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Fast head-tail instability with space charge
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The fast head-tail instability with space charge is studied using series expansion techniques, nume
simulations, and a new formulation which allows for precise estimates of growth rates and thresho
In regimes where they are reliable, all three techniques predict that space charge suppresses the
head-tail instability. It is found that the series expansion techniques are unreliable for parameter regi
commonly employed in hadron accelerators. The numerical techniques are less prone to error, bu
computational requirements become severe as space charge tune shifts increase. The new mod
neither of these problems, but it underestimates the benefits of chromaticity, at least in its simplest fo
[S1098-4402(98)00010-X]
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I. INTRODUCTION

The fast head-tail or transverse mode coupling insta
ity can limit the intensity of electron synchrotrons.
electron machines, the transverse impedance is us
dominated by features in the vacuum chamber suc
kickers, rf cavities, and bellows. As a rule of thum
the fast head-tail instability appears when the beta
tune shift becomes comparable to the synchrotron t
Detailed studies have been performed and fast h
tail thresholds have been used to constrain the mac
impedance [1]. In low and medium energy hadron s
chrotrons, the transverse impedance is usually domin
by incoherent space charge, which derives from mu
electrostatic repulsion of the particles within the bea
The transverse impedance of the vacuum chamber is
ally much smaller, but still significant. To the autho
knowledge, the fast head-tail instability has never b
observed in a hadron machine. The purpose of this s
is to explain why this instability is absent and to give m
chine designers techniques for ascertaining its importa
in future accelerators.

Space charge alone does not appear to cause trans
instabilities [2], but the effect of space charge in conju
tion with other sources of transverse impedance is
clear [3]. One of the main difficulties lies in the fact th
the space charge forces often lead to betatron tune s
DQsc that are large compared to the synchrotron t
Qs. For example, in the Brookhaven alternating-gradi
synchrotron (AGS) at injectionDQscyQs ø 125, while
DQscyQs * 20 is expected for the relativistic heavy io
collider (RHIC). In this regime, the simple tune sh
formulas [4] are inappropriate, since their derivation
sumes that the betatron tune shift is small compared to
synchrotron tune. This paper considers the regime w
DQscyQs can be large and where the synchrotron tun
small enough to neglect synchrobetatron resonances.

In Sec. II, the physical model is introduced. T
linearized Vlasov equation for the system is derived an
solution is attempted using the basis expansion forma
1098-4402y98y1(4)y044201(12)$15.00
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[2,3,5,6]. Results for boxcar and Gaussian line dens
are presented. The solutions are not monotonic inDQsc

and in some cases do not converge as more basis ve
are included. Additionally, theQs ­ 0 limit does not
agree with an exact calculation.

Section III contains a tracking algorithm employin
discretized versions of the equations of motion. A f
algorithm which retains the symplecticity of the spa
charge force is derived [7]. Dependencies on the vario
purely numerical, parameters are explored and regi
where their effects seem negligible are found.

In Sec. IV, the parabolic longitudinal potential is a
proximated as a square well, an approximation previou
used for longitudinal instabilities [8,9]. For a longitudin
distribution with a well-defined synchrotron tune, this a
proximation yields an eigenvalue problem which is eas
solved to machine precision. It is found that this mo
agrees with tracking in a parabolic longitudinal poten
for zero chromaticity.

The conclusions are summarized in Sec. V.

II. PHYSICAL MODEL

For the purposes of beam dynamics, one transverse
the longitudinal degrees of freedom are considered.
u denote the machine azimuth, which increases by2p

each turn, and will be used as the timelike variable. T
time is denoted byt, and v0 is the angular revolution
frequency of a synchronous particle. Consider a sin
particle and lettsud ­ v0t 2 u denote the time dela
between this particle reachingu and the synchronou
particle reachingu measured in radians of azimuth. Th
longitudinal equation of motion for a single particle
approximated as

d2t

d2u
1 Q2

s t ­ 0 , (1)

where Qs is the synchrotron tune. The single partic
equation of motion for the transverse degree of freedox
© 1998 The American Physical Society 044201-1
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d2x
d2u

1 Q2
xx ­ Cscrsu, td fx 2 kxsu, tdlg

1
Z t

2T
dt0 W st 2 t0drsu, t0d

3 kxsu, t0dl dt0. (2)

In Eq. (2),Qx is the bare betatron tune,Csc $ 0 charac-
terizes the peak strength of the incoherent space ch
force, andrsu, td is the line density of the particle
which vanishes forjtj . T , the half length of the bunch
The transverse center of the beam as a function of azim
and delay iskxsu, tdl, and the causal coherent forces d
to wall impedances are characterized by the wake po
tial W std.

The solutions of Eqs. (1) and (2) form the basis of
paper. The first equation is trivial. It states that the l
gitudinal synchrotron oscillations have a single freque
and are unaffected by the transverse dynamics. Th
an approximation, since path length depends on beta
amplitude. Amplitude dependence of the synchrotron
quency is also neglected. Equation (2) is more com
cated. The left-hand side describes betatron oscillation
the smooth approximation with zero chromaticity, wh
the collective forces are on the right-hand side. The
term on the right-hand side approximates the incohe
space charge force, which is proportional to the local l
gitudinal densityrsu, td. The space charge force depen
on the difference between the particle’s transverse p
tion x and the average position for all particles hav
the same delay at that azimuthkxsu, tdl. Variations in
transverse beam size are neglected. It is known that
approximation is not adequate for describing quadrup
breathing modes [10] in that the maximum space cha
tune shift for a uniform density beam interacting with
quadrupole stopband is about4y3 times that predicted
using Eq. (2). However, to lowest order, transverse
stabilities involve transverse dipole modes for which
approximation appears adequate. The second term o
right-hand side of Eq. (2) approximates the broadb
wake force. The integral is only over the bunch, so
cumulative effects of previous turns are neglected. T
approximation, as the assumption of zero chromaticity
not needed and will be removed in Sec. IV.

