2 2psDyLgj ds ,

nu ­
cusLd

2p
, (4)

and D ­ nx 2 ny 2 q. The new Hamiltonian (3) de-
scribes the particle motion close to the conveniently ch
sen difference resonance given byD. It explicitly depends
on thecoupling coefficientkq, which is, in general, a com
plex quantity. We consider the isolated resonanceq ­ 3,
i.e., we assume that we are close to the resonance co
tion nx 2 ny 2 3 ø 0 and neglect all nonresonant term
in the Hamiltonian of Eq. (3). To simplify the notatio
we usek3 ­ k. In order to obtain the particle transvers
motion, we apply another canonical transformation to
rotating systemseau, eFud generated by

G ­ eax

∑
Fx 1

1
2

Dw 1
1
2

argskd
∏

1 eay

∑
Fy 2

1
2

Dw 2
1
2

argskd
∏

, (5)

in terms of which the new Hamiltonian is̀ ­eH1 1 ≠Gy≠w and the new variables are given b
au ­ ≠Gy≠Fu and eFu ­ ≠Gy≠eau. This transformation
eliminates the explicit dependence of the Hamiltoni
on the orbital parameterw. Finally, a transformation to
sw, yd defined by

w ­
qeax expsi eFxd , y ­

qeay expsi eFydy

leads to the equations of motionµ
ẅ
ÿ

∂
­

∑
iDy2 iskd
iskd 2iDy2

∏ ∑
w
y

∏
. (6)

Solutions to (6) are subjected to the choice of init
conditions. However, since we are only interested in
structure in phase space which emerges for a large num
of turns, the exact initial conditions are not relevant a
we take, for simplicity,ws0d ­ w0 and ys0d ­ 0. For
054001-2
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these new variables, the determinant of the character
matrix in (6) gives the beating frequency

n ­
1
2

q
jkqj2 1 D2 ,

and, finally, the motion at the observation point is giv
by

xswd
x0

­ cosnw cosnxxw 2
D

2n
sinnw sinnxxw , (7)

yswd
x0

­ 2

s
by

bx

1
2n

fImskd cosnyyw 1 Reskd sinnxxwg

3 sinnw , (8)

with

nxx ­ nx 2
D

2
, nyy ­ ny 1

D

2
.

In Eqs. (7) and (8), the motion is normalized accordi
to the initial horizontal kickx0, and by and bx are
the betatron function values at the observation po
The transverse map is obtained by noting thatw is a
multiple of 2p so that fxs2pjd, ys2pjdg represents the
transverse beam position vector of thejth beam passag
at the observation point. Note that we have taken
observation point as the origin for the integral calculati
of k, Eq. (4). The horizontal and vertical oscillation
can be factored into a fast oscillation (determined
nx and ny) and a slow amplitude (determined byn)
modulation term. The slow modulation is easily se
from the expression for the amplitudes

axswd ­
jw0j

2

4n2 sD2 1 jkj2 cos2 nwd , (9)

ayswd ­
jw0j

2

4n2
jkj2 sin2 nw . (10)

Figure 1 shows two examples of two-dimensional in
grated beam profiles as given by expressions (7) and
If the coupling coefficient is real [as in Fig. 1(b)], the bo
der of the integrated profile is a parallelogram rotated
an angleu with respect to the machine horizontal axis
symmetry withu given by2

tanu ­

s
by

bx

V

1 1
p

1 1 V2
, V ­

Reskd
D

. (11)

The expression above is found by considering the ti
evolution of the oscillation amplitudes, Eqs. (9) and (1
and noting that the maximum vertical amplitude tak
place at the point of minimum horizontal amplitude. Als
the maximum horizontal amplitude occurs at zero verti

2If Im skd fi 0, the integrated profile becomes distorted a
is no longer a parallelogram. However, another parallelogr
also rotated by an angle given by Eq. (11) can still
circumscribed to the image.
054001-3
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FIG. 1. Examples of integrated beam transverse profiles
result from Eqs. (7) and (8).

amplitude. This gives us two points of the parallelogra
and (by symmetry) the rotation angle. In the limitbx !
by, relation (11) is equivalent to the expression fou
by Chao and Lee [13] for the slope of the stationa
transverse electron density distribution determined by
equilibrium between the excitation of the oscillations d
to the discrete nature of synchrotron radiation emiss
(quantum excitation) and the damping due to the aver
radiation emission rate under the action of the coupl
fields of a skew quadrupole. The same expression
obtained here in a different context in which cohere
undamped time-averaged oscillations are considered.

