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Measurement of the modulus and phase of the linear coupling coefficient
by analysis of the transverse beam profile
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We study the dynamics of transverse oscillations near the linear coupling resonance excited by a pair
of skew quadrupoles at the Laborat6rio Nacional de Lux®tron UVX electron storage ring through
the analysis of the beam profile. Transverse coherent oscillations were excited with a fast kicker
and the profile of the oscillating beam was observed by focusing visible synchrotron radiation from a
bending magnet onto a fast charge-coupled device camera. Using a single resonance approximation, we
calculated the border of the time-averaged transverse beam profile as a function of the complex coupling
coefficient x, which characterizes the distribution of coupling fields along the storage ring. A least-
squares fit of the calculated beam profile border to the experimentally obtained isointensity contours
provided a new method to determine both the modulus and the phase @he values obtained for
the modulus are in good agreement with those from the conventional normal mode tune separation
technique, and the values obtained for the phase afree with calculations based on the model lattice
and the known skew quadrupole distribution. [S1098-4402(98)00016-0]

PACS numbers: 41.85.Ew, 29.20.Dh

I. INTRODUCTION ther, — v, = 3 resonance excited by skew quadrupoles.
We introduce a new experimental technique to obtain the
Coupling between the horizontal and vertical motionparameters characterizing the strength of the resonance
(betatron coupling) is widely recognized as an importan{namely the modulus and phase of the coupling coeffi-
performance limitation in storage rings used as synchrotronient). The method consists of observing the time evolu-
radiation sources or as colliders. Coupling produces betion of the transverse beam profile for a few milliseconds
tatron tune shifts and vertical dispersion, reduces the dya short time compared to the synchrotron damping time,
namic aperture [1], and increases the vertical emittancbut along time compared to the betatron oscillation period)
(with a corresponding decrease in light source brillianceafter exciting the beam with a fast (few hundred nanosec-
or collider luminosity [2]). Clearly, an increased coupling onds) horizontal kick. The acquired image is a projection
may also be beneficial, e.g., providing enhanced Touschebnto thexy plane of the phase space density distribution
lifetime for a low energy beam by decreasing the electrorfunction p(x,x’,y,y’) integrated over a very large num-
beam density. Linear coupling (i.e., coupling by linearber of turns (but still small enough that the system may
fields) may be caused by tilted quadrupoles, vertical closelle considered Hamiltonian). Many of the geometric char-
orbit deviations in sextupoles, and solenoidal fields in deacteristics of the phase space orbits reveal themselves in
tectors, whereas nonlinear coupling may be produced bthis time-averaged profile, allowing the direct observation
interaction with the electric fields of ions trapped in theof several aspects of the phase space geometry close to
electron beam [3] as well as by space charge or beam-beatime resonance and the experimental determination of the
forces [4]. Close to a resonant condition, the dynamicparameters describing the resonance strength. In the par-
of linear coupling can be described by a single complexticular case of the linear coupling resonance (specifically,
parameter: the coupling coefficiert The measurement the difference resonance [11]), the phase space geometry
of |k| is routinely done by measuring the separation beis described by the complex coupling coefficianand the
tween the oscillating frequencies of the normal modes o&veraged distribution presents an axis of symmetry rotated
the coupled system [5]. Other techniques to measure cowvith respect to the symmetry plane of the machine, as well
pling usually involve transversely exciting the beam andas distortions of its outermost contour. The rotation angle
observing the resulting coherent oscillations. The perturean be correlated with the real part of the coupling co-
bation can be a kick [6] or continuous wave excitation [7].efficient R¢«], while the detailed geometry of the outer
More recently, observations of coherent oscillations on a&ontour of the averaged beam profile strongly depends
turn-by-turn basis at two different locations in the storageon its imaginary part lifnc]. The Hamiltonian formalism
ring have allowed the experimental determination of botf11,12] applied to the resonance region of interest provides
the modulus and the phase eoffrom a Hamiltonian de- a transverse map from which the beam profile contour can
scription of the coupled dynamics [8—10]. be extracted. The reverse process allows the determina-
In this work, we present an experimental study of thetion of both Réx] and Inf«] given the beam contour by
linear coupled transverse beam dynamics in the vicinity of least-squares minimization. The procedure is applied
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to the experimentally obtained averaged contours whiclvariables, the coupling term in (1) is
ields experimental estimates of the modulus and phase

