PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME, 034001 (1998)

Nonlinear Compton scattering and electron acceleration in interfering laser beams
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The exact solution of the classical nonlinear equation of motion for a relativistic electron in the
field of two electromagnetic (EM) waves is obtained. For the particular case of the linearly polarized
standing EM wave in the planar optical cavity, intensity of the nonlinear Compton scattering, the time
of flight, and the momentum variation after the relativistic electron passes along the cavity axis are
calculated in weak and strong field limits. These effects depend on the initial phase of the EM wave
at the electron entrance into the cavity and can be used for producing, diagnostics, and acceleration of
relativistic electron (positron) microbunches. [S1098-4402(98)00007-X]

PACS numbers: 13.60.Fz, 03.40.Kf, 03.65.Ge, 14.60.Cd

I. INTRODUCTION Theoretical studies of Compton effect in two interfering
EM waves, comprehensively reviewed by Fedorov [2],
The theory of Compton effect in the interfering elec- generally capitalize on various aspects of the perturbation
tromagnetic (EM) waves, in particular, in two counter-theory or other approximate approaches. As long as
propagating plane waves, has been addressed previousig are interested in processes nonlinear to the field, the
to describe the Kapitza-Dirac effect [1,2], Compton lasersaapproach based on an exact solution of equations of
[3,4], and inverse Compton laser acceleration [2,5]. Thenotion is the most appropriate. The exact solutions of
physical principle of the nanometer-resolution Shintakeclassical equations of the electron motion in a single plane
electron beam profile monitor [6—9] is also based on th&aM wave have been obtained by many authors using
understanding of Compton effect in a standing EM wavedifferent methods (see [13—17] and references therein).
The vacuum beat wave laser accelerator concept [10] réA natural extension of this approach is to apply the
lies on the ponderomotive acceleration resulting from thesame methods to the case of two (or more) interfering
beat wave produced by the interaction of two copropagatplane waves.
ing laser beams. In the present work, this intent is partially accomplished
Temporal diagnostics of ultrafine electron microbunchesising the approach developed in [14,15]. The exact solu-
sized to a portion of the laser wavelength is another potion of classical nonlinear equations of electron motion in
tential application for intense standing EM waves.the field of two plane EM waves with different frequen-
Production and reliable characterization of such microcies and the same linear polarization is found in Sec. Il.
bunches are essential for development of far-field andt is shown that the exact solution exists also in the case of
near-field laser accelerator schemes (see, for examplegllinear (or anticollinear) plane waves linearly polarized
review paper [11]) into practically meaningful monochro- in arbitrary directions.
matic electron (positron) accelerators. The example of The particular case of a standing wave is considered in
such a scheme is the staged electron laser accelerati®ec. Ill in the weak field and strong field approximations.
experiment (STELLA) at the Brookhaven AcceleratorWe calculate the time of flight for the electron passing
Test Facility (ATF) [12]. In this experiment, a regular through the radiation filled plane-parallel optical resonator
train of thel wm thick electron microbunches grouped by and show that this parameter depends upon the phase of
the inverse free electron laser method to the period equ#he standing EM wave at the moments when the electron
to the CQ laser wavelengthy = 10 um, is phased to enters the cavity.
the inverse Cherenkov laser acceleration stage driven by In Sec. IV, we calculate the phase dependent intensity
the same C@®laser. Observation of Compton scatteredradiated due to Compton scattering when the relativistic
radiation from the interaction of periodically grouped electron passes along the axis of the plane-parallel optical
electrons with a standing EM wave, produced by twocavity.
counterpropagating CQaser beams, may permit a direct  Propagating along the axis of the standing EM wave,
assessment of the microbunch quality. The inversan electron can lose its energy via Compton scattering
process may also provide an alternative mechanism tor acquire it in the inverse process. Energy gain is
generate microbunches starting with a quasicontinuougroportional to the initial electron energy as it is typical
electron pulse. for the ponderomotive acceleration processes [10,16,17].