A. Extracting the beam profile border

Here we show how to obtain the border of the int
grated transverse profile. In a certain sense, our aim i
find a reference system simpler than the ordinarysx, y, wd
which allows us to write the coupling coefficientk as a
function of the profile border. To this aim we define

g11 ­ cosnw, g12 ­ 2
D

2n
sinnw ,

g21 ­ 2
1

2n

s
by

bx
k2 sinnw ,

g22 ­ 2
1

2n

s
by

bx
k1 sinnw ,
054001-3
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wherek1 ­ Rejkj andk2 ­ Imjkj. Here again,ws jd ­
2pj with j a positive integer. The position vector$R ­
sx, yd describes ellipses whose parameters vary slo
according ton. Definingn ­ snx 1 nydy2, we can write
the map (7) and (8) in the formµ

x
y

∂
­ s21dj

µ
g11 g12

g21 g22

∂ µ
cosnwsjd
sinnwsjd

∂
. (12)

There are, therefore, two regimes of motion as alrea
discussed: a slow one given byn and a fast one
determined byn. The square of the distance from th
center is

R2 ­
1
2

sg2
11 1 g2

12 1 g2
21 1 g2

22d

1
1
2

sg2
11 1 g2

21 2 g2
12 2 g2

22d cos2C

1 sg11g12 1 g21g22d sin2C , (13)

with C ­ nwsjd. Points at the border of (12) obey th
relation

≠R2

≠w
­ 0 , (14)

together with the constraint condition

tang ­
y
x

­ f ,
by

om

th

e
e

f
e

054001-4
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whereg is the polar coordinate of the point andf is fixed.
This means that for each value ofg (0 # g # p, because
of the symmetry) we must find the solutions which sat
Eq. (14). The dependence onC can be eliminated from
R2 so that the new map is given in terms of the sl
motion only. We note that

tang ­
g21 1 g21 cos2C 1 g22 sin2C

g11 1 g11 cos2C 1 g12 sin2C
,

and

b ­
g22 cosg 2 g12 sing

g11 sing 2 g21 cosg
,

so that

cos2C ­
b2 2 1
b2 1 1

, sin2C ­
2b

b2 1 1
.

It is convenient now to introduce new terms,

m ­
2D

2n
,

l1 ­ 2
1

2n

s
by

bx
k1, l2 ­ 2

1
2n

s
by

bx
k2 ,

and we can write Eq. (13) as
R2 ­
fsf2 1 1dl2

2 1 2l1l2gb4 1 sf2 1 1dl2
1b2 1 2f2l1l2b3

s1 1 b2d fsl1 1 bl2 2 mfd2 1 b2f2g
. (15)
le
the
ose
ly a
oots

-

It is possible, however, to further simplify relation (15)
noting thaty ­ R sing and definingp ­ b21. We get
finally

R2 ­
sf2 1 1d sl2 1 l1pd2

sp2 1 1d hfsl1 2 mfdp 1 l2g2 1 f2j
, (16)

and our transformation of reference system is now c
pleted: sx, y, wd ! sR, f, pd. Equation (14) is simply
≠R2y≠p ­ 0, which leads us to find the roots of a four
order polynomial inp as a function off

fsfl1 1 ml2
2d 1 l2ffl1m 2 l2

2 2 f2s1 1 m2dgp 1

3l2
2sfm 2 l1dp2 1 l2s3l1 2 2fmd sfm 2 l1dp3 2

l1sfm 2 l1d2p4 ­ 0 .