s P Hi(ax, @y, @y, @, 5) = 2K (s} B(5) By (s)aray
A similar technique has already been used to explore X cog i, (s) + D]

the phase space close to the one-dimensional sextupole-

excited third-integer resonance and can, in principle, be X codiy(s) + @y ]. (2)

used to study more complex resonance structures with By changing the independent variablego= 27s/L and

fairly simple and inexpensive experimental setup. expanding the periodic Hamiltonian in Fourier series, we
This paper is organized as follows: In Sec. Il we briefly obtain

review the application of the Hamiltonian formalism to

the study of the linear coupling resonance and derive geo-H,(ay, ay, ®,, ®,, ¢)

metrical properties of the integrated beam profile as a  _

. . e = Y co§g®, — &, + Ap + ar ,
function of the coupling coefficient. Those results are g'KA axay Co3 D Y ¢ dxq)]
used to establish an image analysis algorithm to determine 3)

experimentally the coupling coefficient. In Sec. Il we
describe the Laboratorio Nacional de LuZn&wotron .
(LNLS) UVX storage ring and the experimental setup. In . _ 1 B.(5)B, (s) K(s)
Sec. IV we present the experimental results and compare? 27 ! Y
them to those from other measurement methods and .

: : _ X ex «(s) — y(s) — 2msA/L]}ds,
calculations. The conclusions are presented in Sec. V. RilY(s) = 4y (s) msA/Ll}ds

where

, _ Yl @
Il. OUTLINE OF THE THEORY Yo2m
and A = v, — vy, — ¢q. The new Hamiltonian (3) de-
Ueribes the particle motion close to the conveniently cho-
%en difference resonance givendy It explicitly depends
on thecoupling coefficienk,, which is, in general, a com-
plex quantity. We consider the isolated resonagce 3,
i.e., we assume that we are close to the resonance condi-
| tion . — v, — 3 = 0 and neglect all nonresonant terms
- = Kq(s)y2 + K(s)xy, (1) in the Hamiltonian of Eq. (3). To simplify the notation

2 we usek; = k. In order to obtain the particle transverse

wherex and y are the transverse electron coordinatesmotion, we apply another canonical transformation to the
primes denote differentiation with respect to the longi'rotating systent o ) generated by
us u

tudinal coordinate, K,(s) describes the normal focusing
quadrupoles, and G = Ex[(bx + %Ago + %arqx)}

The Hamiltonian that describes transverse electro
motion close to a linear coupling resonance excited b
a distribution of skew quadrupoles is given by [11]

1 1 1
H(x,x',y,y',s) = Ex’z + Ey’z + EKq(s)x2

| E ax _ - Ey[cby - %Aqo - %arg(fc)}, ®)

is the skew quadrupole strendtirere E is the electron

energy,e is the electron charge, andis the velocity of 0 terms of which the new Hamiltonian is =
light. The Hamiltonian (1) can be written in a suitable 1 + dG/d¢ and the new variables are given by
form for study by the method of variation of constantsq, = 9G/o®, and®, = 9G/da,. This transformation

[12], whose skeleton is given by the perturbed solutions eliminates the explicit dependence of the Hamiltonian

u(s) = mcos&//u(s) + @], ?S,T)ed(;‘?r:teag E;rametap. Finally, a transformation to
whereu denotes either or y planes. The functiong,,(s) |~ Ny [~ iy
are the betatron functions (periodic functions over the V% XiPy), v = ‘/:yexmq)y)y
ring circumferencel) and i, (s) are the corresponding leads to the equations of motion
betatron phases. The method looks for new equations for . . .
the new variableg, and®,. As a function of these new <W> — [ ’,A/z ’,(K) } [ w } (6)
1] i(k) —iA/2 ]| v