To proceed analytically define the conjugate variab
p ; dxydu, y ; dtysQsdud and consider the smoot
044201-2
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phase space densityfsx, p, t, y, ud with fdxdpdtdy

being the number of particles in the phase space elem
dxdpdtdy at azimuthu. From this phase space dens
define the three moments

Pst, y, ud ­
Z

dx
Z

dp fsx, p, t, y, ud , (3)

Dst, y, ud ­
Z

x dx
Z

dp fsx, p, t, y, ud , (4)

Pst, y, ud ­
Z

dx
Z

p dp fsx, p, t, y, ud . (5)

With these and previous definitions, the equations
motion, and no further approximations, it follows that [1

dPst, y, ud
du

­ 0 , (6)

dDst, y, ud
du

­ Pst, y, ud , (7)

dPst, y, ud
du

­ 2 Q2
xDst, y, ud 1 Pst, y, ud

3
Z t

2T
Wst 2 t0d dt0

Z `

2`

dy0 Dst0, y0, ud

2 CscPst, y, ud
Z `

2`

dy0 Dst, y0, ud

1 CscDst, y, ud
Z `

2`

dy0 Pst, y0, ud , (8)

wheredydu ; ≠y≠u 1 Qssy≠y≠t 2 t≠y≠yd is the to-
tal derivative operator.

Assume that the beam is matched longitudina
with Pst, y, ud ­ Csy2 1 t2d. This solves Eq. (6)
and makes Eqs. (7) and (8) linear in the unkno
functions. At this point, another approximation
made. SupposeDst, y, ud ­ D̂st, y, ud exps2iQxud and
Pst, y, ud ­ P̂st, y, ud exps2iQxud. Insert these expres
sions into Eqs. (7) and (8) and make the approxima
d2Dyd2u ø 2Q2

xD 2 2iQx exps2iQxuddD̂ydu. This
is equivalent to assuming that all of the tune shifts
small compared toQx and restricting the calculation t
the upper betatron sideband. The resulting equation
D̂ is
≠D̂st, y, ud
≠u

1 Qs

(
y

≠D̂st, y, ud
≠t

2 t
≠D̂st, y, ud

≠y

)
­

i
2Qx

Csy2 1 t2d
Z t

2T
dt0 W st 2 t0d

Z `

2`

dy0 D̂st0, y0, ud

1
iCsc

2Qx

Ω
D̂st, y, ud

Z `

2`
dy0Csy02 1 t2d

2 Csy2 1 t2d
Z `

2`
dy0 D̂st, y0, ud

æ
. (9)
044201-2
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Equation (9) is quite formidable and appears to requ
approximate techniques. Assume a solution of the for

D̂ ­ Csy2 1 t2de2iDQxu
X
n,m

an,mfn,mst, yd , (10)

where the fn,mst, yd’s are orthogonal basis function
with the weighting functionCsy2 1 t2d, the an,m ’s are
constants, andDQx is the betatron tune shift. Inse
Eq. (10) into Eq. (9), multiply by the complex conjuga
fp

p,qst, yddtdy, and integrate. This results in an eige
value equation for thean,m’s

DQxap,q ­
X
n,m

Tp,q,n,man,m . (11)

There are two functional forms ofC for which the ma-
trix elements have a simple form. WhenCsy2 1 t2d ­
s1 2 y2 2 t2d21y2 with y2 1 t2 , 1, the line density
ge

re

044201-3
erstd is a boxcar function. The expansion functions ar

fk,mszd ­ Ck,mft 1 i sgnsmdygjmj

3 P
21y2,jmj
k f2sy2 1 t2d 2 1g ,

where

P
21y2,m
k sxd ­

1
2k

kX
p­0

µ
k 2 1y2

p

∂ µ
k 1 m
k 2 p

∂
3 sx 2 1dk2psx 1 1dp

is a Jacobi polynomial [12], and

C2
k,m ­

Gsk 1 1dGsjmj 1 k 1 1y2d sjmj 1 2k 1 1y2d
pGsk 1 1y2dGsjmj 1 k 1 1d

.

For the boxcar line density, the discussion will
restricted to a wake potential of the formW std ­ W ­
const. For this simple wake potential, the matrix eleme
is given by
to
Tp,q,n,m ­ sqQs 2 DQscddm
q dn

p 1 DQscBm
n Bq

p

2d
jqj12p
jmj12n

2sjmj 1 2nd 1 1

2 DQW
Bm

n B
q
p

2sjmj 1 2nd 1 1

8<:d
0
jqj12pd

0
jmj12n 1

1d
jmj12n11
jqj12p 2 d

jmj12n21
jqj12p

2sjqj 1 2pd 1 1

9=; , (12)

whereDQsc . 0 is the incoherent tune depression in the beam,2DQW , 0 is the tune shift of the rigid mode due
the wake, and

Bm
n ­

Ω
Gsn 1 1y2d s2jmj 1 1 1 4ndGsjmj 1 n 1 1y2d

pGsn 1 1dGsjmj 1 n 1 1d

æ1y2

.