1098-4407 98/1(3)/034001(9)$15.00 © 1998 The American Physical Society 034001-1



PRST-AB 1 A.TS. AMATUNI AND I.V. POGORELSKY 034001 (1998)

In Sec. V, we demonstrate that electron acceleration 1 fT
: , = — dr + x,(7;). 4
depends upon the standing wave phase as well. *u(7) . mu(7)dT + xu(mi) “)

After introducingp,., the four-vector of the electron initial

Il. EXACT SOLUTION OF BASIC NONLINEAR momentum before the electron enters the EM field, we can
EQUATION search a solution of Egs. (1)—(4) in the form
Following the approach outlined in [14,15], consider a _ _ (1) + 4@
classical equation of the electron motion in EM field ul7) = pu 1 elai’€) , @ (&)]
- + kDA + KD f2(7), (5)
mo_ €
dr m Fuvmy, (D which is a linear decomposition over four-vectors
. . . p a(l ,a?), k(1 k(2
where 7, is the four-dimensional vector of the eIectron Mlé Eqs 4a) And (5). the ph f the ol
energy momentumrﬂ(s ) equal tmri — & — p?, rom Egs. ( ) an (5), the phases of the plane waves
is time in the relativistic frame of the electron (IocaI or aré
proper time), and”,,, is a tensor of an EM field dé) = d(kﬁ)xﬂ)
0A, 0A
Fo =—-—+. ) = l[k<1>p — e(kPaW) + kVk@ frldr,
0x dx, m
K (6)
The vector potentia,, is df = d(kDx,)
= aM(&) + a?P(5), 3) = L ®) — ok @ay + KOk a7
m

where a(V(£1), a'?(£,) are vector potentials of two lin-

early polarized plane waves with frequenciesandw,, ~ The scalar products of two four-vectors, e k> in

b = k(1>xM and , = k(2>xM are the phases of corre- Eq. (6) and later, are denoted hé (2> or (k(l)k(z). In
spondlng plane waves, arkﬂl (01, @) and kP (wy,@,)  EQ. (6), the conditiong ()" = 0, k" = 0, k(al) = 0,
are four-dimensional wave' vectors. In Egs. (1) and (2k?a® = 0 are used. Substltutlng Eq. (5)i in Eq (1) and
and below the system of units with= 1, » = 1 isused. using Egs. (2), (3), and (6), the following equations for

A four-dimensional electron vectar, is | andf; can be obtained:
df, e [ ) M 2} e? < @ da(l)> e d )
aa_ e 4 _ e _ & G 4 L 4 @0y
dr — mdd, (@"p) (a ) m\4 g mfzdg’l( a'’)
(7)
dfs e [ © ) 2} ¢’ < ) d‘l(2)> € d 1
42 _ e 4 _ _ & G L L 4 k@
dr ~ mdd (@p) (a ) o G mfldgz( a'?)

whered{; andd{, are expressed by Eq. (6) through the local time differemtial The nonlinear system of Eq. (7) can
be solved exactly when additional conditions on the transverse EM field are fulfilled,

*kVa®) =0,  (kPa)=0. (8)

The conditions in Eq. (8) are valid when both plane waves have the same linear polarization or are collinear (or
anticollinear) and have an arbitrary linear polarization. Below, we consider linearly polarized waves that satisfy general
transverse conditions expressed by Eg. (8). The same technique can also be used for circularly polarized waves.
Using Egs. (6) and (7), the following nonlinear system of equationgfar) and f,(7) is obtained:
da®

[0 ) + (D@90 = 4 [(au)p) _ e (au))Z} _ g9
dr dr 2 dr

(9)

