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Increasing the transverse mode coupling instability threshold by RF quadrupole
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Transverse mode coupling instability is one of the major limitations of a single bunch current in
storage rings. Until now it has appeared in large electron-positron machines, while its presence in
proton colliders has not been observed. This paper describes a theoretical analysis of the effect of
longitudinal variation of the betatron tune on the transverse mode coupling instability. This variation
can be introduced by an RF quadrupole. In the result, the instability threshold could be significantly
increased when a modulation of the betatron frequency is comparable with the synchrotron tune.
[S1098-4402(98)00012-3]

PACS numbers: 29.27.Bd

I. INTRODUCTION synchrotron oscillation, head particles change the betatron
phase of backward particles; when the change of the

Recently [1] it was discovered by simulations that an etatron phase over the svnchrotron period is of the
incoherent tune shift can increase the threshold Currenb[ P y P

for the fast head-tail instability. Probably one of theorder of unity, this instability occurs. The betatron

S frequencies are usually the same for the head and the
reasons for this is the dependence of the betatron tune Wil of a bunch, so the particles are always in resonance.

longitudinal coordinates. Earlier, a remarkable. rse 'n.th%hen the longitudinal gradient of the betatron frequencies
threshold current of transverse coupled-bunch instabilities

was observed at the Photon Factory at KEK (Japan) using applied, the partlc!es get out of resonance, which

; ; ppresses the collective motion.
a high frequency quadrupole magnet [2]. An influence o : : p

. - In the next section the simple model of a “hollow
betatron wne modulation on the transverse mode couplmgeam,, is presented; then all of the calculations are carried
instability (TMCI, see [3,4]) threshold is analyzed here. P " . R
/ . ut for a more practical Gaussian distribution.

For the purpose of this article, one transverse and
one longitudinal degree of freedom is considered. The . .,
definitions of wake functions correspond to [4]; all of II. “HOLLOW-BEAM” MODEL
the results are obtained in general form. After that, a |t js usually convenient to study a simple model to
particular case with a constant wake functithstudied.  understand general properties of eigenvalues and their

The action of the RF quadrupole is expressed independence on parameters. At first we use a model of the
dependence of the betatron frequency on the longitudinaunch, which consists of particles with one synchrotron

coordinate amplitude. The basic equation for a dipole moment
wp = wo + sg, (1) motion in the presence of a distributed wakefield is
i 2 —
where w( is the initial betatron frequencys is the D"+ oD =F, (2)

distance of a particle from the center of the bunch, andvhere
the longitudinal derivative of the betatron frequengcys e (= , N
proportional to a strength of the RF quadrupole F= f[ W(As)D(s')p(s') ds’, 3)

N

It is shown below that the betatron frequency modu-p ¢ js the distance between the forward and the test
lation comparable to the synchrotron tune increases thﬁarticle W is the wake function of a vacuum chamber

TMCI threshold by a factor of 3. Then the threshoIdD and p are the average transverse dipole moment

grows with the gradieng growth. and density of the forward particles, antl is the
The physical reason for such a phenomenon can b

lained in the followi Duri half of Eircumference of the machine.
explained in the following way. During one-half of a ;o6 general wakefields can be considered with the

help of averaged equations. L&andy be the amplitude

and slow phase of betatron oscillations of the test particle
dipole moment for a fixed synchrotron phase. The
averaged equation for them reads (the chromaticity and
the longitudinal gradient of betatron frequencies is equal

*On leave from Budker Institute of Nuclear Physics, Novosi-
birsk 630090, Russia.
1t corresponds, for example, to the wake function of a strip

line to zero)
2The wavelength of RF oscillations is assumed to be much dAe" w, B2 TFe,iW a7 _F (4)
larger than the bunch length. dr iymc? Jo T ’
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where the integration tim& must be larger than the be- of synchrotron frequency multiplied by the exponent
tatron oscillation periodw,, 8 are the betatron frequency function of time

and thep function, andw,dr = dz/B, and the forceF e ‘
is the same as in (3), but with arbitrary dependence of the d = e Z dye "¢,
wake function on time. n=-o