WhenDQW ­ 0, the subspaces withjmj 1 2n ­ const are independent. For a given value ofjmj 1 2n, there are a
finite number of equations and very accurate numerical solutions can be obtained.

When Cst2 1 y2d ­ expf2st2 1 y2dg, the expansion functions arefk,m ­ HkstdHmsyd, where Hksxd is the
Hermite polynomial. For the same constant wake potential, the matrix element is

Tp,q,n,m ­ 2 iQs

©
nd

q
m11d

p
n21 2 md

q
m21d

p
n11

™
2 DQsc

d
q
mf1 2 d0

mg
p!

p
2p

s22dsn2pdy2G

µ
n 1 p 1 1

2

∂
evensn 1 pd

2
2DQW

p

d0
md0

q

p!

(
d0

pd0
npy2 1 sd0

pd0
n 2 1d

s22dsn2p21dy2
p

2
G

µ
n 1 p

2

∂
evensn 1 p 1 1d

)
. (13)
,

3)
to

nu-
n-

la-
ed
In Eq. (13),DQsc is the peak value of the space char
tune depression in the bunch, and evensnd ­ 1 if n is even
and is zero otherwise.

For a more general wake potential, one setsDQW ­ 0
in Eq. (13) and adds the term

dTp,q,n,m ­
2d0

md0
qin2p

4Qx2pp!

Z `

2`

dx xn1pe2x2y2W̃sxd .

(14)

In Eq. (14),

W̃sxd ­
Z `

0
Wstdeixt dt

is the Fourier transform of the wake potential. In mo
physical variables,
W̃sxd ­
icqIbZ'sxyst

p
2 d

pET st

p
2

,

whereq is the charge per particle,Ib is the bunch current
Z'svd is the transverse impedance,st is the rms bunch
duration, andET is the total energy per particle.

While the matrix elements given by Eqs. (12) and (1
have closed forms, we know of no exact solutions
Eq. (11) whenDQW andQs are not zero.

To proceed, the matrix is truncated and solved
merically. With matrix element (12), the matrix is tru
cated by summing overjmj 1 2n # mmax, where mmax

is the highest synchrotron mode included in the calcu
tion. With matrix element (13), the matrix is truncat
by summing overm 1 n # mmax. Figure 1 shows the
044201-3
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FIG. 1. Largest value of ImsDQxyQsd as a function of
DQscyQs andmmax using matrix element (12). The value ofW
is twice the size needed to produce instability withDQsc ­ 0:
mmax ­ 1, solid line;mmax ­ 5, squares;mmax ­ 10, circles.

growth rate of the most unstable mode as a function
DQscyQs for the boxcar line density. The value ofW was
twice that needed to produce instability withDQsc ­ 0.
The behavior is not monotonic and suggests that there
ranges of space charge tune shift which improve stabi
Next, consider the Gaussian distribution. Figure 2 sho
growth rate versusDQsc for a simple wake that is 50%
larger than theDQsc ­ 0 threshold. The growth rates fo
large tune shift are small compared to Fig. 1, but th
would be dangerous in a real machine. Things are e
less clear for other forms of impedance. Figure 3 sho
the growth rates for a line density~ exps2t2d when the

0.0 1.0 2.0 3.0 4.0 5.0 6.0
∆Qsc/Qs
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FIG. 2. Largest value of ImsDQxyQsd as a function of
DQscyQs and mmax for a Gaussian density and simple wak
The wake is 50% larger than that needed to produce instab
for DQsc ­ 0: mmax ­ 1, solid line; mmax ­ 5, squares;
mmax ­ 10, circles.
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wake potential is of the formWstd ­ W0 sins2td exps2td
with W0 50% greater than that needed to produce insta
ity with DQsc ­ 0. For this case, it is not clear that th
expansion converges at all.

Some insight into the unreliability of the expansi
technique can be obtained by considering the caseQs ­ 0
with the simple wake [13]. In this case, Eq. (9) can
integrated overy yielding

≠D̂st, ud
≠u

­
iW
2Qx

rstd
Z t

2T
dt0D̂st0, ud , (15)

where D̂st, ud ­
R

dy D̂st, y, ud. Set D̂st, ud ­
xst, udrstd, and let

u ­
Z t

2T
rst0d dt0.

In these variables,

≠xsu, ud
≠u

­
iW
2Qx

Z u

0
du0 xsu0, ud . (16)

Consider the initial value problem and letxsu, 0d ­ uk ,
wherek is an integer. Assuming a solution of the form

xsu, ud ­ uk
X̀
n­0

unfnsud

yields

xsu, ud ­ ukk!
Iks

p
2iWuuyQx d

s
p

iWuuy2Qx dk
, (17)

where Ik is the modified Bessel function of the fir
kind. For arguments with large real values,Iksxd ø
expsxdy

p
2px. Since the polynomialsuk form a ba-

sis, the solution for arbitrary initial conditions satisfi
jxj ­ Ofexps

p
WuuyQx dg as u ! `. This is a growing

solution, but its growth rate, defined asImsQxd, is zero.