(17)

(In fact, the polynomial is of fifth order with one of th
rootsR ­ 0.) All of the relevant solutions belong to th
family branch starting atp ­ 0 for f ­ 0. An iterative
procedure can generate solutions for other values of

and, in this way, the whole border is obtained. Figur
shows a (normalized) plot ofR in terms ofg for the same
parameters of Fig. 1(a).
-

2

B. Getting k from the profile border analysis

In order to experimentally obtain the beam profi
border, we must determine the isointensity curves of
transverse beam profile (contour plots). Then we cho
the contour that best represents the border and app
least-squares fit based on Eq. (16) subjected to the r

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

1.2

R

γ/π

FIG. 2. Calculated profile contourRsgd for the same parame
ters as Fig. 1(a).
054001-4
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of (17) in order to extract the best value ofk. Here we
sketch some details of the fitting procedure.

Given a certain experimental contour ofN points in
polar coordinatesR?sfid (0 # fi # 2p), we construct a
figure-of-merit function

x2sk1,k2, zd ­
NX

i­1

1
s2 fR?sfid 2 Rsk1,k2, zdg2,

z ­
by

bx
, (18)

whereRsk1,k2, zd is given by (16) subjected to the solu
tion of (17) ands2 is the variance associated with th
measurement of a given contour. This variance depe
on several details such as camera resolution, pixel s
and the area of the image matrix. Also, the beam is
a point in the transverse space but rather a Gaussian
tribution with a characteristic spread. Here we will ta
s2 as simply the variance associated with the basic
of the image matrix (typically1024). Moreover, in the
form (18) the ratioz at the observation point is one o
the fitted parameters. The minimum of (16) is located
the direction of the vector2 $=x2, and it is straightforward
to iteratively correct an initial parameter guess until a co
venient minimum of (18) is reached [14].

In order to test the validity of the presented metho
we generate a “surrogate” image by counting the num
of points generated by the map (7) and (8) inside e
cell of the image matrix. The resulting image histogra
(whose parameter set is known) can then be analyzed
its parameter set obtained. This procedure also ena
us to determine which contour (or set of contours) m
be taken in order to obtain a good fit. In general, if t
image histogram is normalized (background level at 0 a
maximum intensity 1), the best contours for the fittin
occur around 0.1.

III. EXPERIMENTAL SETUP

A. The LNLS UVX storage ring

The LNLS UVX electron storage ring [15] (Fig. 3) i
a 1.37 GeV machine injected from a 120 MeV lina
054001-5
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The lattice is a sixfold symmetric double-bend achrom
with alternating long (nondispersive) and short (d
persive) straight sections and a total length of 93.21
(3.2 MHz revolution frequency). A pair of skew
quadrupoles (AQS05A and AQS05B) is installed in one
the long straight sections and is used to drive the coup
resonance. One of the injection kickers was used
excite a coherent betatron oscillation, and the subseq
evolution of the transverse beam profile was obser
with a synchrotron radiation monitor. The beam ene
was 600 MeV in order to have a sufficiently long dampi
time (90 ms) with respect to the image integration tim
(8.6 ms).

We used two different modes of operation during t
experiments: the standard optics and the low vertical b
optics (Fig. 4). In the standard (sixfold symmetric) ope
tion mode, the horizontal and vertical betatron phase
vances from one skew quadrupole to the other are ra
small (since bothbx and by are large along the straigh
section). Also, since they are symmetrically installed w
respect to the center of the straight section, the beta
functions at both quadrupoles are equal so thatjkj and
argskd produced by powering either quadrupole are ess
tially the same. Therefore, in the normal operating mo
our measurements were done with both skew quadrup
powered in series. The low vertical beta optics was imp
mented in the straight section containing the pair of sk
quadrupoles (breaking the sixfold symmetry of the lattic
in order to provide a large vertical betatron phase adva
from one skew quadrupole to the other (while keeping
horizontal phase advance small) and thus allow the ph
of the coupling coefficient to be varied by powering ea
skew quadrupole separately. We also measured the b
tron functions at the focusing quadrupoles in the low-b
section in order to check the model optics of this mo
The betatron function measurements agreed with theo
cal predictions to within 20%.

B. The optical beam profile monitor

The optical characterization bench (Fig. 5) uses visi
radiation from a low dispersion (4±) bending magnet port
drupoles
QF05B,
FIG. 3. Schematic drawing of a superperiod of the LNLS UVX electron storage ring where one can see the skew qua
used in the experiment (AQS05A and AQS05B) and both focusing and defocusing normal quadrupole magnets (AQF05A, A
AQD05A, AQD05B).
054001-5
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FIG. 4. (Color) Betatron functions in the standard optics mo
(a) and the low-beta optics mode (b). The positions of the sk
quadrupoles are indicated.

