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A detailed comparison between photon acceleration and frequency-domain interferometry, for laser
wakefield diagnostics, is presented here. The dispersion effects on the probe beam and the implications
of an arbitrary phase velocity of the plasma wave are discussed for both diagnostic techniques. In
the presence of a large amplitude plasma wave and for long interaction distances, significant frequency
up-shifts are observed. The importance of this effect on the determination of the phase and frequency
shift measurements given by the two techniques is also analyzed. The accuracy of both diagnostics is
discussed and some of their technical problems are reviewed. [S1098-4402(98)00004-4]
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I. INTRODUCTION

In recent years, there has been great interest in
generation of large amplitude electron plasma wa
(EPW) because of their potential application for parti
acceleration [1]. One of the most important goals of
research in the field of plasma particle accelerators is
development of experimental techniques to characte
the EPW generated by laser, for instance, in the la
wakefield accelerator or beatwave accelerator [1], or b
electron beam propagating through a plasma [2]. The
measurements of the temporal and spatial character
of the plasma waves generated by an ultrashort laser p
(laser wakefield) were recently reported [3,4]. The
experiments were based on the measurement of
phase shift experienced by a probe laser pulse using
frequency-domain interferometric technique (FDI) [5,6

In parallel, other experiments were performed with
purpose of studying the frequency up-shift resulting fr
the interaction of short laser pulses with relativistic io
ization fronts [7,8]. An estimate for the velocity of th
ionization front and its maximum electron density was
tained, clearly pointing to the feasibility of a new diagno
tic tool, based on the measurement of the frequency
experienced by a probe laser pulse interacting with
herent relativistic structures (e.g., laser wakefield) in la
produced plasmas [8].

In this paper, a detailed comparison of these two
agnostic techniques is carried out. A numerical simu
tion based on the ray-tracing equations for the probe l
pulse is employed to calculate the frequency shift du
photon acceleration of the laser pulse copropagating
the plasma wave. The same simulation also allows
to determine the phase shift of the laser pulse propa
ing in the laser wakefield relative to another laser pu
which propagates in the unperturbed plasma. Compa
both results we are then able to evaluate the importa
of the frequency shift induced by the plasma wave on
determination of the phase shift. Comparatively, due
nonlinear [9] and 3D effects [10], it is clear that the gro
1098-4402y98y1(3)y031301(8)$15.00
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velocity of the driving beam responsible for the wakefi
excitation can be considerably different from the veloc
obtained from the linear dispersion relation in a plas
(yglinear ­ c

q
1 2 v2

pyv2, where vp is the plasma fre
quency andv is the laser pulse frequency). We ha
analyzed, for the first time, the regimes where the ph
velocity of the wakefield can be considerably differe
from the group velocity of the probe pulse (which obe
the linear dispersion relation).

This paper is organized as follows. In Sect. II w
present the basic principles of the two diagnostics, str
ing the most significant technical characteristics of
FDI technique and pointing out the most important asp
of a photon acceleration diagnostic (PAD). In Sect. III
first present, for the sake of completeness, the ray-tra
equations used in the simulations and the calculatio
the relative phase shift. The expressions for the wake
scaling laws are also given. The results of the sim
tions are presented for several scenarios correspondi
different wakefield timeylength scales and phase velo
ties. For the first time, FDI is considered for realistic co
ditions where the probe pulse dephases from the pla
wave and large frequency shifts are present. Limitati
induced by these two effects are also discussed. A c
parison with PAD is provided for the same set of param
ters. Finally, in the last section, we state the conclusio

II. DIAGNOSTIC PRINCIPLES

A. Frequency-domain interferometry

The purpose of FDI is the measurement of the ph
shift experienced by a probe laser pulse traveling thro
an electron density plasma perturbation. The experime
principle is as follows: a high-intensity, ultrashort las
pulse (pump pulse) ionizes a gas at the focal region
excites an electron density perturbation (laser wakefie
A double pulse beam (probe and reference pulses
focused on the same axis. Copropagating with the E
[described by the electron densitynesz, td], the probe pulse
© 1998 The American Physical Society 031301-1
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will experience an optical phase shiftDf proportional
to nesz, td, while the reference pulse, which precedes
pump pulse, propagates through the interaction reg
unperturbed. The relative phase shift between these
probing pulses is then measured by the FDI techniq
The relative positions in time of the three laser pul
(reference, pump, and probe) are illustrated in Fig. 1.