0.0 1.0 2.0 3.0 4.0 5.0 6.0
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0.0
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m
ax
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Q
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FIG. 3. Largest value of ImsDQxyQsd as a function of
DQscyQs and mmax for the resonator impedance described
the text:mmax ­ 1, solid line; mmax ­ 5, squares;mmax ­ 10,
circles;mmax ­ 15, diamonds.
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Conversely, consider the Gaussian distribution w
Qs ! 0 in Tp,q,n,m. This yields an eigenvalue proble
which approximates Eq. (15). The growth rates
independent ofDQsc and, as shown in Fig. 4, the pea
growth rate drops slowly asmmax increases. While the
growth rate as a function ofmmax may converge to zero
it is difficult to tell. When taken in conjunction with th
data presented in Figs. 1–4, it appears that the expan
technique does not always converge as more basis ve
are added, and this technique may not converge to
true answer when it does converge. In the next sect
a technique which does not have these deficiencie
presented.

III. SOLUTION VIA PARTICLE TRACKING

An alternate approach to the problem is to solve
via particle tracking [7]. The bunch is modeled asN
interacting macroparticles. The equations of motion
thekth macroparticle are taken to be

d2tk

d2u
­ 2Q2

s tk , (18)

d2xk

d2u
­ 2Q2

xxk 1
Csc

N

NX
j­1

sxk 2 xjdlstk 2 tjd

1
1
N

NX
j­1

xjŴ stk 2 tjd . (19)

In Eq. (19), the new functionslstd and Ŵstd are in-
troduced to smooth out the particle-particle forces. T
individual macroparticles can be viewed as rigid narr
cylinders with the long axis alongt. When the transvers
offset between two such macroparticles is small compa
nd
sit

n
e

t

Th
tic
in

ar
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rg
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FIG. 4. Largest value of ImsDQxd versusmmax for Qs ­ 0.

to the transverse size of the charge distribution, the tra
verse force varies almost linearly with displacement.
the initial transverse offsets are small compared to
cylinder radius and the system is stable, the transv
offsets are always small, at least in an average sense
the approximation can be justified. Mathematically, if o
takes the limitN ! ` and then takes the limits oflstd
going to a delta function and̂Wstd going to the wake po
tential, Eq. (2) is recovered.

The number of macroparticles is controlled usi
the parametern,. The initial longitudinal variables
are selected by considering the subset of lattice po
sTk , Vkd ­ fskt 1 1y2dyn,, sky 1 1y2dyn,g, with kt and
ky integers, which are inside the unit circle. The init
longitudinal coordinates of a macroparticlestk , ykd are
derived via
stk , ykd ­ sTk , VkdLf1 2 s1 2 T2
k 2 V 2

k d1ys11mdg1y2ysT2
k 1 V 2

k d1y2,
e

uire
where the parameterm determines the bunch shape a
L is the half length of the bunch. The smoothed den
in longitudinal phase space is proportional tosL2 2 t2 2

y2dm, and results in a line density~ sL2 2 t2dm11y2. In
most cases, the longitudinal variables were updated o
per turn with a rotation of angle2pQs. Test cases wher
the rotation was performed more frequently were done
check that the results were essentially the same.

The initial values of the transverse variablesx and p
were obtained using a random number generator.
transverse dynamics consists of two parts, single par
dynamics and multiparticle dynamics. The scheme
volves a single particle update followed by a multip
ticle update and is repeatedM times per turn. The single
particle update is given by a transfer matrix with
bare betatron phase advance2pQxyM. The multipar-
ticle update consists of a kick from the space cha
y

ce

o

e
le
-

-

e

and wake forces. The space charge kick on thekth par-
ticle is

Fk ­ Ĉsc

NX
j­1

sxk 2 xjdlstk 2 tjd , (20)

where Ĉsc ­ 2pCscyNM. The kick due to the wak
potential is

Fk ­
2p

NM

NX
j­1

xjŴstk 2 tjd . (21)

On the surface, Eqs. (20) and (21) appear to req
OsN2d operations to obtain the kicks for allN macropar-
ticles, which would make simulations with largeN un-
tenable. For appropriate choices oflstd and Ŵ std, the
operation count drops toOfN logsNdg. The trick is to
044201-5



PRST-AB 1 M. BLASKIEWICZ 044201 (1998)

em
s

a

t

tin

el

le

-

-

r-

r-
h

tion
t
nt

ith
c-
The

) or
s in

fol-
the
eme
um

les,
w
in

able
able
generalize the phasor technique which is usually
ployed to retain the cumulative effects of multiple pa
sages through a resonant structure [13].

Consider Eq. (20) withlstd ­ exps2ajtjd, whereR
ld t ­ 2ya ­ te is the equivalent duration oflstd.

Sort the values oftj so that tj # tj11, which is an
OsN logNd process with standard algorithms [14]. Equ
tion (20) is given by

FkyĈsc ­ xkS12
k 2 S22

k 1 xkS11
k 2 S21

k , (22)

where

S12
k ­

kX
j­1

eastj2tkd,

S22
k ­

kX
j­1

xjeastj 2tk d,

S11
k ­

NX
j­k11

eastk 2tjd,
(23)

S21
k ­

NX
j­k11

xjeastk2tjd.

To calculate the sums, one starts withS1
N ­ 0, S2

0 ­ 0
and uses

S12
k11 ­ eastk2tk11dS12

k 1 1 ,

S22
k11 ­ eastk2tk11dS22

k 1 xk11 ,

S11
k21 ­ eastk212tkdsS11

k 1 1d ,
(24)

S21
k21 ­ eastk212tkdsS21

k 1 xkd ,

Note that these recurrence relations are stable and tha
kicks for all N particles requireOsNd calculations after
the particles have been sorted in arrival time. The sor
procedure is done when thetk ’s are updated.