@
(@ p) + (@192 = p 4 [(aa)p) _ e (a(2>)2} _ 2 4
dr dr 2 dr

The first integral of Eqg. (9) can be found after summing the two parts of Eq. (9). Then, it is possible to express
f> throughf; and integrate the obtained equation fgr The integration constants can be found from the conditions

f1 =0, f, = 0 atthe initial moment = 7; when the electron with the initial momentup, enters the region occupied

by the EM field. FinaIIy we obtain the following exact solutions:

Ji= k(l)k(z) [eXpU F1d7>_ 1} 2= 1(:({1)11):()2)) [eXpU F2d7>_ 1} (10
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where quantitieg’; andF, are
d da"
e gz l(@Vp) — 5 (@h)?] ~ e2a® G

Fl = 1 2 )
e[(aV + a®)p] — & (ah + a®)2 + %
¢ @ (11)
__ egl@®p) — @] - a®

B 1 2 e 22 o kWp)(k@p)
Equation (6) for phases of the fields takes the form ! m,(7), defined for this case by Egs. (5) and (13),
(kM p) T is equivalent to the solution for a single wave, ob-
dé = m exp(/; F dT) dr, tained in [14,15]. In addition to that, Eq. (13) contains

o . (12) th_g constant term that depends upon the initial con-
dé = (k“p) eXF(f Fi d7_>d7_. dition for the considered plane at the moment
m 7 when 7, = p,. This constant is equal to zero if the
The obtained solution described by Egs. (5), (10)_(12plane wave is turned on adiabatically at the moment

is an exact one and satisfies the initial conditions a¢  of 7; — —o.
7. Hence, according to the Cauchy theorem, Eq. (5) The case whem() and a® are two components of
represents the only possible format to search for a solutiod single wave withk,, = k() = ), a, = a)) = a©?
for m,(e, p). It is easy to see that the above solution,may serve as another possible test. Then, Eq. (S)rfor
applied to the single plane wave, coincides with thatakes the form
obtained in [14,15]. Consider the case when only one
wave existsa® = 0. Then wu(T) = pu — eay + ky(f1 + f2). (14)

1 e?
fi— 7o) [e(a(l)p) -5 (a(l))z} In this case, the waves are collinear atx®) — 0.
p 5 The expressions in Egs. (10) and (11) become uncertain,
_ My _ € ()2 R _, . anditis necessary to use asymptotic rules for their
[e(a P) 2 (@) } F2= 0,72 =0 calculations. Denoting(k"k®) = x and considering
(13) the limits F1, = lim,_o Fi» andf,, = lim,_g f12, we
| obtain

— 1 e? T da®
= [t - o] - [t )

_ 1 2 T d 2)
el S [ %

fitfh=f= $ [e(a(z)p) — %(a@))z} + const

dr + cz}, (15)

Then, 7, defined by Eq. (14) duplicates again the plane waves of the same frequeneycounterpropagating

solution for a single wave, except for the constantalong thex axis and polarized along theaxis with

terms in Eg. (15). This solution can also be ob- 0 Eo

tained immediately from the initial differential Eq. (9), ay’'({1) = ——cos{y, b= —x)),

assumingkMx®@) = 0. 2o
Hence, from the general solution for two arbitrary

waves it is possible to arrive at the limit of the solution

for a single plane wave obtained previously in [14,15]. It

is tempting to look for a solution of Eq. (1) for more than Ay = a + a® = —@Sinwtsinwx,

two waves. However, the described approach does not ’ )

permit us to find the exact solution for three waves, everwhere Ey is the amplitude of electric field. A standing

(@) = Tocostr, b=+, (16)

for the case of the same linear polarization. wave is confined between two conducting surfaces (mir-
rors) placed at = 0andx = L = nA/2 = nw/w,n =
1,2,3,....

