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Fast head-tail instability with space charge
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The fast head-tail instability with space charge is studied using series expansion techniques, numerical
simulations, and a new formulation which allows for precise estimates of growth rates and thresholds.
In regimes where they are reliable, all three techniques predict that space charge suppresses the fast
head-tail instability. It is found that the series expansion techniques are unreliable for parameter regimes
commonly employed in hadron accelerators. The numerical techniques are less prone to error, but the
computational requirements become severe as space charge tune shifts increase. The new model has
neither of these problems, but it underestimates the benefits of chromaticity, at least in its simplest form.
[S1098-4402(98)00010-X]

PACS numbers: 29.27

I. INTRODUCTION [2,3,5,6]. Results for boxcar and Gaussian line densities
The fast head-tail or transverse mode coupling instabil2'® presented. The solutions are not monotomAQgC
. o ; ) and in some cases do not converge as more basis vectors
ity can limit the intensity of electron synchrotrons. In

electron machines, the transverse impedance is usual(;f"}/re included. Additionally, theg; = 0 limit does not

. . SIgree with an exact calculation.
dominated by features in the vacuum chamber such a Section IIl contains a trackina aldorithm emolovin
kickers, rf cavities, and bellows. As a rule of thumb, 9 ayg ploying

- . discretized versions of the equations of motion. A fast
the fast head-tail instability appears when the betatror] ; ; ) .y

. algorithm which retains the symplecticity of the space
tune shift becomes comparable to the synchrotron tune

Detailed studies have been performed and fast hea&'_harge force is derived [7]. Dependencies on the various,

tail thresholds have been used to constrain the m<';1chir{:)eur(':‘Iy numerlcal, parameters are explored and regimes
where their effects seem negligible are found.

impedance [1]. In low an_d medium energy hadron S n sec. IV, the parabolic longitudinal potential is ap-
chrotrons, the transverse impedance is usually dominated

; X . roximated as a square well, an approximation previously
by incoherent space charge, which derives from mutuaﬁjsed for longitudinal instabilities [8,9]. For a longitudinal

electrostatic repulsion of the particles within the beam. ;. - "~ . . X .
. . distribution with a well-defined synchrotron tune, this ap-
The transverse impedance of the vacuum chamber is usyg-""_ .~ " . X S )
A .. proximation yields an eigenvalue problem which is easily

ally much smaller, but still significant. To the author’s . 2 . .

. o solved to machine precision. It is found that this model
knowledge, the fast head-tail instability has never beer rees with tracking in a parabolic longitudinal potential
observed in a hadron machine. The purpose of this stuo‘%g <Ing P 9 P
) . s o . r zero chromaticity.
is to explain why this instability is absent and to give ma- . . .

. . . TR The conclusions are summarized in Sec. V.
chine designers techniques for ascertaining its importance
in future accelerators.

Space charge alone does not appear to cause transverse Il. PHYSICAL MODEL
instabilities [2], but the effect of space charge in conjunc-
gloer;rwgh O(t)?g o?‘cilkj]r:?nsai?]f (;irf?irc]:i\llt(iaézeliérsnPne?hln?:ctlsthlaets%e longitudinal degrees of freedom are considered. Let

[3]- .0 denote the machine azimuth, which increases2by

the space charge forces often lead to betatron tune shifis

ach turn, and will be used as the timelike variable. The
AQ;. that are large compared to the synchrotron WNgime is denoted by, and w( is the angular revolution

Q,. For example, in the Brookhaven aIternating—gradienhe : : :
o - ; guency of a synchronous particle. Consider a single
synchrotron (AGS) at injectiol0,./Q; ~ 125, while particle and letr(#) = wot — 6 denote the time delay

A0,./Q, = 20 is expected for the relativistic heavy ion between this particle reaching and the synchronous

?(;)::Ldu?;s(?glgr)é ir|121 thrlz l;(iea%[gne's,’intgtee tﬁ'é?rpfe:itgzoihg;_particIe reachingd measured in radians of azimuth. The
bpprop L longitudinal equation of motion for a single particle is
sumes that the betatron tune shift is small compared to th :
X . ; pproximated as
synchrotron tune. This paper considers the regime where
AQ,./Q; can be large and where the synchrotron tune is A>T )
small enough to neglect synchrobetatron resonances. 220 + Q7 =0, (1)
In Sec. Il, the physical model is introduced. The
linearized Vlasov equation for the system is derived and avhere Q, is the synchrotron tune. The single particle

solution is attempted using the basis expansion formalisrequation of motion for the transverse degree of freedom

For the purposes of beam dynamics, one transverse and
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is approximated as phase space density(x, p, 7,v,0) with fdxdpdrdv
dx being the number of particles in the phase space element
—a T Q%x = Cyep(0,7)[x — (x(0,7))] dxdpdrdv at azimuthd. From this phase space density
=9 define the three moments
+ f dr'w(r — 7)p(6,7')
-T II(r,v,0) = fdxfdpf(x,p,r,v,@), 3)
X {x(0,7")ydr'. (2

In EqQ. (2),Q, is the bare betatron tun€,. = 0 charac-

terizes the peak strength of the incoherent space charge D(r,v,0) = fdef dp f(x.p.7.v.0),  (4)

force, andp(6,7) is the line density of the particles,

which vanishes fofr| > T, the half length of the bunch.