The FDI technique is based on a temporal recomb
tion of the probe and the reference pulses in a spectr
eter. The temporal beating creates a system of frin
in the frequency domain. The position of the fringes d
pends on the relative phase between the probe pulse
the reference pulse. This phase differenceDf can be ob-
tained in a straightforward way from the power spectr
Isvd recorded by a charge-coupled device (CCD) cam
or diode-array detector. To extract the phase informa
from the spectral domain we calculate the inverse Fou
transform ofIsvd

F .T .jIsvdj ­
1

p
2p

Z `

2`

Isvd expsivtd dt

­ 2hst0d 1 expsiDfd hst0 2 Dtd

2 exps2iDfd hst0 1 Dtd , (1)

wherehst0d is the inverse Fourier transform of the origin
probe pulse. It is clear that the phase information
contained on the sidebands centered att0 ­ 6Dt. If
Dt is sufficiently large, the sidebands are separa
from the autocorrelation termhst0d at t0 ­ 0, and it
is possible to extract a complex value, which conta
the phase information, by calculating the phase angle
F .T .jIsvdj at thet0 ­ 6Dt points.

It should be noted that in this diagnostic technique
is normally assumed that the group velocity of the pro
beam and the phase velocity of the plasma wave are i
tical, i.e.,ygprobe ­ yp . Therefore, it is assumed that th
probe pulse always stays in phase with the density pe
bation, sampling only a small portion of the plasma wa
field during propagation. Let us consider the “simplifie
situation where the laser wakefield is given by

nesz, td ­ dneszd sinfkpsz 2 yptdg 1 ne0 , (2)

t

n te( )
pump

proberef.

0

ne 0

FIG. 1. Schematic visualization of the pump pulse, the trail
wakefield, and two probe pulses.
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whereyp is the phase velocity andkp is the wave num-
ber of the density perturbationdne excited in an homoge
neous plasma backgroundne0 . The maximum measure
phase shift in the frequency-domain interferograms is
integrated phase shift of the probe pulse after propaga
through the interaction region

Df ­
Z `

2`

2p

l0
fhprobeszd 2 hrefszdg dz , (3)

where l0 is the wavelength of the probe and the ref
ence pulses. The plasma refractive index seen by
probe pulsehprobeszd ­

p
1 2 fdneszd 1 ne0 gync and the

plasma refractive indexhrefszd ­
p

1 2 ne0 ync seen by
the reference laser pulse are determined by the am
tude of the laser wakefielddneszd and by the unmodulate
plasmane0 , respectively (wherenc is the critical density
for the two laser pulses).

Finally, by sweeping the probe pulse along one or m
periods of the plasma wave with a temporal delay line
is possible to reconstruct the wakefield oscillation with
amplitude given by Eq. (3) and a wavelength identica
that of the plasma wavelp ­ 2pykp.

At this point it is important to notice that the abov
description [3,4] of the phase shift experienced by
probe pulse leaves out the contribution of the freque
shift of the pulse. The dependence of the group velo
of the probe pulse on the local plasma densityygprobe sdned
is also not taken into account. In our treatment these
effects will be included.

Apart from these two approximations, one of t
most important characteristics of this diagnostic techni
is the high sensitivity to small density perturbation
This comes from the fact that in this interferomet
technique the signal is placed on a carrier (frequen
domain fringes) and uses phase-sensitive lock-in detec
in order to avoid stray light, pump leakage, and detec
defect problems.

B. Photon acceleration technique

Photon acceleration was first proposed by Wilkset al.
[11] to describe the frequency shift experienced by
probe laser pulse copropagating with a relativistic EP
This designation has also been used to describe
frequency shift of electromagnetic (e.m.) waves in ot
configurations [12–14].