Solutions to (6) are subjected to the choice of initial
conditions. However, since we are only interested in the
structure in phase space which emerges for a large number
IThe functionk (s) is zero everywhere except inside the skew Of turns, the exact initial conditions are not relevant and
guadrupole, where it is assumed to be constant and eq#glto we take, for simplicity,w(0) = wy and v(0) = 0. For
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these new variables, the determinant of the characteristic T T T T T
matrix in (6) gives the beating frequency L] R Re(x) = 0.0077 4
| L 5 %o, IM(k) = 0.0064
V=E1/|Kq|2~|—A2, 02 _
and, finally, the motion at the observation point is given y 00f 4
by I
x(e) _ Ao o 53 ]
P COSV ¢ COSV,, @ 7 sinve sinv, o, (7) N =001, arg(x)a0°
v =517, v =2.27 i
) 1 ) L y 1 i 1 ! . 1
M _ — % 2_[|m(K) COSVnyD + RdK) SanXXQD] -1.0 -0.5 0.0 0.5 1.0
X0 V x 2V X
X sinve, (8)
with 04 (b) Re(x) = 0.0077 -
A A Im(x) = 0.0
VXX=VX—?, l/yy=1/y+7. 02 s .
In Egs. (7) and (8), the motion is normalized according ol = ‘\O%;&; =
to the initial horizontal kickx,, and 8, and B, are Yoo e |
the betatron function values at the observation point. i i
The transverse map is obtained by noting thatis a
multiple of 277 so that[x(27j),y(27j)] represents the o4l V=517, v=2.27 i
transverse beam position vector of tjth beam passage e e .

at the observation point. Note that we have taken the -1.0 05 00 05 1.0
observation point as the origin for the integral calculation X

of k, Eq. (4). The horizontal and vertical oscillations FIG. 1. Examples of integrated beam transverse profiles that
can be factored into a fast oscillation (determined byresult from Egs. (7) and (8).

v, and »,) and a slow amplitude (determined by)

modulation term. The slow modulation is easily seen,myjityde. This gives us two points of the parallelogram
from the expression for the amplitudes

and (by symmetry) the rotation angle. In the lingit —
By, relation (11) is equivalent to the expression found
by Chao and Lee [13] for the slope of the stationary
transverse electron density distribution determined by the

— wol® | 12 equilibrium between the excitation of the oscillations due

ay(p) = 12 |k|>sir? v . (10) . e >
v to the discrete nature of synchrotron radiation emission

Figure 1 shows two examples of two-dimensional inte-(quantum excitation) and the damping due to the average
grated beam profiles as given by expressions (7) and (8jadiation emission rate under the action of the coupling
If the coupling coefficient is real [as in Fig. 1(b)], the bor- fields of a skew quadrupole. The same expression is
der of the integrated profile is a parallelogram rotated bybtained here in a different context in which coherent
an angled with respect to the machine horizontal axis of undamped time-averaged oscillations are considered.
symmetry withd given by
(ang By o) Re(k) 1) A. Extracting the beam profile border
Br1++/1+0Q2° A Here we show how to obtain the border of the inte-
The expression above is found by considering the tim@rated transverse profile. In a certain sense, our aim is to
evolution of the oscillation amplitudes, Egs. (9) and (10),find a reference system simpler than the ordirfaty, ¢)
and noting that the maximum vertical amplitude takeswhich allows us to write the coupling coefficiertas a
place at the point of minimum horizontal amplitude. Also, function of the profile border. To this aim we define

— M 2 2
ax(e) = 5 (A7 + [«] cos ve), 9)

the maximum horizontal amplitude occurs at zero vertical A
g1 = COsvo, 812 = 5, sSinve,

- _ 1 y .

2f Im(x) # 0, the integrated profile becomes distorted and g1 = 757 E’Q sinve,
is no longer a parallelogram. However, another parallelogram
also rotated by an angle given by Eq. (11) can still be _ 1 & ki Si

- . . 822 1Sinve,
circumscribed to the image. 2v | By
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wherek; = Relx| andk, = Im|«|. Here againg(j) =  wherey is the polar coordinate of the point agdis fixed.
27 j with j a positive integer. The position vect®r=  This means that for each value pf(0 = y = 7, because
(x,y) describes ellipses whose parameters vary slowlpf the symmetry) we must find the solutions which satisfy
according tov. Definingz = (v, + »,)/2, we canwrite  EQ. (14). The dependence ah can be eliminated from

the map (7) and (8) in the form R? so that the new map is given in terms of the slow
— . motion only. We note that
(x) _ (_1)j<g11 812><C93V€D(J)> (12)
y g gn/\sinve(j) /) _ 821 + 821 COS2V + gy sin2W