The transverse center of the beam as a function of azimuth P(7,v,0) = / dx / pdp f(x,p,7,v,0). (5)

and delay iSx(0, 7)), and the causal coherent forces due

to wall impedances are characterized by the wake poteWith these and previous definitions, the equations of

tial W(7). motion, and no further approximations, it follows that [11]
The solutions of Egs. (1) and (2) form the basis of the

paper. The first equation is trivial. It states that the lon- dll(7, v, 6) =0, (6)
gitudinal synchrotron oscillations have a single frequency do

and are unaffected by the transverse dynamics. This is

an approximation, since path length depends on betatron dD(t,v,6)

amplitude. Amplitude dependence of the synchrotron fre- do = P(r.v.0), 7
guency is also neglected. Equation (2) is more compli-

cated. The left-hand side describes betatron oscillations (7, v,60) _ 02D(r,v,6) + II(7,v,0)

the smooth approximation with zero chromaticity, while 46 S T

the collective forces are on the right-hand side. The first T %

term on the right-hand side approximates the incoherent X ] W(r — 7) dT’f dv' D(7',v, 6)
space charge force, which is proportional to the local lon- -T w

gitudinal _densityp(e,r). The space qhar'ge force depends_ _ CSCH(T,U,Q)fx dv' D(r,v',6)

on the difference between the particle’s transverse posi- —

tion x and the average position for all particles having o
the same delay at that azimuth(6, 7)). Variations in + CSCD(T,U,H)] dv'II(7,v',0), (8)
transverse beam size are neglected. It is known that this o
approximation is not adequate for describing quadrupolawhered/d8 = 9/06 + Q,(vd/dr — 7d/dv) is the to-
breathing modes [10] in that the maximum space charg&l derivative operator.
tune shift for a uniform density beam interacting with a Assume that the beam is matched longitudinally
quadrupole stopband is abodf3 times that predicted with II(r,v,6) = ¥(v> + 7%). This solves Eqg. (6)
using Eqg. (2). However, to lowest order, transverse inand makes Eqgs. (7) and (8) linear in the unknown
stabilities involve transverse dipole modes for which thefunctions. At this point, another approximation is
approximation appears adequate. The second term on theade. SupposB(r,v,0) = D(r,v,0) exp—iQ,6) and
right-hand side of Eq. (2) approximates the broadband(r,v,8) = P(r,v,0)exp—iQ,6). Insert these expres-
wake force. The integral is only over the bunch, so thesions into Egs. (7) and (8) and make the approximation
cumulative effects of previous turns are neglected. Thigi?D/d*6 ~ —Q?D — 2iQ, exp(—iQ.0)dD/df. This
approximation, as the assumption of zero chromaticity, iss equivalent to assuming that all of the tune shifts are
not needed and will be removed in Sec. IV. small compared t@, and restricting the calculation to
To proceed analytically define the conjugate variableshe upper betatron sideband. The resulting equation for
p =dx/d, v = dr/(Q,d6) and consider the smooth Dis

aD(r,v,0 aD(r,v,0 aD(r,v,0 j T > .
7(2; ) + Qv (g: ) _ T (gvv )] =2£2x Y(v? + 72) ]_T dr'W(r — 7') f_x dv' D(7',v’,0)
+ iCsc {f)(T v H)IW dv'v('? + 7?)
20, > %

— V(? + 7?) ]i dv' D(r,v', 6’)}. 9)
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Equation (9) is quite formidable and appears to requirg(7) is a boxcar function. The expansion functions are

approximate techniques. Assume a solution of the form
D = W(w? + 72)e 1200 Z anmfom(t,v),  (10)
n,m

where the f, ,,(7,v)’'s are orthogonal basis functions
with the weighting function¥(v? + 72?), the a,,’s are
constants, andAQ, is the betatron tune shift. Insert
Eqg. (10) into Eqg. (9), multiply by the complex conjugate
fp4(T,v)d7dv, and integrate. This results in an eigen-
value equation for the,, ,,’s

AQxap,q = Z Tp,q,n,man,m .

n,m

(11)

There are two functional forms oF for which the ma-
trix elements have a simple form. Whdn(v? + 72) =
(1 — v2 — 72712 with v2 + 72 < 1, the line density |

Tpgnm = (qQs = AQs)84'8)

BB}
2(lm| + 2n) + 1

— AQw

+ AQ,B,B

fk,m(Z) = Ck’m[T + ngr(m)v]|m|

X Pk_l/z’lml[Z(v2 + 72 - 1],
where
k
—1/2.m 1 <k—1/2><k+m>
P —_
k (X) Zk pz=:0 p k — p

X (x — D¥7P(x + 1)P
is a Jacobi polynomial [12], and
Itk + DI(Im| + k + 1/2)(Im| + 2k + 1/2)
B al(k + 1/2)T(Im| + k + 1) '
For the boxcar line density, the discussion will be
restricted to a wake potential of the for#i(r) = W =

const. For this simple wake potential, the matrix element
is given by

2
Ck,m

lgl+2p
q |m|+2n
P2(lm| + 2n) + 1
|m|+2n+1 |m|+2n—1
50 50 i +5Iq|+2p B 5Iq|+2p (12)
lal+2p ke 2n 2lgl +2p) + 1|

whereAQ,. > 0 is the incoherent tune depression in the beam,Qw < 0 is the tune shift of the rigid mode due to

the wake, and

I'n+1/2)2m| + 1 + 4n)T(Im| + n + 1/2)

B" =

n

|

al'(n + DI(

}1/2

lm| +n + 1)

When AQw = 0, the subspaces withi| + 2n = const are independent. For a given valudmef + 2n, there are a
finite number of equations and very accurate numerical solutions can be obtained.