Next, consider the kick due to the transverse wakefi
Set

Ŵ std ­ CW

Z t

2`
lst0d dt0, (25)

where CW is a constant andlstd ­ exps2ajtjd, as
before. Adjusting the constant so thatŴstd ! W as
t ! ` yields

Fk ­
2pW
NM

fS02
k 2 S22

k y2 1 S21
k y2g , (26)

where

S02
k ­

kX
j­1

xj .

For a resonator impedance, the wake kick on partick
is given by

Fk ­
kX

j­1

xjW0 sinfṽstk 2 tjdge2vr stk2tj dy2Q , (27)

where vr is the resonant frequency,Q is the
quality factor, and ṽ ­ vr

p
1 2 1y4Q2. Since

sinsṽtd exps2vrty2Qd ­ expsiṽt 2 vrty2Qdy2i 2
044201-6
-
-

-

the

g

d.

exps2iṽt 2 vrty2Qdy2i, the wake kick can be ex
pressed as two sums similar toS22.

The choicelstd ­ exps2ajtjd is somewhat discon
certing. This can be seen from the fact thatlstd is
proportional to the autocorrelation function of the cu
rent pulse due to a single macroparticle. Forlstd ­
exps2ajtjd, the current pulse for a single macropa
ticle is ~ K0sjatjd, a modified Bessel function whic
has a logarithmic singularity att ­ 0. A less singular
current pulse is associated with the smoothing func
lstd ­ s1 1 jatjd exps2ajtjd, which has an equivalen
width te ­ 4ya. For this smoothing function, the curre
pulse for a single macroparticle is~ exps2ajtjd, which
is continuous. The same kind of techniques used w
lstd ­ exps2ajtjd can be applied to the smoother fun
tion although the expressions are more complicated.
space charge kick is given by

FkyĈsc ­ xks1 1 atkdS12
k 2 s1 1 atkdS22

k

2 xkaS32
k 1 aS42

k 1 xks1 2 atkdS11
k

2 s1 2 atkdS21
k 1 xkaS31

k 2 aS41
k ,

(28)

with

S32
k11 ­ eastk2tk11dS32

k 1 tk11 ,

S42
k11 ­ eastk2tk11dS42

k 1 xk11tk11 ,

S31
k21 ­ eastk212tkdsS31

k 1 tkd ,
(29)

S41
k21 ­ eastk212tkdsS41

k 1 xktkd .

The wake kick is given by

Fk ­
2pW
NM

fS02
k 2 s2 2 atkdS22

k y4 2 aS42
k y4

1 s2 2 atkdS21
k 1 aS41

k y4g . (30)

The space charge kick obtained using either Eq. (22
(28) is an exact pairwise sum over the macroparticle
the beam and satisfies

Fk ­
≠

≠xk
Usx1, x2, . . . , xN , t1, t2, . . . , tN d ,

where

U ­
Ĉsc

4

X
j,k

sxj 2 xkd2lstj 2 tkd .

Therefore, the update map for the bare rotation
lowed by a space charge kick is symplectic. Since
wake force is causal, there is no symplectic update sch
that represents it. However, the direct pairwise s
should be at least as good as any other technique.

Since Eq. (19) is linear in the transverse variab
any exponentially growing solution will continue to gro
without saturating. This makes it possible to obta
accurate numbers for the growth rate of the most unst
mode. To measure the growth rate of the most unst
mode, the bunch was divided into 10 bins int, where each
044201-6
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bin contained the same number of macroparticles.
average values ofx and p were calculated for each bi
and the Courant-Snyder (CS) invariants were obtain
Figure 5 shows the log of the CS invariants for the
bins versus the number of turns for no space charge a
simple wake at twice the head-tail threshold. For clar
the initial variables werex ­ 1, p ­ 0. The other input
parameters weren, ­ 50, m ­ 1, Qx ­ 2.925, M ­ 24,
te ­ 0.02, andQs ­ 0.01.

For the simple case illustrated in Fig. 5, an unambi
ous measurement of the growth rate is made with a s
simulation. Different parameters can lead to growth ra
which are more difficult to obtain. Figure 6 shows t
CS invariants forQs ­ 0; other are parameters the sam
as in Fig. 5. All of the particles were started withx ­ 1,
p ­ 0. From Eq. (17) one expects that the CS inva
ants should grow as logsjCSjd ø 2 logsA0jI0s

p
iakuludjd,

where the average is taken over a longitudinal bin. T
parametersA0 and a were obtained by a simultaneou
least squares fit to the 10 curves in Fig. 6 using the M
quardt algorithm. For the best fit parameters, the r
mean square difference between the data and the fit
ksdata2 fitd2l1y2 ­ 0.038, which is small compared to
the variation in the data,,20. The best fit parameter
wereA0 ­ 1.012 anda ­ 0.0887. From the simulation
input parameters, the analytic calculation givesA0 ­ 1
anda ­ 0.0894.

The update algorithm includes five physical parame
Qx , L, Qs, DQsc, W0, and m, and three numerica
parameterste, M, andn,. For the step function wake, th
bunch length and the equivalent width of the smooth
function reduce to a single parameterteyL. This leaves
an eight-dimensional parameter space. A uniform g
search of this space is impossible, so the philosophy
to choose a set of physical parameters and then fin

0 100 200 300
 turns

0

2

4

6

8

 lo
g 10
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S)

FIG. 5. Log of CS invariants versus turn number for a syst
at twice the head-tail threshold with no space charge
Qs ­ 0.01.
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region of the numerical parameters in which the phys
results, such as growth rate and mode shape, did
change.