There are, therefore, two regimes of motion as already tany g1 + g11cos2V¥ + g sin2¥’

discussed: a slow one given by and a fast one

determined byz. The square of the distance from the "d

center is §22C0Sy — ginsiny
1 = i _ ’
R* = > (g1 + gh + &5 + g5) gusiny — g2 COSy
1 so that
+ < (gh + &5 — gl — &%) co2¥ 2 _q 2
2 _B . _ 2B
cosz‘If—Tl, sin2¥ = i1
+ (gngn + gugxn)sin2¥, (13) B A
with ¥ = 7p(j). Points at the border of (12) obey the It is convenient now to introduce new terms,
relation —A
IR* me
= -, (14) v
. a¢. . _ 1 IBy _ 1 IBy
together with the constraint condition I = o, @ ki, L= o, @ ka,
_ Y _ .
tany ="~ = ¢, | and we can write Eq. (13) as

o, _ @2+ DB+ 205]8* + (¢2 + DI + 2¢°L 1L B°

K L+ B[ + Bl — md) + 247

(15)

It is possible, however, to further simplify relation (15) b|y B. Getting x from the profile border analysis
noting thaty = R siny and definingp = 8~'. We get

. In order to experimentally obtain the beam profile
finally

border, we must determine the isointensity curves of the

transverse beam profile (contour plots). Then we choose
the contour that best represents the border and apply a
least-squares fit based on Eqg. (16) subjected to the roots

R — (¢ + D (2 + hp)

(p? + DI — me)p + LP + 27
and our transformation of reference system is now com
pleted: (x,y,¢) — (R, ¢, p). Equation (14) is simply
dR?/ap = 0, which leads us to find the roots of a fourth 12
order polynomial inp as a function ok
$(pl+mi3) + blgplim — 15 — $*(1 + mH)]p +
353(pm — 1)p* + LGBl = 2¢m) (pm — 1)p® =

higm—1)’p*=0.
17)
(In fact, the polynomial is of fifth order with one of the

rootsR = 0.) All of the relevant solutions belong to the
family branch starting ap = 0 for ¢ = 0. An iterative

(16)

0.2 1 1 1 1

procedure can generate solutions for other valueg of 00 02 04 06 08 10
and, in this way, the whole border is obtained. Figure 2 vim

shows a (normalized) plot dt in terms ofy for the same  FIG. 2. Calculated profile contow(y) for the same parame-
parameters of Fig. 1(a). ters as Fig. 1(a).

054001-4 054001-4



PRST-AB 1 MEASUREMENT OF THE MODULUS AND PHASE OF THE LINEAR ... 054001 (1998)

of (17) in order to extract the best value of Here we The lattice is a sixfold symmetric double-bend achromat

sketch some details of the fitting procedure. with alternating long (nondispersive) and short (dis-
Given a certain experimental contour &f points in  persive) straight sections and a total length of 93.21 m

polar coordinate®*(¢;) (0 = ¢, = 2), we constructa (3.2 MHz revolution frequency). A pair of skew

figure-of-merit function guadrupoles (AQS05A and AQSO05B) is installed in one of
N the long straight sections and is used to drive the coupling

X (kika,z) = > — [R*(di) — Rlki k2,2 resonance. One of the injection kickers was used to
i=17 excite a coherent betatron oscillation, and the subsequent

;= By (18) evolution of the transverse beam profile was observed

B:’ with a synchrotron radiation monitor. The beam energy

whereR (k; k2, z) is given by (16) subjected to the solu- Was 600 MeV in order to have asu'fficientl'y long d@mping
tion of (17) ando? is the variance associated with the time (90 ms) with respect to the image integration time
measurement of a given contour. This variance depend$-6 ms). _ _ _

on several details such as camera resolution, pixel size, We used two different modes of operation during the
and the area of the image matrix. Also, the beam is nofXPeriments: the standard optlcs'and the low vgrtlcal beta
a point in the transverse space but rather a Gaussian digPtics (Fig. 4). In the standard (sixfold symmestric) opera-
tribution with a characteristic spread. Here we will taketion mode, the horizontal and vertical betatron phase ad-
o2 as simply the variance associated with the basic celfances from one skew quadrupole to the other are rather
of the image matrix (typicallyl0~4). Moreover, in the Small (since both3, and B, are large along the straight
form (18) the ratioz at the observation point is one of section). Also, since they are symmetrlcal_ly installed with
the fitted parameters. The minimum of (16) is located inf€SPect to the center of the straight section, the betatron

the direction of the vector-V y2, and it is straightforward functions at both quadrupoles are equal so {dtand

to iteratively correct an initial parameter guess until a con2'd) produced by powering either quadrupole are essen-
venient minimum of (18) is reached [14]. tially the same. Therefore, in the normal operating mode,