After averaging by using the relation,dT = dz/B,  wherea is some eigenfrequency. After putting it in the
the equation for hollow beam (for zero longitudinal previous equation, multiplying it by”¢, integrating the

gradient of the betatron frequency) reads equation over the synchrotron phase fremr to 7, and
dAei? Ne2 ] rearranging the terms, one can obtain
de = ; Ing W(As)D(¢")dg', (5) oo
T idmymc®Ty )4 di(@ = nwg) = =K > dpKym, (9)
where theB function is supposed to be constant for sim- m=—o0

plicity, ¢ is the synchrotron pha%en is t_he number of | hare w, is the synchrotron frequencyk = Ne28/
particles,As = a coq¢) - cod¢’), Ty is the revolu- 2m2ymc®Ty, and Ko = [7 codne — Psin(¢)]de X
tion frequency, andD = NG is the average normalized fff W(As)cogmae’ R Psin(¢’)]de’. N
dipole momentD = Ae'¥. Usually the sum is truncated to a finite number of lower
For a nonzero longitudinal gradient of betatron frequenimodes. In the case of only two lower modes= 0, —1,
cies, the slow betatron phageconsists of two parts [see the matrix for finding eigenfrequencies is
Eq (1)] a + K()OK KD]K
T gAToEo KoK o+ o, + K- K)

yp=¥+g| sdr=V + 5, 10 s -l

. . v Setting the determinant of this matrix equal to zero,
wherer is time, ¥ is the slow part of the betatron phade, .o ~an obtain an equation far. For zeroP, Ko =
andﬂ are the wavelengt_h and amplltude of the RF s_ystemJ_Km and an imaginary part of eigenfrequencies appears
Eq is the energy of particled, is the revolution period, ¢, some threshold current (see, for example, [3]). It
andé = AE/E,. ltis convenient to use a new variable is evident that whenky,, Ko have the same sign, this

w _
Ae'™ becaused and W here are influenced only by a o ,aqratic equation never gives imaginary solutions, so
collective force. One can easily obtain the equation for,. Ty instability in this model disappears. Figure 1

this variable: showsKy, Ko versus parameta? (8) for constant wake
dAe™ _ o LR Ne*p W = 1. For P = 0.77, the coupling terms are of the
dr i4mymc?Ty same sign and TMCI disappears for such a simple model.
Il For another sign oP, the figure ofKy;, K¢ VersusP can
X W(As)D(¢p")dg'. (6) be obtained by the reflection of Fig. 1 over the zero
~l¢l - axis, so the threshold depends on the modutis
Taking into account thaD = Ae'Y "% and after
rewriting the total derivative on time via partial deriva- 40
tives on time and synchrotron phase, the previous equa-
tion converts to 30 | I 8
9d L 9d _ NeB  _ipsing) . / ™~
T dg idmymciTy 5 207 ~ 7
191 e £
X | WA d@he™ P dg!, (@) g 0
~l¢ £
whered = Ae™ and parameteP is half of the differ- g 00
ences of betatron phases between maximum and minimum §
energy offsets for this particular synchrotron amplitude = -0
[the amplitude and the relative energy offset are related to ”0
each other by the formulé = a, sin(¢)] '
P = §AToEo e . (8) %0 10 20
U P

Then for finding eigenfrequencies it is convenient to

presentd in the form of an infinite sum of harmonics FIG. 1. (Color) Coefficientso, (upper) andk (lower) versus

the parameteP [see Eq. (8)].

3The module ¢ in this formula was written due to the
symmetry of the collective force on the synchrotron phase. 4The same is valid for all of the following results.
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[ll. GENERAL INVESTIGATION

The equation for Gaussian distribution in synchrotron phase space can be obtained in the same manner:

2 oo
ad(a, d)) + ad(d, d)) _ Ne IB e*iP,,a/o'Sin(d))‘/’ Cl/d(,l/ exr_{_(a/)l/zol]
T dd idmymc?Tyo? 0
Flaa'|$) o
% ] W(AS) d(al,(f)l)elp”a /05|n(¢)d¢/, (10)
—F(a.a'|$])
|
where a is the synchrotron amplitudefr is t?e lon- P, = MU‘ (11)
itudinal rms size, As = aco —a'co , and . _ . .
%(a ', b)is determinesd bya ¢) ~ a'cosd) For practical calculations of the eigenvalues of this

problem, the bunch is divided into rings with the fixed
F(a,a',¢) = acoda/a’cod¢)], if la/a’cos(¢p)l < 1; amplitudes in the synchrotron phase space. So the
/ _ . dimension of this system increases in factor equal to
Fla,d’, ¢) = msgricod¢)], otherwise the number of the ri%gs in comparison with the hqollow-
P, is the half of the maximum betatron phase differencebeam model. The coupling coefficient of some mode with
for particles with the positive and negative energy offsetazimuthal numbemn and amplitudez with some mode
for a, = o, | with azimuthal numbem and amplitude is

F(a,b,d)

Kumap = R [0 " cogne — Py sin)a/oldd fo W(As)cogme' — P, sin(g)b/oldd’,

whereR = Ne?Bb exp(—b?/202)/2m>ymc?Tyo?. | possible to see the behavior of the first 25 modes, which
The linear equation for eigenmodes is usually gives a few percent deviation for the threshold
+o0 from its actual value.
dy(ai) (@ = nwy) = => > du(@j)Kumaa,» (12) In Fig. 2, one can see the eigentunes for the constant
j om=—e wake function W versus X = Ne?BW /2m%ymc?Ty,

where « is the eigenfrequency, andj are the indices which is proportional to the number of particles per
of the rings in synchrotron phase space. The smaller theunch. In this figure, the betatron tune corresponds to
rings are, the closer the eigenvalues are to their actualero at the vertical axis. All of the tunes are expressed
values. They can be found from the equation, which carn terms of the synchrotron tune, and the paramé&gr
be obtained after setting the determinant from the abovéll) is equal to zero. All of the real parts of frequencies
matrix equal to zero. start from a zero current; the imaginary parts appear near
Further, the results of the eigenvalue calculations arghe zero axis after the merging of some modes. Near the
shown. The bunch is divided into five radial rings, andbetatron tune, there is a bunch of the “radial” eigentunes
each ring is presented by five azimuthal modes, so it igvith a zero “azimuthal” number. If, briefly, all of these
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FIG. 2. (Color) Eigenfrequencies (real parts in black, FIG. 3. (Color) Eigenfrequencies (real parts in black,
imaginary in red) of transverse oscillations versis= imaginary in red) of transverse oscillations versis=
Ne?BW /2w ymc?T,. The parameteP, = 0. Ne?BW /2w ymc®T,. The parameteP, = 2.
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FIG. 4. (Color) Eigenfrequencies (real parts in black,FIG. 5. The factor of increasing the TMCI threshold versus
imaginary in red) of transverse oscillations versis= parameter”

Ne?BW /272 ymc®T,. The parameteP, = 5.

to 5 MV/m, aperture and wavelength of RF equal to
modes for a small current have zero oscillations of thelO cm (the designed bunch length is approximately the
dipole moment over an angle in the synchrotron phaséame),g function equal to 600 m, the synchrotron tune
space, and they differ in dependence of the dipole momergqual to 0.01, and the injection energy is 3 TeV. The
on the synchrotron amplitude (radius in synchrotron12.5 m quadrupole is needed to produce the betatron tune
phase space). For each integer number, there are highgpread of about one synchrotron tune. It seems possible to
azimuthal modes whose tunes differ from the betatrortombine RF quadrupole with the basic RF system. In this
tune in this particular integer number of synchrotron tunegase, the same RF generators can be used. So the TMCI
for a small current. This number means the number othreshold can be suppressed by means of a conventional
modulation of eigenmodes over the angle in synchrotroiechnique.
phase space. As in the case of “zero” azimuthal modes,
there are a lot of radial modes for every azimuthal ACKNOWLEDGMENTS
number. The first merging of a zero azimuthal mode
and a “—1” radial mode occurs foX = 0.12. The next
merging occurs for a five times larger current1( and
+1 modes). In both cases, a pair of the modes with equf/
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real parts of the tune and with opposite imaginary parts o he preparation of the final version of this paper.

the tune appears; this, evidently, means instability of th
bunch.

Figures 3 and 4 show the eigenvalues fyr = 2 and
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The longitudinal gradient of the betatron frequency can
effectively suppress the TMCI instability as it does for the
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