Figure 7 shows growth rate versusteyL for m ­ 1,
DQsc ­ 0.2, Qs ­ 0.01, Qx ­ 2.925, W0 ­ 2, and
a variety of numerical parameters. ForDQsc ­ 0,
the instability threshold isW0 ­ 0.45. For the case
shown, DQscyQs ­ 20 and ImsQxyQsd & 0.01 for
0.03 # teyL # 0.05. It is worthwhile to note that fo
teyL ­ 0.02 and n, ­ 50 (solid line), there are,100
macroparticles in a longitudinal slice of lengthte. Even
for this fairly high particle density, it appears that nume
cal simulations have not converged. Note that Fig. 2
[7] is at odds with Fig. 7. This is due to the fact th
the simulations used to obtain the earlier figure were
short. The simulations used here were run for105 turns.

Given the convergence problems evident in Fig
most of the numerical results were obtained for sma
DQsc. The convergence rates were substantially fa
and the numerical results are reasonably certain. Figu
shows growth rates versusDQscyQs with other parame
ters the same as in Fig. 7. It is essentially the sam
Fig. 3 in [7], with the exception that the lower limit o
the vertical axis is more appropriate here. Consider
secondary bump in the growth rates. The rates forn, ­
100 are smaller than the results forn, ­ 50, which in
turn are mostly less than the results forn, ­ 25. It
seems reasonable to assume that the secondary
is a numerical artifact and that the threshold sp
charge tune shift satisfiesDQscyQs ø 2. Simulations
like this were performed for a variety of parameters a
instability thresholds as a function ofDQscyQs were
obtained. In all cases withQs fi 0, an unstable system
showed exponential growth. Slow growth, as in Eq. (1
was eventually dominated by exponential growth or w
absent.

0 500 1000 1500 2000
 turns

0

5

10

15

 lo
g 10
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FIG. 6. Log of CS invariants versus turn number for the sa
conditions as in Fig. 5, except thatQs ­ 0.
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FIG. 7. ImsDQxd vs teyL with physical parametersm ­ 1,
DQsc ­ 0.2, Qs ­ 0.01, Qx ­ 2.925, W0 ­ 2. The numerical
parameters aren, ­ 25, M ­ 12, circles; n, ­ 25, M ­ 24,
squares;n, ­ 50, M ­ 24, solid line; n, ­ 100, M ­ 24,
diamonds.

The results are summarized in Fig. 9. Even w
the precautions taken, the results forDQscyQs . 5 are
suspect. Nonetheless, it appears that incoherent s
charge forces increase the fast head-tail threshold
is natural to ask what the underlying scaling laws
and how other factors, such as chromaticity, change
picture. Unfortunately, the computational requireme
are daunting. It is particularly worrisome when o
considers the parameter regime in which planned
existing machines operate. Fortunately, there is a solv
model which agrees with the computational results
regimes where the computations are trustworthy.
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FIG. 8. Largest value of ImsDQxyQsd vs DQscyQs with L ­
m ­ 1 for various values ofn, and te: n, ­ 25, te ­ 0.05,
circles, solid line;n, ­ 50, te ­ 0.02, squares, short dashe
line; n, ­ 100, te ­ 0.01, diamonds, long dashed line. Th
value of the step function wake was 2.5 times larger than
threshold value withDQsc ­ 0.
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IV. SQUARE WELL MODEL

The first step to obtain this model is to modify t
longitudinal dynamics. Generalize Eq. (1) to read

d2t

du2 ­
y

du
­ 2

dUstd
dt

.

Model the longitudinal potential using a square well

Ustd ­

Ω
0, if 0 , t , tb ;
U0, otherwise.

Take the air bag [13] longitudinal phase space dis
bution Cst, yd ~ dsy 2 y0d 1 dsy 1 y0d for 0 # t #

tb , wheretb is the full bunch length. The line density
a boxcar function and there is a well-defined synchrot
tuneQs ­ py0ytb .

Before presenting the analytic results, consider sim
tions using the square well. These are compared with
quadratic potential and a boxcar line density (m ­ 21y2)
in Fig. 10. Both simulations used the same numbe
macroparticles, identical smoothing lengths, etc. As
clear from the figure, the growth rates and thresholds
very similar for the two cases. Growth rates versus sp
charge tune shift are shown in Fig. 11. As with Fig. 1
only the phase space distribution and longitudinal for
are different for the two cases. As is clear from the
ures, an air bag distribution in a square well and a
car distribution with a quadratic potential have very sim
lar behavior, especially when compared with typical er
bars on machine impedances. The air bag distributio
now considered in detail.

Let X1su, td be the transverse offset of particl
with dtydu ­ 2y0 (positive momentum offset below
transition) at azimuthu and arrival time t. Define

0 2 4 6
∆Qsc/Qs
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FIG. 9. Threshold wake in units of the threshold wake
DQsc ­ 0 vs DQscyQs for different line densities:m ­ 1,
circles, solid line;m ­ 21y2, squares, short dashed line.
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FIG. 10. Largest value of ImsDQxd versus wake strengt
from simulations with DQsc ­ 0, Qs ­ 0.01 and different
longitudinal forces:m ­ 21y2 in a quadratic potential, circles
square well model, solid line. For wake, 0.4 there was no
instability.