In order to test the validity of the presented method Ul measurements were done with both skew quadrupoles

we generate a “surrogate” image by counting the numbepowered in series. The low vertical beta optics was imple-

of points generated by the map (7) and (8) inside eacinented in the straight sectiqn containing the pair of s_kew
cell of the image matrix. The resulting image histogramquadr“F’OIes (breaking the sixfold symmetry of the lattice)

(whose parameter set is known) can then be analyzed afjyorder to provide a large vertical betatron _phase a_dvance
its parameter set obtained. This procedure also enabldOm one skew quadrupole to the other (while keeping the
us to determine which contour (or set of contours) musfiorizontal phase advance small) and thus allow the phase
be taken in order to obtain a good fit. In general, if theOf the coupling coefficient to be varied by powering each
image histogram is normalized (background level at 0 angkeW quadrupole separately. We also measured the beta-

maximum intensity 1), the best contours for the fitting 7N functions at the focusing quadrupoles in the low-beta
oceur around 0.1. section in order to check the model optics of this mode.

The betatron function measurements agreed with theoreti-

T -y o
Il EXPERIMENTAL SETUP cal predictions to within 20%.

A. The LNLS UVX storage ring B. The optical beam profile monitor

The LNLS UVX electron storage ring [15] (Fig. 3) is  The optical characterization bench (Fig. 5) uses visible
a 1.37 GeV machine injected from a 120 MeV linac.radiation from a low dispersion #bending magnet port.

FIG. 3. Schematic drawing of a superperiod of the LNLS UVX electron storage ring where one can see the skew quadrupoles
used in the experiment (AQS05A and AQS05B) and both focusing and defocusing normal quadrupole magnets (AQF05A, AQF05B,
AQDO5A, AQDO05B).
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30 — T T T T T T geometric curvature effects. The visible radiation is
W ) E Nl _ _ N e monochromatized by means of a 10 nm bandpass filter
> ' in order to reduce chromatic aberrations, and a pair of
polaroids is used to control the light intensity on the CCD,
. thus avoiding saturation. The polaroids are installed close
1= [ § i 1 ' to the CCD sensor in order to minimize errors due to
I ; surface irregularities. The first mirror, as well as the
polaroid positions, can be remotely adjusted.

The CCD sensor is an EEV CAM17-46E camera
syt capable of producing nonstandard video signals which
sz a4 provide up to a 116 Hz frame rate. This is important

Sim) in order to guarantee that the total frame integration time
is small with respect to the synchrotron damping time at
il T T T T T T T the energies of interest. The CCD spatial resolution is
o S S S [ [ S8 15 um, and the camera output signal is digitized with
| L : ] a Matrox Pulsar frame grabber board which provides
zo [ /1 | | 1N [ 8 bit amplitude resolution and the possibility of using an
1 external trigger signal to start frame acquisition. This
; ' feature was used in order to synchronize the frame
" ] acquisition with the excitation of the beam by means of

the kicker magnet.

20

AGsosA |
AQS05B |

(m]

AQFO0S5B
AQDOSE

w

1
AQDOSA
AQFOSA |-

20 22 24 26 28 3

=]

[m]

: . ; . ; : : IV. RESULTS AND DISCUSSION
. s[m] o7 Figure 6 shows an example of the integrated transverse