Ill. PARTICLE IN PLANE-PARALLEL OPTICAL : . .
The electron moving along the axis of the optical

RESONATOR :
resonator enters the cavity at the moment #;(7;) and
Letus apply Egs. (5), (10), and (11) to the particular caséeaves it atr = 1,(7) (¢ is time in the laboratory scale,
of a standing EM wave formed by two linearly polarized is the local time of the moving electron). Time of flight
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in the lab system is

'Tf 1 7'/
T=tf—t,-=] yd’r:—f modrT, a7
’ Ti m Ti

wherevy is a Lorentz factor of the electron.
a

Let us consider a case of the weak field, when normalized field amplituglé is e;z < 1, wherea = f—;’) is the
amplitude of the potentials in Eq. (16). In this case, Eq. (11)Ffor can be expanded in series pf and expressed as

KDk { d [ , )
Fi~=—————F—1e— Myy — = (,M 2} _ 2@ }
P kMp) (k@ p) € ur (@"p) > (a') era? ——.

2

18)
kD2 d e da® (
o NKT @) — (@2 ] = g2y :
Fi = G (g |© 32 | @7 — 5 @] - a0 )
subsequently, Eq. (10) fgf; » takes the form
T (1)
~ ¢ My — & (1>2}_[ My — & (1)2} _ j @ da }
fi= G @) = 5 @7 | - [@hp) - 2] e [Tam S ar, ”
fo= i @) = £@2] - [ - L] - e [Ta0 92 0],
(k@ p) 2 2 ; - dr

The expansion in Eq. (19) is valid for arbitrary orientation of the electron initial momeptynn particular whery is
normal tok-? or collinear withk() or k®. In the ultrarelativistic case considered below, wiers collinear tok(®),
we obtainkVp = w(e — p) = we 2'"7, KPp = w(e + p) = 2we, and|f2| < |f1].

By Eg. (19),
2.2 &y
fif = —2pw77 {%(co§ L — coS &) — le. cos{zsingldfl}, (20)
where
Li = ot (t = t;,x = 0), Qf =t +T) - oL, (21)

L is the length of the resonator afidis the time of flight, that by Egs. (4), (5), and (17) are

1 Ty Tf s
TEtf—t,-Z—f WodTZE(Tf_Ti)+gf (f1+f2)dT”£(Tf_Ti)+£f fidr,
: mJs mo mJs mo mJs
P w s P w T (22)
L= _(’Tf - Ti) + _j (fl + f2) dr = _(’Tf - Ti) + _j f] dr.
m mJ ., m m J .,

In order to estimate the integral entering Eq. (20) foin the weak field regime, it is possible to adopt the approximate
expressions fod ¢, andd{, from Eq. (6),

ja0) kM
o= —Fdr.  ="F(r )+ G,
@ @
dfp = P gr, H = mp (1 — 1) + Qs Qi = Qiis (23)
(k) k@
dfr, = «0p) déi, H = K p (&1 = du) + i

Then it is not difficult to show that the integral in Eq. (20) is equal to the sum of terms which are, in the considered
ultrarelativistic case, proportional to

kp) 1

(k@ = kD, p)  4y?’
Thus these terms can be neglected and

i (cos {1y — cos 1y). (24)

w

flf:_
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Using Egs. (23) and (24), it is possible to expr&sthrough the local time intervdlr; — ;),

and to find a corresponding relation betweénand

(tp — 1)
For a short resonator
Kp(ry =) _ oL
M ~ w_2 <1, (wL = n); (26)
m 2y
from Egs. (22) and (25), it follows that
T=£(Tf—7'i), L=£(Tf—7'i),
m m
(27)
T=21.
p
For a long resonator
Kp(ry =) _ oL
Kply=m) ol oy (28)
m 2y
and
2.2
o p°m 1
T =~ ;[1 ) <E - CO§§1i>:|(Tf - 7)),

i «p) (n:'f — ) [Si”(zk;)p>(” B Sinzgl’}}(’f -

(25)

wlL

i 6D

Gy =i t oL Z—L ~ Qi +
p
Note that for an arbitraryr (r; < 7 < 77) and the
corresponding propagation length< L,

wl
292"
We can define the coherent interaction distamge
which corresponds to the distance where the phase change
of the copropagating wave is{; = {1 — £; = 7 (com-
pare with coherent radiation distance or radiation for-
matlon zone [18]). Then, according to Eq. (31d),=
- y2 = Ay? and the definitions for short and long reso-
nators in Egs. (26) and (28) can be modified as follows:
L < d. for the short resonator and > d. for the long
resonator. The distane& strongly depends ofr. Thus
it is possible to establish conditions according to Egs. (26)
and (28) just by varying the electron energy while the
resonator length is fixed.