X2su, td in similar fashion for particles withdtydu ­
1y0. Assume that all betatron tune shifts are sm
compared to the betatron tune so that

X1su, td ­ e2iQxux1su, td ,

where the variation ofx1su, td is slow inu, and similarly
for X2. Then

dx1

du
­

≠x1

≠u
2 y0

≠x1

≠t

­ iDQschx1su, td 2 xsu, tdj 2 ijy0x1

1 ik
Z t

0
ds Wst 2 sdxsu, sd

1 contributions from previous turns, (31)
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FIG. 11. Largest value of ImsDQxd vs DQsc from simulations
with Qs ­ 0.01 and different longitudinal forces:m ­ 21y2
in a quadratic potential, circles; square well model, solid line
044201-9
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dx2

du
­

≠x2

≠u
1 y0

≠x2

≠t

­ iDQschx2su, td 2 xsu, tdj 1 ijy0x2

1 ik
Z t

0
ds Wst 2 sdxsu, sd

1 contributions from previous turns. (32)

In Eqs. (31) and (32),x ­ sx1 1 x2dy2 is the transverse
centroid of the beam. Remembering thatt ­ v0t 2 u,

k ­
I0c

4pbsET yqdv2
0Qx

, (33)

where q is the particle charge,ET ­ gmc2 is the total
particle energy,b ­ yyc, and I0 is the peak current
Consider the eigenvalue problem where≠y≠u ! 2iDQx

so that the coherent betatron tune isQx 1 DQx. Assume
the wake potential is given byWstd ­ W0 exps2atd,
which is easily generalized to any impedance which
be represented as a sum of poles. The equations bec

dx1std
dt

­ 2 i

Ω
DQscy2 1 DQx 2 jy0

y0

æ
x1

2 iFyy0 1 isDQscy2y0dx2 , (34)

dx2std
dt

­ 1 i

Ω
DQscy2 1 DQx 1 jy0

y0

æ
x2

1 iFyy0 2 isDQscy2y0dx1 , (35)

dFstd
dt

­ 2aF 1 skW0y2d hx2 1 x1j . (36)

In these units the head-tail phase shift isx ­ 2jtby2.
The boundary conditions arex1s0d ­ x2s0d and
x1stbd ­ x2stbd, since an instantaneous change iny

leaves x and px unchanged. Also, the wake force
continuous. For a single bunch in the machine,

Fs0d ­ e22pisQx1DQxd2s2p2tbdaFstbd . (37)

For more complex impedances, such as a resonator
force is written as a sum of terms. Each term ob
an equation such as (36), wherea is complex, and
each obeys (37). These generalizations will not be d
here. Additionally, this text always refers to a sing
bunch in the ring. The extension of these computati
to Nb identical, symmetrically filled bunches is done
substitutingQx ! sQx 1 sdyNb , where 0 # s , Nb is
the coupled bunch mode number, and choosing the u
of t to be radians of azimuth between bunch cent
The coupling between bunches can be ignored by se
Fs0d ­ 0, which must be done for a consistent pictu
when a ­ 0. The results presented in this paper u
Fs0d ­ 0 to concentrate on mode coupling instabilities
044201-9
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Before considering the general case, there
some analytic results. WhenW0 ­ 0, the eigenfunc-
tions are given by x6,k ­ expsijtd hcosskptytbd 7

sitbDQxykpy0d sinskptytbdj, where k is an in-
teger. The tune shifts are given byDQx ­
2DQscy2 6

p
sDQscy2d2 1 skQsd2, where the 1 is
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reused fork $ 0. The eigenfunctions form a complete s
and the tunes are real so the system is stable. Note
the tune shift for thek ­ 0 mode vanishes becauseDQx

measures the difference between the coherent tune
the low current tune.

Whenatb ¿ 1, the wake force is given by
og of the
F ­ k
Z t

0
ds W st 2 sdxsu, sd ø k

Z `

0
ds W ssdxst, t 2 sd

ø k
Z `

0
ds W ssd

Ω
xsu, td 2 s

dxsu, td
dt

æ
ø

kW0

a

Ω
xsu, td 2

1
a

dxsu, td
dt

æ
.

When the last expression is used in Eqs. (34) and (35), the problem is reasonably straightforward. The anal
k ­ 0 space charge mode has a tune shiftDQx ­ 2Gs1 2 ijyad, whereG ­ kW0ya. The modes fork fi 0 have

DQx ­ 2DQsc 2
Gs1 2 ijyad 2 DQsc 6

q
fGs1 2 ijyad 2 DQscg2 1 4k2Q2

s s1 2 G2y4a2y
2
0d

2 2 G2y2a2y
2
0

.

the
ing
st

ble
en

ell
ame
rly
the

e
.

and
)

The system is stable only ifG , 2ay0 and space charg
plays no role. This result is similar to that found by Zot
for a Gaussian longitudinal distribution using the ba
expansion technique [15].

For the general case, notice that the differential eq
tions are of the form

dU
dt

­ MU ,

where M is a constant matrix and, except for spec
cases,

U ­
3X

k­1

Ukelkt .

The Uk ’s and lk ’s can be obtained to machine precis
with standard routines. The computational strateg
to choose a starting value forDQx and iterate until the
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FIG. 12. Largest value of ImsDQxd vs Qs for DQsc ­
a ­ j ­ 0 with kW0tb ­ 0.055: simulations in a harmoni
potential with m ­ 21y2 circles; analytic square well mode
solid line; basis expansion for the boxcar distribution w
mmax ­ 5, short dashed line.
r
is

a-

l

is

value of DQx corresponds to a solution that satisfies
boundary conditions. By choosing a range of start
values for DQx, one can be confident that the mo
unstable mode has been found.