The high energy synchrotron radiation power is absor
by a sapphire filter connected to a water cooled cop
mask. The visible portion of the spectrum is extract
to the atmosphere by means of another sapphire win
and guided to the characterization line by means of t
first-surface mirrors with 86± and 90± deflection angles.
Two plane-convex lenses form an image of the transve
profile of the beam on a CCD sensor. A slit install
in front of the optical system defines the horizon
and vertical apertures, thus controlling diffraction a

FIG. 5. (Color) View of the optical beam profile monitor.
054001-6
e
w

d
er
d
w
o

se

l

geometric curvature effects. The visible radiation
monochromatized by means of a 10 nm bandpass fi
in order to reduce chromatic aberrations, and a pair
polaroids is used to control the light intensity on the CC
thus avoiding saturation. The polaroids are installed cl
to the CCD sensor in order to minimize errors due
surface irregularities. The first mirror, as well as t
polaroid positions, can be remotely adjusted.

The CCD sensor is an EEV CAM17-46E came
capable of producing nonstandard video signals wh
provide up to a 116 Hz frame rate. This is importa
in order to guarantee that the total frame integration ti
is small with respect to the synchrotron damping time
the energies of interest. The CCD spatial resolution
15 mm, and the camera output signal is digitized w
a Matrox Pulsar frame grabber board which provid
8 bit amplitude resolution and the possibility of using
external trigger signal to start frame acquisition. Th
feature was used in order to synchronize the fra
acquisition with the excitation of the beam by means
the kicker magnet.

IV. RESULTS AND DISCUSSION

Figure 6 shows an example of the integrated transve
profile of a kicked beam. Both pictures were taken in
normal mode (standard optics) with the skew quadrupo
powered in series. Note the inversion of the slope
the figure when we move the tunes from one side of
resonance to the other (invert the sign ofD).

A. Standard optics

Figure 7 shows the measured value of the variation
jkj as a function of quadrupole strengthK as given by
the analysis of the beam image and by the conventio
tune separation technique. We plot the variation ofjkj
rather than the coupling coefficient itself in order
eliminate offsets due to the effect of remanent fie
in the skew quadrupoles. The normal mode separa
is measured by scanning the vertical tune toward
horizontal tune and measuring their minimum distan
of approximation. The slope of the curves agrees w
the theoretical result (jkj ­ 0.43K) to within 30%, which

FIG. 6. Examples of integrated kicked beam profile imag
The betatron tunes arenx ­ 5.21, ny ­ 2.17 (left) and nx ­
5.14, ny ­ 2.17 (right).
054001-6
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0.07

0.08

∆|κ| = 0.50 K

∆|κ| = 0.57 K

 Tune separation measurement
 Image analysis measurement

∆ |
κ |

Quadrupole strength [m
-2

]

FIG. 7. (Color) Measurement of the variation ofjkj as a
function of quadrupole magnet strengthK in the standard
(sixfold symmetric) optics. The betatron tunes arenx ­
5.243 and ny ­ 2.196, and the skew quadrupoles are power
in series. Two data sets are shown corresponding to
measurement by analysis of the kicked beam image (circ
and measurement of the tune separation of the normal m
(crosses).

may be considered reasonable since the accuracy o
betatron function measurements (on which the calcula
slope depends) is of the order of 20%. The agreem
with the results from the tune separation measurem
is better (13%). Figure 8 shows the measurements
the phase of the coupling coefficient as a function
quadrupole excitation for both positive and negat
values of K. Figure 9 shows the measured change
phase due to the quadrupole strength sign inversion.
expected from theory, the phase jump is close to 180±.