O(r) = Qi + (31a)

P pn? (1 (29) When trying to consider the strong field cagé =
L= [1 T <5 — cos fliﬂ(”f = 7). €5 > 1, we realize that straightforward calculation of
or the integrals in Egs. (10) and (11) is difficult due to
) 5 rapid variations of the expressions under the integrals.
T = iL[l + 2 <l — cos Zn)] (30)  An alternative approach that involves transformation and
p 2pe \2 integration of general expressions ffr,, Egs. (10) and
Using Egs. (21), (27), and (29), the final phdse is | (11), is necessary. Then we obtain
[1 Kok fl} [ & KO 2} _ —el@® + a)p) = & (@ + a®) + S (32)
() WO I @ + o )pl = 5 @+ 0@+ CRE

Equation (32) is exact, valid for arbitrary orientationf:)ﬁandlacl’2 and for an arbitrary field strength.
For counterpropagating plane Wavk(§> and kf>, linearly polarized along the axis, and withp directed along

kl(lzx, 0,0), Eq. (32) takes the form

[ ][

where the conditiord;

= (cos{; — cosH)>. (34)

Equation (33) can be rewritten as follows:

2
fi+ Z_a) f2 + 4w2 fifa =n°X*.  (35)
e—p m
Let us apply Eq. (35) first for small valueg*> < 1 that
correspond taEy — 0 (or w — ). Take into account
that f| , are dimensionless and must be proportionakto
Ey, andw, in certain power.

8+p

034001-5

n?(cos{; — cossHr)? + 1

D@
T kp) fz} =

= {,; is taken into account and | 1’ < 1 Eq. (35) can be satisfied when

=1+ n%x?, 33
n2(coss; — cossH)? + 1 K (33)
2 2
_ _m 2 —_m 2
fl - (k(l)p) Y f2 (k(Z)p) ny2, (36)

wherey , are functions of;, andy; + y, = X>.

From Eg. (19), it is possible to fing;, and to see
that the conditionv; + y, = X? is satisfied indeed. That
means that the previously obtained approximate solution
for 2 < 1, Eq. (19), fulfills the exact Eq. (35) up to
the terms proportional tg*. Notice that the interchange
k) - k@ in Eq. (36) provides the interchange < f,

Then, it is evident that for as it is supposed to be, based on physical reasons.

034001-5
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For the strong field case® > 1, we use similar In Eq. (41), we use Eq. (6) for phases and an approximate
arguments as for7722 <« 1 above. First let us notice expression
that the conditiormp= > 1 is fulfilled when Ey — o (or
w — 0). After applying the limity? — o to the left- and (@)2 ~ <k(2i>2 + 2Wf
right-hand sides of Eq. (35), we see that only the last term dr m m?
in the left-hand side of Eq. (35) survives, and the solutio
for f1, must be