Figure 12 shows the growth rate of the most unsta
mode with fixed wake strength and no coupling betwe
bunches as a function ofQs for the three kinds of
calculations. The air bag distribution in a square w
and the simulations in a quadratic potential are the s
within 5%, while the basis expansion technique is clea
different. Figure 13 shows the growth rate versus
space charge tune shift fortb ­ k ­ Qs ­ 1 and j ­
a ­ 0. For DQsc ­ 0, the threshold value of the wak
strength isW0 ­ 1.15. For a . 0, the trend remains
Figure 14 shows the threshold value ofW0 versus space
charge tune shift for the same bunch parameters
various values ofa with x ­ 0. Since Eqs. (34)–(36
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FIG. 13. Largest value of ImsDQxyQsd vs DQscyQs for the
analytic square well model withW0 ­ 2, 4, 8, 16 anda ­ j ­
0. For DQsc ­ 0, W0 ­ 1.16 at threshold.
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FIG. 14. Threshold value ofkW0tbyQs vs DQscyQs for the
analytic square well withx ­ 0 and atb ­ 0, 5, 10, 20, from
bottom to top.

with Fs0d ­ 0 imply

DQx

Qs
­

DQx

Qs

√
x , atb ,

DQsc

Qs
,

kW0tb

Qs

!
, (38)

the curves in Fig. 14 are generally applicable. F
DQsc ­ 0 and atb ¿ 1, the threshold wake satisfie
kW0 ø 0.5 p y0a2, which is a factor of 4 less than th
analytic result. The threshold increases with space ch
tune shift. ForDQscyQs . 10, the curves in Fig. 14 ar
nearly straight lines;Ω

kW0tb

Qs

æ
thresh

­ asatbd 1 bsatbd
DQsc

Qs
. (39)

Using a least square fit, the coefficients areas0d ­ 2.16,
bs0d ­ 2.63; as5d ­ 5.48, bs5d ­ 6.18; as10d ­ 11.80,
bs10d ­ 10.22; andas20d ­ 37.4, bs20d ­ 15.6.
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FIG. 15. Largest value of ImsDQxd vs x for DQsc ­ 0,
Qs ­ 0.01 with a ­ 0 and W0 at half the threshold for the
fast head-tail instability; analytic square well model, solid lin
m ­ 21y2 in a quadratic potential, circles.
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The square well model encounters difficulty wh
chromaticity is included. As is clear from Fig. 1
tracking in a quadratic potential and the square well mo
agree for small head-tail phase shifts, but the track
growth rates decrease for large values of head-tail ph
while the growth rates from the square well model rem
large. Conversely, if the square well model predicts
sufficiently stable system, the actual system should
sufficiently stable.

V. CONCLUSIONS

The square well model of transverse bunched beam
bility agrees with simulations in some parameter regim
where the simulations can be trusted. Both models
dict that space charge should strongly damp the tra
verse mode coupling instability. The importance of bun
length relative to the range of the wakefield was verifi
If the range of the wakefield is short, the beam can
stable even if the tune shift is larger than the synchrot
tune. Hadron bunches tend to be long with their tra
verse impedance dominated by space charge, and
effects suppress the fast head-tail instability. From a c
putational point of view, the square well model is fas
and more robust than the other techniques, but it
overestimate growth rates for nonzero chromaticity. O
suspects that this derives from its sparse momentum
tribution. This conjecture is testable, in principle, sin
the model can be generalized to any longitudinal poten
which is piecewise constant.

ACKNOWLEDGEMENTS

Thanks to Thomas Roser and Francesco Ruggiero
careful reading of the manuscript and useful comme
This work was supported by the United States Departm
of Energy under Contract No. DE-AC02-98CH10886.

[1] T. P. R. Linnecar and E. N. Shaposhnikova, inFourth
European Particle Accelerator Conference, London, 19
(World Scientific, Singapore, 1994), p. 1093.

[2] G. Besnier, D. Brandt, and B. Zotter, Part. Accel.17, 51–
77 (1985).

[3] M. Blaskiewicz and W. T. Weng, Phys. Rev. E50, 4030
(1994).

[4] F. Sacherer, CERN Report No. 77-13, 1977.
[5] Y. Chin, K. Satoh, and K. Yokoya, Part. Accel.13, 45

(1983).
[6] K. Satoh and Y. Chin, Nucl. Instrum. Methods Phys. R

207, 309 (1983).
[7] M. Blaskiewicz, 1997 Particle Accelerator Conferenc

Vancouver, Canada (to be published).
[8] A. G. Ruggiero, in BNL Report No. 51236, 1979, p. 91.
[9] K. J. Kim, in BNL Report No. 51236, 1979, p. 100.

[10] R. Baartman, inProceedings of the International Work
shop on Particle Dynamics in Accelerators, Tsuku
044201-11



PRST-AB 1 M. BLASKIEWICZ 044201 (1998)

f

n

ky,
Japan, 1994(KEK, Ibaraki, Japan, 1995), p. 273, and re
erences therein.

[11] F. Ruggerio, Report No. CERN-LEP-TH/84-21, 1984.
[12] I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals

Series and Products(Academic, New York, 1965).
[13] A. W. Chao, Physics of Collective Beam Instabilities i
044201-12
- High Energy Accelerators(Wiley, New York, 1993),
p. 214.

[14] See, e.g., W. H. Press, B. P. Flannery, S. A. Teukols
and W. T. Vetterling, Numerical Recipes(Cambridge
University, Cambridge, 1986).

[15] B. Zotter, Report No. CERN/ISR-TH/82-10, 1982.
044201-12