When ¥(72 + v2) = exd —(7? + v?)], the expansion

functions arg;,, = Hi(7)H,,(v), where Hi(x) is the

Hermite polynomial. For the same constant wake potential, the matrix element is

Tp,q,n,m = = iQS{n(SZl"‘laI{l]*l - mazlfl(srlz’i»l}
Sm[1 — 8°] n+
~ag,, 2= onl <n—p>/21~<
0 SNz (-2)
200y 50,09
289w In ) 50507 /2 + (5050 —
T p! | pon

1)

+ 1
+>ever(n + p)

(_2)(n*p*1)/2

NG

F(" er p)ever(n + p + 1)}. (13)

In Eq. (13),AQ;. is the peak value of the space char!;e

tune depression in the bunch, and evgn= 1 if n is even
and is zero otherwise.

For a more general wake potential, one sy = 0
in Eq. (13) and adds the term
_50 50in—p o0
— m-q n —x2/27%
5Tp,q,n,m - 4Qx2/’p' ]_x dx x +pe / W(x) .
(14)
In Eq. (14),

W(x) = /:O W(r)e™ dr

is the Fourier transform of the wake potential.
physical variables,

044201-3

iCquZL(x/Ut\/E)
7TET0'1\/§

whereg is the charge per particlé, is the bunch current,
Z  (w) is the transverse impedanae, is the rms bunch
duration, andE7 is the total energy per particle.

While the matrix elements given by Egs. (12) and (13)
have closed forms, we know of no exact solutions to
Eq. (11) whemAQy andQ, are not zero.

To proceed, the matrix is truncated and solved nu-
merically. With matrix element (12), the matrix is trun-
cated by summing oveln| + 2n = mmay, Where mmay
is the highest synchrotron mode included in the calcula-

W(x) =

>

In moretion. With matrix element (13), the matrix is truncated

by summing ovemn + n =< mmax. Figure 1 shows the

044201-3
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05 : : : : : : wake potential is of the forr¥ (7) = W, sin(27) exp(—7)
with Wy 50% greater than that needed to produce instabil-
ity with AQ,. = 0. For this case, it is not clear that the

0.4 ] expansion converges at all.
- Some insight into the unreliability of the expansion
@’ 0.3 | technique can be obtained by considering the ¢ase= 0
o | with the simple wake [13]. In this case, Eq. (9) can be
% ) integrated ovew yielding
= 0.2 . A ) ;
o aD(7,0) iw N
8 - = T ] dr'D(7,0), 15
g 20 ~ag P [ arbie). ()
0 . . .
0.1 s b where D(7,0) = fdv D(r,v,0). Set D(r,0) =
N ] x(7,0)p(7), and let
0.0 ; . : : : T , ;
0.0 1.0 2.0 3.0 4.0 5.0 6.0 u = p(r)dr'.
AQ/ . -
QSR In these variables,
FIG. 1. Largest value of IfAQ./Q,) as a function of ax(u, ) iw [
AQ,./ Qs andmmayx using matrix element (12). The value bf = [ du' x(u', ). (16)
is twice the size needed to produce instability wii®,. = 0: a6 20y Jo
mmax = 1, solid lin€;mmax = 5, squaresinmax = 10, circles.  consider the initial value problem and letu, 0) = u*,

wherek is an integer. Assuming a solution of the form
growth rate of the most unstable mode as a function of -
AQ,./Q; for the boxcar line density. The value %f was x(u,0) = u* Z u"f,(0)
twice that needed to produce instability withQ,. = 0. n=0
The behavior is not monotonic and suggests that there aggelds

ranges of space charge tune shift which improve stability. LGJ2iWu0/0-
Next, consider the Gaussian distribution. Figure 2 shows x(u, 0) = u*k! % (17)

growth rate versudQ,. for a simple wake that is 50%

larger than the\Q,. = 0 threshold. The growth rates for where I; is the modified Bessel function of the first
large tune shift are small compared to Fig. 1, but theykind. For arguments with large real valuek(x) =
would be dangerous in a real machine. Things are eve®Xplx)/v27x. Since the polynomials/* form a ba-
less clear for other forms of impedance. Figure 3 showsis, the solution for arbitrary initial conditions satisfies

the growth rates for a line density exp(—72) when the  |x| = O[explyWu6/Q.)] asé — . This is a growing
solution, but its growth rate, defined &8(Q.), is zero.