1

Valid up to the terms proportional tg>.
Estimating the integral in Eq. (39), using Eq. (41) up to
om? om? the terms proportional tg¢* and of the order oD (y 1),
fr= 20k p) ML fa= 2k@p) 12 (37) itis possible to use approximate expressions for phéses
and/, described by Eq. (23). Results of such calculations
are slightly different for long cavitiefw /2y> > 1 and
short cavitied w /2y? < 1,

where y;, are functions of{;, and y;y, = X>. The
simplest choice that provides the symmetry condition
KV = k@, £ o fr,is y; = y, = |X| as is adopted

below. 1 e’n’w’s(e + p)? 2
From Egs. (6) and (37), with; = y, = |X]| for n*> > AE = 3 3 (rp = m)[1 + 3n70(l)],
1, we have approximately (42)
kM k@
g =~ x| =—Lar, s~ nix|1=Lar, | Lo
m m () = 7 — COS {;, 77 > 1, 43)
dé (k(Z)p) 42 s 1 (38) plet % — cog {1 + cosdy;, ;—;)2 < 1.
e Y ’
d&i (kDp) Using Egs. (27) and (30) for the time of flighit through
_kYp the short and long resonators, correspondingly, we obtain
o= b= kD p & = &) the following expressions for the average intensity of the

.. _ AE,
Note that the exact general expression by Eq. (32) permit§c""ttered radiation = >=: For a long resonator

us to consider the strong field case for the electrons with 1 &n2w(e + p)> (1
the momentum perpendicular to the standing wave axidiong = 3 . [1 +4n (3 — cos Zu)},
Such geometry is used for experimental investigation of

the Kapitza-Dirac effect [2] and in the Shintake beam (44)
profile monitor [6—9]. and for a short resonator
IV. PHASE SENSITIVE COMPTON SCATTERING ;o Lente’(e + p)
IN STANDING EM WAVE short 3 m?
The total radiated energy during the passage of the [ 2(l B o ﬂ
electron through the optical resonator of the lengtis XA 2 cos {i; + 2 cosii ) |-
2 (45)

ty 262 Ty
AE = —ezf w?dt = —f wlmodr, (39)
3 fi 3m Jx In the cm-gram-sec (CGS) system, the right-hand sides

wherew is the four-vector of acceleration of Egs. (42) and (43) need to be multiplied by the factor
| dm, dm, c*7,_th.e right-hand sides of Egs. (44_) and (45) need to be
— - (40)  multiplied by the factorc =3, and p will be replaced by
m* dt dt . o
i 5 o pc. Equations (44) and (45) comply, to the precision of
For the weak field casg” < 1, m,, is given by Egs. (5), p 1o 4?2, with the results obtained for a single plane wave
(10), (11), (18), and (19) [for the strong field case, usen Refs, [14,15] (if we take> = 0). The only difference
Eq. (37) instead of Egs. (18) and (19)]. _ is due to the terms proportional tg* which depend

Consider the ultrarelativistic electron moving along upon the initial phase. The dependence of Egs. (44) and
the standing wave axis in the weak field approximation(45) on phase can be used to control the intensity of
Then, the expression under integral in Eq. (39), up 10 thene nonlinear Compton scattering, as in the case of the

w? =

terms proportional tay*, is electron microbunch diagnostics. Terms proportional to
5 e’s [(da®\? o da®\? n* disappear after averaging Egs. (44) and (45) over the
wrmmo = W{(E) (kp) + < ds ) Ji initial phases;;.
For the strong field case, when? > 1, it follows
< [2(]((2)1,) (kWE®@y + @L (k(2)p)“_ from Egs. (5), (37), and (38) that the total radiated energy
€ during the electron passage through the optical resona-
(41) toris
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2 T
AE = 2e7 w2 dr
3m J,
2elen? (4
= =27 f (1 + nlxI)
3mJyg,
*kWp) . (kPp)* k®p) . . (kWDk@Ym d|X| lel}
X | —E2sint g + Sit & — 2—"2sin{; siné, — X|d¢ .
|: m gl m(k(l)p) §2 m gl §2 (k(l)p) d§1 d{z | | gl

(46)

For the ultrarelativistic case, the second term inside the square brackets in Eq. (46) provides the main contribution to the
approximate expression favE:

164 n 2 4 44,2 &y
AE = %fwf Sir? £5(cosl] — €0sty) diy = 8877# (cos & + 1/2)d&
3m i 3m {l”
8etntelw 1 . .
= ;T[(glf - i) + Z(Slnzgﬁf - smzfu)] (47)