. . . rofile of a kicked beam. Both pictures were taken in the
FIG. 4. (Color) Betatron functions in the standard optics modep . -
(a) and the low-beta optics mode (b). The positions of the skev(ﬂormal mode (standard optics) with the skew quadrupoles

quadrupoles are indicated. powered in series. Note the inversion of the slope of
the figure when we move the tunes from one side of the
resonance to the other (invert the signjf
The high energy synchrotron radiation power is absorbed
by a sapphire filter connected to a water cooled copper
mask. The visible portion of the spectrum is extracted
to the atmosphere by means of another sapphire window Figure 7 shows the measured value of the variation of
and guided to the characterization line by means of twd«| as a function of quadrupole strengkh as given by
first-surface mirrors with 86and 90 deflection angles. the analysis of the beam image and by the conventional
Two plane-convex lenses form an image of the transverséine separation technique. We plot the variation of
profile of the beam on a CCD sensor. A slit installedrather than the coupling coefficient itself in order to
in front of the optical system defines the horizontal€liminate offsets due to the effect of remanent fields
and vertical apertures, thus controlling diffraction andin the skew quadrupoles. The normal mode separation
is measured by scanning the vertical tune toward the
horizontal tune and measuring their minimum distance

A. Standard optics

lens lens of approximation. The slope of the curves agrees with
fiters 10300 m F=1000 ‘ the theoretical resul{£| = 0.43K) to within 30%, which
detecto\f | / / /BMd nirror sapphire
LI oo = winglow
shielding woll sapphire
| ‘ filter
e
I5t mirror ‘{H/Amm

observation
point FIG. 6. Examples of integrated kicked beam profile images.
The betatron tunes are, = 5.21,», = 2.17 (left) and v, =
FIG. 5. (Color) View of the optical beam profile monitor. 5.14, v, = 2.17 (right).
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0.08
T T T T 200
r | X Tune separation measurement 1 E A E i
007 — O Image analysis measurement I ™
150
(2]
0.06 _ 9]
‘ Alk| = 0.57 K ‘ S,
S g 100
¥ 005 & 5
g | ] kv
P G N— 2
0.04 © 50
Al| = 0.50 K c
- b o -
0.03 5
% 0
0.02 n n n n n n L
0.02 0.04 0.06 0.08 0.10 0.12 0.14 000 001 002 003 004 005 006 007 008
2 .
Quadrupole strength [m™] Quadrupole Strength[m™]

FIG. 7. (Color) Measurement of the variation ¢k| as a  FIG. 9. (Color) Change in phase due to the inversion of sign of
function of quadrupole magnet strengti in the standard the quadrupole strength as a functionkof

(sixfold symmetric) optics. The betatron tunes awg =

5.243 and v, = 2.196, and the skew quadrupoles are powered

meziruif:ﬁwerﬂwt?y i?t;yi?stsofa{ﬁe Slzgrg“d %%rgﬁﬁ%rggg (Cti?cltehs%rgely insensitive to the betatron phase advance from one

and measurement of the tune separation of the normal mod _adrupole o the next: The slope of both curves agrees

(crosses). with the theoretical estimatd«] = 0.13K) based on the
model optics to within 15%.

. . Figure 12 shows the measured change in the phase of

bmay be c;on5|dered reasonable s(mce tﬁeha%curaciy ?f tl? e coupling coefficient as we power skew quadrupble
etatron function measurements (on which the calculate -

slope depends) is of the order of 20%. The agreeme stead of skew quadrupol as a function of quadrupole

ith th Its 1 the i rength. This change in phase reflects the large ver-
wi € results from the tune separation measurementiz. | petatron phase advance between the two skew
is better (13%). Figure 8 shows the measurements Q

. - ; uadrupoles and can be computed once we know the be-
the phase of th_e qoupllng coeff|(:|en_t_ as a funct|on_ %liatron functions at the center of the straight section by
quadrupole excitation for both positive and negative

values of K. Figure 9 shows the measured change in _ s ) IR s

phase due to the quadrupole strength sign inversion. As oy 2[arctar( OX) arctar< Boy)} 24 L’

expected from theory, the phase jump is close t0°180 where s is the distance from the center of the straight

) section to either skew quadrupole apd. and B, are
B. Low-beta optics the betatron functions at the center of the section, which

In the low-beta optics, each skew quadrupole was pow@ré estimated from measurements at the nearby focusing

ered independently; Figs. 10 and 11 show the variation oluadrupoles. The resulting calculated change in the phase
|| as a function of either quadrupole magnet strengthOf the coupling coefficient is 1T4 which is about 15%

As expected, the modulus of the coupling coefficient is2Pove the experimentally determined values.