0.5
0.5
0.4 N
0.4
S !
< 0.3 . =
o Q03
g o
g Q
:_,0.2 B \E’
& = 0.2
= &
0.1 i S
0.1
0.0 b : : : Ea
00 10 20 30 40 50 6.0 0.0 ‘ ‘
£Q./Q 00 10 20 30 40 50 6.0

AQ/Q,
FIG. 2. Largest value of MAQ./Q,) as a function of
AQ,./Q, and mmax for a Gaussian density and simple wake. FIG. 3. Largest value of AQ./Q,) as a function of
The wake is 50% larger than that needed to produce instabilitAQ,./Q, and mmax for the resonator impedance described in
for AQsc = 0: mmax =1, solid line; mmax = 5, squares; the text:mmax = 1, solid line; mmax = 5, squaresmmax = 10,
mmax = 10, circles. circles;mpn,« = 15, diamonds.
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Conversely, consider the Gaussian distribution with 03 —— : : : —
Q;,—0inT,,,n, This yields an eigenvalue problem
which approximates Eq. (15). The growth rates are
independent ofAQ,. and, as shown in Fig. 4, the peak
growth rate drops slowly asin.y increases. While the
growth rate as a function ofi,,,x may converge to zero,
it is difficult to tell. When taken in conjunction with the
data presented in Figs. 1—4, it appears that the expansion £ 0-2 [, * .
technique does not always converge as more basis vectors¥ *e
are added, and this technique may not converge to the &

(AQ)}

true answer when it does converge. In the next section, .'°°-....
a technique which does not have these deficiencies is °°°'°°o...,
presented.
01 L L L L L L L L L
lIl. SOLUTION VIA PARTICLE TRACKING 0 10 20m 3 40 %0

max

An alternate approach to the problem is to solve it
via particle tracking [7]. The bunch is modeled &s  FIG- 4. Largestvalue of IfAQ.) versusmmax for Q; = 0.
interacting macroparticles. The equations of motion for

the kth macroparticle are taken to be to the transverse size of the charge distribution, the trans-
4’7, , verse _fprce varies almost linearly with displacement. If

o —QiTk, (18) the initial transverse offsets are small compared to the

cylinder radius and the system is stable, the transverse

offsets are always small, at least in an average sense, and

d?x;, 5 Cye & the approximation can be justified. Mathematically, if one
20 —Qix + N Z(xk = X)) A — 7)) takes the limitN — o« and then takes the limits of(7)
N =1 going to a delta function an®(r) going to the wake po-
! 3 ial, Eq. (2) i d
+ = ijW(Tk — 7). (19) tential, Eq. (2) is recovered. _ _
N = The number of macroparticles is controlled using

the parametern,. The initial longitudinal variables
In Eq. (19), the new functions\(r) and W(r) are in- are selected by considering the subset of lattice points
troduced to smooth out the particle-particle forces. TheTy, Vi) = [(k, + 1/2)/n¢, (k, + 1/2)/n¢], with k, and
individual macroparticles can be viewed as rigid narrowk, integers, which are inside the unit circle. The initial
cylinders with the long axis along. When the transverse longitudinal coordinates of a macroparticle,, v,) are
offset between two such macroparticles is small comparederived via

(reve) = (Te, VOL[L = (1 = T = V)2 /(1 + w2,

where the parameter determines the bunch shape andand wake forces. The space charge kick onitiepar-

L is the half length of the bunch. The smoothed densityticle is

in longitudinal phase space is proportionalid — 72 —

v2)#, and results in a line density (L2 — 72)#*1/2, |n . Y

most cases, the longitudinal variables were updated once Fr = Cye Z(xk — x)Mre = 7). (20)

per turn with a rotation of anglerQ,. Test cases where =1

the rotation was performed more frequently were done tQuhere ¢ = 27C,./NM. The kick due to the wake

check that the results were essentially the same. potential is
The initial values of the transverse variablesand p

were obtained using a random number generator. The

transverse dynamics consists of two parts, single particle

dynamics and multiparticle dynamics. The scheme in-

volves a single particle update followed by a multipar-On the surface, Eqgs. (20) and (21) appear to require

ticle update and is repeat@d times per turn. The single O(N?) operations to obtain the kicks for al macropar-

particle update is given by a transfer matrix with aticles, which would make simulations with largé un-

bare betatron phase advanzeQ./M. The multipar- tenable. For appropriate choices dfr) and W(r), the

ticle update consists of a kick from the space charg®peration count drops t@[N log(N)]. The trick is to

27 & N
Fk = Wj;ij(Tk - Tj). (21)
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generalize the phasor technique which is usually emexp—i@T — w,7/2Q0)/2i, the wake kick can be ex-
ployed to retain the cumulative effects of multiple pas-pressed as two sums similar§@™.

sages through a resonant structure [13].
Consider Eq. (20) withA(r) = exp(—al7|), where
[Adt =2/a = 7, is the equivalent duration oA(r).