In Eq. (47), in order to provide a rough characterizatibncavity, we can address a problem of electron acceleration

for the dependence of the integral radiation upprand in vacuum. The momentum of the electron at the exit

{1i, the rapid variation of, [see Eq. (38)] is taken into from the cavity is

account, and siy, and co$/, are set equal to their B _

average values (equal 1¢'2). pr=pitwfiyy = ofyy=pitofi. (52
From Egs. (5), (23), (37), and (38), it follows that From Egs. (19) and (24) for weak field cagex 1,

682 — p2n2
T =1 === -y - )Xl pr =pi — 2 (co$ &1y — co$ i)
. o .
2
pe — 2
L= —n(Tf - Ti) |X|’ (48) = pl{l — ﬂ[COéZ({U + L—w> — CO§ gli:”’-
m e 292
7 — fL, (53)
p For a short resonator, described by Eq. (26),
where |X| means an average value [gf|. Taking into 2/
account that by Eq. (48) pr= p,-[l - P <3 - cos {y; — Sin2§1i>}, (54)
’ £
by —bi=o — L) = wL<£ — 1) ~ ;‘)—Lz (49) and for a long resonator, described by Eq.A(28), af-
p Y ter averaging over small changes in frequengy, <

the following expressions for the integral radiated energy:y? <1
can be obtained from Eq. (47). For a short resonator”’ '

(0L/2y < 1) Py = pi[l - %’26 ~ cog gl,ﬂ. (55)

4g’nte? ) 1
AE = ——— w“L| 1 + —€0S2{y; |, (50) . 1 .
m2 2 Thus, if cod &;; > 5, the acceleration takes place. For
and for a long resonatdw L/2y? > 1) example, if /i = wz; = 0 and n*> = 0.25, then, after
) 54 s passing the resonatgs, = 1.12p;.
AE ~ 8e“e"n w’L . (51) Using m appropriately displaced resonator cavities with
3m? gl",» = {; + 27k, Whereg’{‘,- is the phase at the entrance

In Egs. (50) and (51), the only terms with highest powernto the kth resonator, and pumped by the same laser, we
of n are presented. In the CGS system, the right-hangptain
side of Egs. (50) and (51) will be multiplied by the

2 m
factorc 9. pj = Pi|:1 _ ﬂ(l — cod Zliﬂ
e 2
V. ACCELERATION OF CHARGED PARTICLES _ pmn? (1 2
IN PLANE-PARALLEL OPTICAL RESONATOR ~pifl = =7 —cosd)|. (56)

Using general solutions obtained in Sec. lll for theFor the above example, =~ 2p; atm = 8. If we double
electron passing through the radiation filled plane-parallethe laser powery? becomes equal to 0.5 and two cavities
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are enough for approximate doubling of the electronof a single laser beam on the relativistic electron beam.

momentum. However, more detailed analysis may be necessary, espe-
For thex component of the electron momentum in thecially for angular and frequency distributions of the radia-
strong field case)> > 1, using Eq. (37) we obtain tion intensity that depend on the initial phase.

The copropagating wave affects the Compton backscat-
px = pix T o(f1 — f2) = pi(1 + nlX[).  (57) tering process through localization of the EM field inside
A the finite planar optical cavity, and, as a consequence,
At the back end of the resonator= L = 71, n =  through the dependence of the nonlinear component in
1,2,3,..., and X = 0. Note that the maximum value Compton scattering upon the standing wave phase at
of [X], 1X|max =2 ,,Is attained inside the resonator atthe moment when the electron enters the cavity. This
pointsx = lmax = (4 + m)A and at the moments of time difference from the single wave case becomes more pro-
I = tmax = (4 + m) —, wherem = 1,2,3,.... If we nounced even in the weak field case when terms pro-
manage to extract the electrons at these pomts and meortional to n?" (m = 2) become appreciable. Phase
ments of time, they will acquire the maximum momentumdependence of the nonlinear Compton scattering in a stand-
px = 2mpi.. As follows from Eq. (57), the electron mo- ing laser wave may be used for microbunch character-
mentump, is independent upon the initial phagg, but, ization (bunch duration, longitudinal charge distribution)
through |X|, it depends on the field phases at the actuahs required in the advanced laser acceleration experi-
moments of time and the electron position inside the resoments, such as the STELLA experiment at the Brookhaven
nator [see Eq. (34)]. ATF [12].