) ) 0.016 I I r
150 1 -
§ § o X Tune separation measurement X/X 1
| + é 5 | 00141 O Image analysis measurement > ~
100 i F ‘ - P
0012 5 X le's
— L N 6/
S 50 0010 L BlKI=0.13K o
E — , ; ~
° = \ ) /x P 1
i < 0.008 . -
£ ° - x o ° -
o KX Alk| = 0.11 K
- . 0.006 _X_ O
A
.50 T T T I T r X/% 9O ]
§ 9 9 8 0.004 —
L r | =
100 X X X X X X X X 0.002 . " .
008 006 -004 -002 000 002 004 006  0.08 0.02 0.04 0.06 0.08 0.10 012
Quadrupole Strength [m?] K (AQSO05A) [m?]

FIG. 8. (Color) Measurement of the phases of the coupling=IG. 10. (Color) Measurement of the variation bf| as a
coefficient as a function of the quadrupole magnet strength ifiunction of quadrupole magnet strength in the low-beta optics.
the standard optics. Only skew quadrupold is powered.
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0.016 : —— : : )( : case, the beam profile smears out and the determination
0015 H é .T,;’ZESEEZ[&“-"” meas“reme;“ of Im(x) (which is more critically dependent on the shape
0014 mage analysis measurement | ¢~ of the profile than on its orientation) becomes less precise.
0013 _H x_ 2 / ] Therefore the kicker strength must be chosen so that the
oo | A U . 9 1 oscillation amplitude is large compared to the beam size,
< ool b o 1 yet not so large that nonlinearities become important.
Bl I Q//” ] Also, this implies that the skew quadrupole strength must
o010 r X ~ ] be small since, on the contrary, large beam sizes will be
N A o=z [ produced. _
0.008 |- —o- 1 The error bars in the phase measurements have been
0.007 |——Q— : : : : : determined by simulation to be of the order of°1f6r
005 006 007 008 009 010 011 012 the coupling phases we have measured. However, the
K (AQS05B) [m”] uncertainty increases considerably for coupling phases

FIG. 11. (Color) Measurement of the variation pf| as a close to zero. Thls. happens because, for small _Coupl_lng
function of quadrupole magnet strength in the low-beta opticsPhases, large variations in phase cause comparatively little
Only skew quadrupolé is powered. change to the kicked beam profile.
Finally, the method is limited by the validity of the
o isolated resonance approximation, i.e., for the tune region
C. Method limitations where the analytical map (7) and (8) correctly represents

We now discuss some limitations of the profile analysighe motion. This is not a limitation in the sense that
technique for measuring the coupling coefficient andhe very significance of the coupling coefficients also
discuss factors that influence the accuracy of the previou@stricted to the region in tune space where the isolated
results. We estimate the error bars in the coupling®Sonance approachisvalid. _
coefficient modulus measurements to $#6.002 in the The method presented here is quite cheap to implement
case of the normal mode separation method. This is givend the hardware is simpler than the turn-by-turn beam
by the tune measurement resolution. In order to estimat@0Sition monitor (BPM) system used in [8]. Of course, a
the error bars in the coupling measurements via imag@air of turn-by-turn BPMs provides much more detailed
analysis, we have applied the image analysis algorithrifformation on the geometry of phase space than the
to simulated profiles and calculated the spread in th&veraged beam profile, which gives only a projection of
resulting values of the coupling coefficient as we choos@hase space onto the plane.
different isointensity contours for the fitting procedure.

This gives +0.001 for the measurement of the modulus V. CONCLUSION

of the coupling coefficient. These simulations do not
take into account the fact that the theoretical analysis i
Sec. Il effectively assumes a single particle beam, whic
means that the beam size must be small with respect §
the amplitude of the coherent oscillation. If this is not the

We have shown that the analysis of the transverse
rofile of a kicked beam integrated over a time short

ith respect to the damping time can provide useful
fiformation on the properties of the phase space geometry.
In particular, in the vicinity of a coupling resonance,
Hamiltonian perturbation theory was used to set up an
image analysis algorithm to measure both the modulus
and phase of the coupling coefficiemt The results for
T I 1 |x| are in good agreement with theoretical estimates as

|

[N
)
o

well as with the results of a more conventional measuring
technique. The results for the change in the phase of
due to a change in position of the source of coupling agree
well with calculations.
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