Sort the values ofr; so thatr; = 7,11, which is an

The choiceA(7) = exp(—a|7|) is somewhat discon-
certing. This can be seen from the fact thel) is
proportional to the autocorrelation function of the cur-
rent pulse due to a single macroparticle. Pdr) =

O(N logN) process with standard algorithms [14]. Equa-exp(—«|7|), the current pulse for a single macropar-

tion (20) is given by

Fi/Cse = xiS1; — 820 + 0 S17 — 827, (22)
where
k
Sl = D e,
j=1
k
§20 = D xjed T,
=1
"y (23)
SIE = D e
j=k+1
N
S2; = Z xje”‘(”_Tf').
j=k+1

To calculate the sums, one starts wifi = 0,5, = 0
and uses

S1;+1 = ea(7k77k+l)51; + 1,
S2- — a(Tk_TkH)SZ_ + ,

k+1 — € k Xk+1 (24)
S1j_, = e®mmm(s1) + 1),

S2F ) = e TT(82) + xy),

Note that these recurrence relations are stable and that t
kicks for all N particles requireD(N) calculations after
the particles have been sorted in arrival time. The sorting

procedure is done when thg's are updated.

Next, consider the kick due to the transverse wakefield.

Set

W(r) = wamA(T’)dT',

(25)

where Cy is a constant andi(¢) = e>§p(—a|7|), as

before. Adjusting the constant so théif(r) — W as
T — o yields
Fy = ZZ:IT—MW[SOI‘_ — 82, /2 + 82,7/2], (26)
where
k
SO = D xj.
j=1

For a resonator impedance, the wake kick on pariicle

is given by

k
Fk = Z‘XJ'WO Sir{d)(Tk - Tj)]eiw’(niT/)/zQ’ (27)
j=1

where w, is the resonant frequencyQ is the

quality factor, and @& = w,/1 — 1/40Q2.  Since
sin(@7) exp(—w,7/20) = expiaoT — w,7/20)/2i —

044201-6

ticle is « Ky(Ja7|), a modified Bessel function which
has a logarithmic singularity at = 0. A less singular
current pulse is associated with the smoothing function
A7) = (1 + |aTt|) exp(—al7]), which has an equivalent
width 7, = 4/a. For this smoothing function, the current
pulse for a single macroparticle #s exp(—a/|7|), which

is continuous. The same kind of techniques used with
A(7) = exp(—«a|7]) can be applied to the smoother func-
tion although the expressions are more complicated. The
space charge kick is given by

Fi/Cse = xi(1 + ar)S1; — (1 + a7)S2;
— xaS3; + aS4; + x (1 — ar)S1f
— (1 — am)S2) + xaS3; — aS4;,
(28)
with
§3jy = e TSI 4+
Sdi,, = eSS4 + s
§3; = e mTT(S3) + 7y,
sS4, = e“(T*"_”)(S4,2r + X, 7i) .
q%e wake kick is given by

2
Fo— W
NM

(29)

[SO; — (2 — at)S2; /4 — aS4; /4

+ (2 — aty)S2] + aS4f/4]. (30)

The space charge kick obtained using either Eq. (22) or
(28) is an exact pairwise sum over the macroparticles in
the beam and satisfies

J
Fr=—U(xy,x,..

b T b
o N)

',stTl’TQ,""

where

A

CSC
U= Z(xj - xk)z/\(Tj — 7).
Tk

4

Therefore, the update map for the bare rotation fol-
lowed by a space charge kick is symplectic. Since the
wake force is causal, there is no symplectic update scheme
that represents it. However, the direct pairwise sum
should be at least as good as any other technique.

Since Eg. (19) is linear in the transverse variables,
any exponentially growing solution will continue to grow
without saturating. This makes it possible to obtain
accurate numbers for the growth rate of the most unstable
mode. To measure the growth rate of the most unstable
mode, the bunch was divided into 10 binsrinwhere each