Acceleration of electrons, given by Egs. (54), (55), and Contrary to Compton scattering, electron acceleration
(57), is due to the nonlinear part of the Lorentz force,is primarily due to the component of the standing wave
even in the case of strong fields, when the field strengtieollinear with the electron propagation. The effect of the
n enters linearly in Eq. (57). In this cagey > 1) it second counterpropagating wave is dumped due to the
is difficult to find f;, from Egs. (10) and (11) directly, phase averaging.
due to the rapid variation of the function under the In the classical approach considered here, the accelera-
integral on the local time scale. From general solutions irfion of electrons is due to the ponderomotive force re-
Egs. (10) and (11), it seems, at first glance, thigt and, lated to the linear and nonlinear parts of the Lorentz force
consequently,f, will not depend onn whenn — «.  [10,16,17]. The facts that the electron-laser interaction is
This is true only when the phase dependent parts dbcalized within the finite optical cavity and the acceler-
dominators in Eq. (11) are nonzero, but pass zero multiplating force is nonlinear to the laser field circumvent the
times, due to the rapid and strong variations of phasekawson-Woodward (LW) theorem [21], which otherwise
a? in the strong field of a resonator. Thus, the resultforbids the residual electron energy gain from EM waves
expressed by Eq. (57) is justified. in vacuum. For a detailed discussion of the applicability
of the LW theorem and examples of vacuum laser accel-
erator schemes see Ref. [10].

VI DISCUSSION Dependence of the electron momentum at the exit of

In the present work, following the classical approachthe optical resonator upon the initial phase of the stand-
developed in [14,15] for a single planar EM wave, theing EM wave may be used for electron (positron) beam
general exact solutions for electron motion in the fielddiagnostics as well. The results for the time of flight,
of two planar EM waves with the same linear polariza-Eq. (29), and the momentum change, Eqgs. (53) and (54),
tion (as well as for copropagating or counterpropagatinghow also that an appreciable energy modulation sufficient
waves with arbitrary polarization) are obtained. Detailedfor electron (positron) microbunching inside the optical
consideration is given to problems of propagation and raeavity, or within the~1 m drift space after passing the
diation of the ultrarelativistic electrons, moving along thecavity, is possible af < 0.1 when the initial electron en-
standing EM wave axis. ergy isEy < 50 MeV. Unfortunately, the laser intensity

The total radiated energy due to Compton scatteringorresponding to sucly (not talking about higher fields
is defined primarily by the wave counterpropagating todesirable for using the optical cavities as the accelerator
the direction of the electron momentum. This feature isstages) exceeds the damage threshold for material optical
physically understandable, if we take into account thamirrors. Another limitation to direct application of the ob-
the ultrarelativistic electron moves practically in phasetained solutions to practical optical resonators is due to the
with the copropagating component of the standing wavéact that transition effects at the electron entrance and exit
and experiences quickly oscillating force from the coun-through the material boundaries are not taken into account.
terpropagating component. Thus, we can expect thafhis problem needs additional consideration, for example,
the overall angular and spectral spread of the radiatedlong the lines of Refs. [18,22,23]. The transition effect on
photons shall generally obey distributions obtained inthe integral intensity of Compton scattering becomes neg-
[14,15,19,20] for Compton (or Thomson) backscatterindigible, however, for long enough resonators.
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