B. Low-beta optics

In the low-beta optics, each skew quadrupole was p
ered independently; Figs. 10 and 11 show the variation
jkj as a function of either quadrupole magnet streng
As expected, the modulus of the coupling coefficient

-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08
-100

-50

0

50

100

150

P
h

a
se

 [
d

e
g

]

Quadrupole Strength [m
-2

]

FIG. 8. (Color) Measurement of the phases of the coupl
coefficient as a function of the quadrupole magnet strength
the standard optics.
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FIG. 9. (Color) Change in phase due to the inversion of sign
the quadrupole strength as a function ofK.

largely insensitive to the betatron phase advance from
quadrupole to the next. The slope of both curves ag
with the theoretical estimate (jkj ­ 0.13K) based on the
model optics to within 15%.

Figure 12 shows the measured change in the phas
the coupling coefficient as we power skew quadrupolA
instead of skew quadrupoleB as a function of quadrupol
strength. This change in phase reflects the large
tical betatron phase advance between the two s
quadrupoles and can be computed once we know the
tatron functions at the center of the straight section by

dc ­ 2

"
arctan

√
s

b0x

!
2 arctan

√
s

b0y

!#
2 2D

s
L

,

where s is the distance from the center of the straig
section to either skew quadrupole andb0x and b0y are
the betatron functions at the center of the section, wh
are estimated from measurements at the nearby focu
quadrupoles. The resulting calculated change in the p
of the coupling coefficient is 114±, which is about 15%
above the experimentally determined values.
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FIG. 10. (Color) Measurement of the variation ofjkj as a
function of quadrupole magnet strength in the low-beta opt
Only skew quadrupoleA is powered.
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FIG. 11. (Color) Measurement of the variation ofjkj as a
function of quadrupole magnet strength in the low-beta opt
Only skew quadrupoleB is powered.

C. Method limitations

We now discuss some limitations of the profile analy
technique for measuring the coupling coefficient a
discuss factors that influence the accuracy of the prev
results. We estimate the error bars in the coupl
coefficient modulus measurements to be60.002 in the
case of the normal mode separation method. This is g
by the tune measurement resolution. In order to estim
the error bars in the coupling measurements via im
analysis, we have applied the image analysis algori
to simulated profiles and calculated the spread in
resulting values of the coupling coefficient as we cho
different isointensity contours for the fitting procedu
This gives60.001 for the measurement of the modul
of the coupling coefficient. These simulations do n
take into account the fact that the theoretical analysi
Sec. II effectively assumes a single particle beam, wh
means that the beam size must be small with respe
the amplitude of the coherent oscillation. If this is not t
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FIG. 12. (Color) Change in the phase of the coupling coe
cient as we power quadrupoleA instead of quadrupoleB as a
function of quadrupole strength in the low-beta optics.
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case, the beam profile smears out and the determina
of Imskd (which is more critically dependent on the sha
of the profile than on its orientation) becomes less prec
Therefore the kicker strength must be chosen so that
oscillation amplitude is large compared to the beam s
yet not so large that nonlinearities become importa
Also, this implies that the skew quadrupole strength m
be small since, on the contrary, large beam sizes will
produced.

The error bars in the phase measurements have b
determined by simulation to be of the order of 15± for
the coupling phases we have measured. However,
uncertainty increases considerably for coupling pha
close to zero. This happens because, for small coup
phases, large variations in phase cause comparatively
change to the kicked beam profile.

Finally, the method is limited by the validity of the
isolated resonance approximation, i.e., for the tune reg
where the analytical map (7) and (8) correctly represe
the motion. This is not a limitation in the sense th
the very significance of the coupling coefficientk is also
restricted to the region in tune space where the isola
resonance approach is valid.

The method presented here is quite cheap to implem
and the hardware is simpler than the turn-by-turn be
position monitor (BPM) system used in [8]. Of course,
pair of turn-by-turn BPMs provides much more detaile
information on the geometry of phase space than
averaged beam profile, which gives only a projection
phase space onto thexy plane.

V. CONCLUSION

We have shown that the analysis of the transve
profile of a kicked beam integrated over a time sh
with respect to the damping time can provide use
information on the properties of the phase space geome
In particular, in the vicinity of a coupling resonanc
Hamiltonian perturbation theory was used to set up
image analysis algorithm to measure both the modu
and phase of the coupling coefficientk. The results for
jkj are in good agreement with theoretical estimates
well as with the results of a more conventional measur
technique. The results for the change in the phase ok

due to a change in position of the source of coupling ag
well with calculations.
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