044201-6
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bin contained the same number of macroparticles. Theegion of the numerical parameters in which the physical
average values of and p were calculated for each bin results, such as growth rate and mode shape, did not
and the Courant-Snyder (CS) invariants were obtainedcchange.
Figure 5 shows the log of the CS invariants for these Figure 7 shows growth rate versus/L for u =1,
bins versus the number of turns for no space charge and&Q,. = 0.2, Q, = 0.01, Q. = 2.925, W, =2, and
simple wake at twice the head-tail threshold. For clarity,a variety of numerical parameters. Fa&Q,. = 0,
the initial variables were = 1, p = 0. The other input the instability threshold isW, = 0.45. For the case
parameters were; = 50, w = 1, O, = 2.925, M = 24, shown, AQ,./O;, =20 and ImQ,/Q,) =< 0.01 for
7. = 0.02, andQ, = 0.01. 0.03 = 7,/L = 0.05. It is worthwhile to note that for
For the simple case illustrated in Fig. 5, an unambigu-r,/L = 0.02 and n;, = 50 (solid line), there are~100
ous measurement of the growth rate is made with a shorhacroparticles in a longitudinal slice of length. Even
simulation. Different parameters can lead to growth ratesor this fairly high particle density, it appears that numeri-
which are more difficult to obtain. Figure 6 shows thecal simulations have not converged. Note that Fig. 2 in
CS invariants forQ, = 0; other are parameters the same[7] is at odds with Fig. 7. This is due to the fact that
as in Fig. 5. All of the particles were started with= 1,  the simulations used to obtain the earlier figure were too
p = 0. From Eq. (17) one expects that the CS invari-short. The simulations used here were runifor turns.
ants should grow as IQS|) = 2log(Agllo(v/ialu)0)]), Given the convergence problems evident in Fig. 7,
where the average is taken over a longitudinal bin. Thenost of the numerical results were obtained for smaller
parametersd, and a« were obtained by a simultaneous AQ,.. The convergence rates were substantially faster
least squares fit to the 10 curves in Fig. 6 using the Marand the numerical results are reasonably certain. Figure 8
quardt algorithm. For the best fit parameters, the rooshows growth rates versusQ;./Q; with other parame-
mean square difference between the data and the fit waers the same as in Fig. 7. It is essentially the same as
((data— fit)2)!/2 = 0.038, which is small compared to Fig. 3 in [7], with the exception that the lower limit on
the variation in the data;-20. The best fit parameters the vertical axis is more appropriate here. Consider the
wereAp, = 1.012 anda = 0.0887. From the simulation secondary bump in the growth rates. The rates:for=
input parameters, the analytic calculation gives= 1 100 are smaller than the results fay = 50, which in
anda = 0.0894. turn are mostly less than the results fay = 25. It
The update algorithm includes five physical parameterseems reasonable to assume that the secondary bump
O, L, Os, AQ,., Wy, and u, and three numerical is a numerical artifact and that the threshold space
parameters,, M, andn,. For the step function wake, the charge tune shift satisfieAQ,./Q,; = 2. Simulations
bunch length and the equivalent width of the smoothindike this were performed for a variety of parameters and
function reduce to a single parameter/L. This leaves instability thresholds as a function akQ,./Q; were
an eight-dimensional parameter space. A uniform gridbbtained. In all cases witl; # 0, an unstable system
search of this space is impossible, so the philosophy washowed exponential growth. Slow growth, as in Eq. (17),
to choose a set of physical parameters and then find was eventually dominated by exponential growth or was

absent.
8
6 15 =
0 4
3 & 10 -
g S
- =)
2 o
5F i
0 < . |
L | L | L O i
0 100 200 300 ‘ ! ‘ ! ‘ | ‘
turns 0 500 1000 1500 2000

turns
FIG. 5. Log of CS invariants versus turn number for a system

at twice the head-tail threshold with no space charge andlG. 6. Log of CS invariants versus turn number for the same
0, = 0.01. conditions as in Fig. 5, except th@, = 0.
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0.1 : ‘ : ] IV. SQUARE WELL MODEL

] The first step to obtain this model is to modify the
9 longitudinal dynamics. Generalize Eq. (1) to read

Z &t _ v _ dU(7)
E de*  de dr

0.01 |

=
o
w
T

Model the longitudinal potential using a square well

N

max{Im(AQ,)}
o

0, fo<r<my;
U(r) = {Uo, otherwise

Take the air bag [13] longitudinal phase space distri-
butionW(7,v) « (v — vg) + 6(v + vg) for0 = 7 =
75, Wherer, is the full bunch length. The line density is
WL a boxcar function and there is a well-defined synchrotron
FIG. 7. Im(AQ,) vs 7./L with physical parameterg = 1, tune Qg = /7.
AQ,. = 02,0, = 001, O, = 2.925, Wy = 2. The numerical Before presenting the analytic results, consider simula-
parameters are, = 25, M = 12, circles;n¢ = 25, M =24,  tjons using the square well. These are compared with the
3?;52%%’;5 =50, M =24, solid line; ne =100, M =24, 4 aqratic potential and a boxcar line densjiy € —1/2)
' in Fig. 10. Both simulations used the same number of
macroparticles, identical smoothing lengths, etc. As is
The results are summarized in Fig. 9. Even withclear from the figure, the growth rates and thresholds are
the precautions taken, the results #0,./Q, > 5 are  Very similar for the two cases. Growth rates versus space
suspect. Nonetheless, it appears that incoherent spagBarge tune shift are shown in Fig. 11. As with Fig. 10,
charge forces increase the fast head-tail threshold. Rnly the phase space distribution and longitudinal forces
is natural to ask what the underlying scaling laws arei® dlffere|_1t for th{e two cases. As is clear from the fig-
and how other factors, such as chromaticity, change theres, an air bag distribution in a square well and a box
picture. Unfortunately, the computational requirementscar distribution with a quadratic potential have very simi-
are daunting. It is particularly worrisome when onelar behavior, especially when compared with typical error
considers the parameter regime in which planned anfars on machine impedances. The air bag distribution is
existing machines operate. Fortunately, there is a solvaboW considered in detail. _
model which agrees with the computational results in Let X+(6,7) be the transverse offset of particles

regimes where the computations are trustworthy. with dr/df = —v, (positive momentum offset below
transition) at azimuthd and arrival time 7. Define

6

10

0.00 0.05 0.10 0.15

10
T
0.1 : 8 L ’ J
o ' o
2 I [=
% 0.01 0
E :
& i o
1S >
0.001 \‘ : =
| ] §o)
I L x
T D ) S —
0.0 2.0 4.0 6.0 8.0 10.0
AQ/Q, 0 ! !
FIG. 8. Largest value of IfAQ./Q;) vs AQ,./Q, with L = 0 2 4 6
n =1 for various values of, and 7,.: ny, = 25, 7. = 0.05, AQ_/Q,

circles, solid line;n, = 50, 7, = 0.02, squares, short dashed

line; n, = 100, 7, = 0.01, diamonds, long dashed line. The FIG. 9. Threshold wake in units of the threshold wake for
value of the step function wake was 2.5 times larger than th\Q,. = 0 vs AQ,./Q, for different line densities:u = 1,
threshold value witlAQ,. = 0. circles, solid line;u = —1/2, squares, short dashed line.
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dx_ dx— ox—
0.005 = - 2= -
o~ a0 " or
0.004 - ] = iAQAx_(0,7) — x(0,7)} + ifvox—
=3 + i ds W(r — s)x(6,
g 0003 - | lKjo sW(r — 5)x(0,s)
E + contributions from previous turns (32)
% 0.002 - |
é In Egs. (31) and (32} = (x+ + x—_)/2 is the transverse
0.001 centroid of the beam. Remembering that wot — 6,
I()C
K = , (33)
0.000 ‘ ‘ | 47 B(Er/q) w5 Ox
0.40 0.50 0.60 0.70 0.80
wake where g is the particle chargeE; = ymc? is the total
FIG. 10. Largest value of IfdQ,) versus wake strength particle energy,8 = v/c, and Io is the peak current.

from simulations withAQ,. = 0, Q, = 0.01 and different

longitudinal forcesu = —1/2 in a quadratic potential, circles;
square well model, solid line. For wake 0.4 there was no
instability.

X_(6, ) in similar fashion for particles withi7/d6 =
+vg.
compared to the betatron tune so that

X (0,7) = e 024 (6, 7),

where the variation of (8, 7) is slow in8, and similarly

for X_. Then
dX+ 8x+ 8X+
e
o a6 " 97
= iAQ{x+(0,7) — X(0,7)} — iévoxs
T
+ iK[ ds W(r — 5)x(6,s)
0
+ contributions from previous turns (31)
0.015
~ 0.010 1
o
g
E
é 0.005 :
0.000 ‘ ‘
0.00 0.01 0.02 0.03
AQ,
FIG. 11. Largest value of IfAQ,) vs AQ,. from simulations

with Q; = 0.01 and different longitudinal forcesy = —1/2
in a quadratic potential, circles; square well model, solid line.
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Assume that all betatron tune shifts are small

Consider the eigenvalue problem wher®o — —iAQ,

so that the coherent betatron tunedis + AQ,. Assume

the wake potential is given bW (r) = Wyexp(—a7),
which is easily generalized to any impedance which can
be represented as a sum of poles. The equations become

dx(7) _ i{AQsc/z + AQ, — ‘fv()}x
dr Vo "
— iF/vy + i(AQs./2vp)x—, (34)
dx—(T) = 4+ I{Ach/z + AQ)c + ‘fv()}x
dr Vo
+ iF/UO - i(AQsc/sz)er > (35)
dl;—(:) = —aF + («kWy/2){x— + x+}. (36)

In these units the head-tail phase shiftyis=s — &7, /2.
The boundary conditions arex.(0) = x_(0) and
x+(7p) = x_(7p), since an instantaneous change un
leavesx and p, unchanged. Also, the wake force is
continuous. For a single bunch in the machine,

F(O) — e*2ﬂ'i(Q‘+AQx)f(27r77,,)aF(Tb) ) (37)
For more complex impedances, such as a resonator, the
force is written as a sum of terms. Each term obeys
an equation such as (36), whete is complex, and
each obeys (37). These generalizations will not be done
here. Additionally, this text always refers to a single
bunch in the ring. The extension of these computations
to N, identical, symmetrically filled bunches is done by
substitutingQ, — (Q. + s)/Np, where0 = s < N,, is

the coupled bunch mode number, and choosing the units
of 7 to be radians of azimuth between bunch centers.
The coupling between bunches can be ignored by setting
F(0) = 0, which must be done for a consistent picture
when « = 0. The results presented in this paper use
F(0) = 0 to concentrate on mode coupling instabilities.
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Before considering the general case, there aresed fork = 0. The eigenfunctions form a complete set
some analytic results. WheW, = 0, the eigenfunc- and the tunes are real so the system is stable. Note that
tions are given byx:; = expiér){coskw7/7,) ¥  the tune shift for th&k = 0 mode vanishes becauda),

(it AQ,/kmvy)sinlkrr/7,)}, where k is an in- measures the difference between the coherent tune and
teger. The tune shifts are given byAQ, = the low current tune.
—AQ;./2 + \J(AQ,./2)? + (kQ,)?, where the + is | Whena7, > 1, the wake force is given by

F = KfOT ds W(t — 5)x(0,s) = K/:Cds W(s)x(r, 7 — s)

~ Kj:o ds W(s) {f(ﬁ,r) -5 df;i’ T)} ~ < {Y(Q’T) B é%}

When the last expression is used in Egs. (34) and (35), the problem is reasonably straightforward. The analog of the
k = 0 space charge mode has a tune shift, = —G(1 — i£¢/a), whereG = kW,/a. The modes fok # 0 have

G — i{f/a) — AQ, * \/[G(l - if/a) - AQXC]2 + 4k2Q52(1 - G2/4a2v(2))
B 2 — G2/2a2v} '

a

AQx = _AQSC

The system is stable only & < 2av, and space chargé value of AQ, corresponds to a solution that satisfies the
plays no role. This result is similar to that found by Zotterboundary conditions. By choosing a range of starting
for a Gaussian longitudinal distribution using the basisvalues for AQ,, one can be confident that the most

expansion technique [15]. unstable mode has been found.
For the general case, notice that the differential equa- Figure 12 shows the growth rate of the most unstable
tions are of the form mode with fixed wake strength and no coupling between
dU bunches as a function of), for the three kinds of
ar MU, calculations. The air bag distribution in a square well

|and the simulations in a quadratic potential are the same

where M is a constant matrix and, except for special™. ~. . : . ) .
P P within 5%, while the basis expansion technique is clearly

cases, : .
different. Figure 13 shows the growth rate versus the

3
U= Z UieMT. space charge tune shift faj, = x = O, = 1 and ¢ =
=i a = 0. ForAQ,. = 0, the threshold value of the wake

The Uy's and A,’s can be obtained to machine precisionStrength isWy = 1.15. For « > 0, the trend remains.
with standard routines. The computational strategy iigure 14 shows the threshold value ) versus space

to choose a starting value faxQ, and iterate until the charge tune shift for the same bunch parameters and
various values ofx with y = 0. Since Egs. (34)—(36)

0.015
20 .
= 0.010 | . 1
g o
£ o
% N
g 0.005 - o E 10l A
8
£
0.000 L L L L L L L L L
0.00 0.01 0.02 0.03 0.04 0.05
Q 00 L | L | L | L
s 0.0 5.0 10.0 15.0 20.0
FIG. 12. Largest value of ItdQ,) vs Q, for AQ,. = AQ,/Q

a = ¢ = 0 with kWy7r, = 0.055: simulations in a harmonic

potential with u = —1/2 circles; analytic square well model, FIG. 13. Largest value of I(dQ./Q,) vs AQ,./Q, for the
solid line; basis expansion for the boxcar distribution with analytic square well model witiW, = 2,4,8,16 anda = ¢ =
mmax = 3, short dashed line. 0. ForAQ,. = 0, Wy = 1.16 at threshold.
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1000 ¢

100 -

threshold

10 |

1 n 1 n 1 n 1 n
0.0 5.0 10.0 15.0 20.0

AQ./Q,
FIG. 14. Threshold value ckWy7,/Q, vs AQ,./Q, for the

analytic square well withy = 0 and a7, = 0,5, 10,20, from
bottom to top.

with F(0) = 0 imply
AQx _ AQx ( aTy, AQSC KWOTb>’ (38)

o, O o, " 0,

The square well model encounters difficulty when
chromaticity is included. As is clear from Fig. 15,
tracking in a quadratic potential and the square well model
agree for small head-tail phase shifts, but the tracking
growth rates decrease for large values of head-tail phase
while the growth rates from the square well model remain
large. Conversely, if the square well model predicts a
sufficiently stable system, the actual system should be
sufficiently stable.

V. CONCLUSIONS

The square well model of transverse bunched beam sta-
bility agrees with simulations in some parameter regimes
where the simulations can be trusted. Both models pre-
dict that space charge should strongly damp the trans-
verse mode coupling instability. The importance of bunch
length relative to the range of the wakefield was verified.
If the range of the wakefield is short, the beam can be
stable even if the tune shift is larger than the synchrotron
tune. Hadron bunches tend to be long with their trans-
verse impedance dominated by space charge, and both
effects suppress the fast head-tail instability. From a com-
putational point of view, the square well model is faster

the curves in Fig. 14 are generally applicable. Forand more robust than the other techniques, but it can
AQ,. = 0 and a'rb > 1, the threshold wake satisfies overestimate growth rates for nonzero chromaticity. One

kW, = 0.5 * voa?, which is a factor of 4 less than the Suspects that this derives from its sparse momentum dis-
analytic result. The threshold increases with space chardgéibution. This conjecture is testable, in principle, since
tune shift. ForAQ,./Q, > 10, the curves in Fig. 14 are the model can be generalized to any longitudinal potential

nearly straight lines;
{ KW()Th
Oy

Using a least square fit, the coefficients afe) = 2.16,
b(0) = 2.63; a(5) = 5.48, b(5) = 6.18; a(10) = 11.80,
b(10) = 10.22; anda(20) = 37.4, b(20) = 15.6.

A QSC

N

} = alaty,) + blaty) (39)
thresh

0.0006 |-

0.0004

max{IM(AQ,)}

0.0002 |-

0.0000

FIG. 15. Largest value of ItdQ,) vs y for AQ,. =
0, = 0.01 with « = 0 and W, at half the threshold for the

which is piecewise constant.
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