Let us consider an EPW described bydne ­
dne0 sinskpz d, where z ­ z 2 ypt, and assume a
low-intensity probe laser pulse centered aroundz ­ 0,
with a pulse lengthsz ø 2pykp propagating in the
EPW. As we can see in Fig. 2, the local density at
front of the laser pulse will be smaller than that at the b
of the pulse. Since the phase velocity is proportiona
the plasma density, the phase velocity at the front of
pulse is slower than at its back: The phase peaks a
031301-2
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FIG. 2. Schematics of laser pulse frequency up-shifting b
plasma wave whenygprobe . yp . c.

back move faster than those at the front of the laser p
(represented here as a wave packet), which means th
wavelength decreases and the frequency increases.
small frequency shifts, and considering that the laser p
remains in phase with the plasma waveygprobe ­ yp , the
frequency shift is given by [15]

Dv .
v2

p

2v0

dne0

ne0

Dzkp cosskpz d , (4)

wherevp ­ s4pne0c2ymed1y2 is the plasma frequency o
the unperturbed plasma,v0 is the frequency of the lase
pulse, andDz is the propagation distance.

From Eq. (4) we can easily map the plasma wave
injecting the probe laser pulse at different positions of
plasma oscillationz , as in the FDI diagnostic techniqu
Notice that Eq. (4) is valid only for very small frequen
shifts Dv ø v0. This is usually true for present las
wakefield experiments, but in future experiments, w
long propagation distances and large EPW amplitudes
frequency shifts can be of the order of the frequency
the laser pulse. In this situation a more general the
must be used. Recently, the Hamiltonian formulation
photons [14,16,17] was introduced as a new descrip
of the frequency shift phenomena, providing a more p
erful description of the photon acceleration mechani
Generally, the solution of the ray-tracing equations
only be obtained numerically; however, fully analytic
results can be achieved for some electron density pe
bations, such as an ionization front. For instance, we
easily calculate the frequency shift which occurs whe
wave packet (classical analog of a photon) crosses ov
ionization front without reflection [14]

Dv ­
v

2
p0

2v0

b

1 6 b
, (5)

where the initial frequency of the photon is much high
than the maximum frequency of the plasma behind
ionization front, i.e.,v0 ¿ vp0. The sign1 (2) refers
to counterpropagation (copropagation) whereyp ­ bc is
the velocity of the ionization front.
031301-3
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Recent experimental results [8] have shown a v
good agreement with this ray-tracing formalism. T
results of the frequency up-shift in the copropagation
counterpropagation setups of this experiment allow u
determine the electron plasma density and the ioniza
front velocity by using the 2D version of Eq. (5) [8]. Th
clearly points to the feasibility of PAD for relativisti
coherent structures in laser produced plasmas. It is
important to mention that in this new description
the frequency-shift diagnostic technique, the assump
ygprobe ­ yp is no longer necessary, and the limitation
small frequency shifts does not exist.

III. RAY-TRACING SIMULATIONS

The results presented in this Section are based on
numerical integration of the photon (short laser pul
trajectories described by the ray-tracing equations, in
presence of a laser wakefield. The probe pulse leng
not considered, and the wave packet is characterized
by its central frequency and central wave number. W
the laser pulse propagates in the presence of an ele
density perturbation, the linear dispersion relation

v2 2 k2c2 2 v2
psz 2 yptd ­ 0 (6)

is assumed valid, wherev is the frequency,k is the wave
number, andvpsz 2 yptd is the local electron plasm
frequency associated with the electron density pertu
tion propagating with phase velocityyp . Equation (6) is
valid in two conditions: (i) The electromagnetic wa
packet does not disturb the electron density perturba
and (ii) the time scaletp (length scale) of the perturba
tion is much longer than the period (wavelength) of
wave packet, i.e.,2pyv ø tp (2pyk ø tpyp). These
conditions are usually satisfied when probing is perform
by a low-intensity, ultrashort pulse, with a central fr
quency much higher than the electron plasma freque
The dispersion relation (6) can be inverted to express
frequencyv as a function of the other variablesk and t.
Assuming 1D propagation along thez direction, we can
then obtain the ray-tracing equations

dz
dt

­
≠v

≠k
­ c

s
1 2

v2
psz, td
v2 , (7)

dk
dt

­ 2
≠v

≠z
­ 2

1
2v

≠v2
psz, td
≠z

. (8)

These equations allow us to calculate the wave n
ber of the probe laser pulse at any point of its trajecto
Knowing the wave number we then obtain, in a straig
forward way, the frequency shift by using the dispers
relation in Eq. (6)

Dvsz, td ­
q

k2sz, tdc2 1 v2
psz, td 2 v0 , (9)
031301-3
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where ksz, td is the pulse wave number andvpsz, td is
the plasma frequency of the wakefield at a pointsz, td
along the laser pulse trajectory.v0 is the pulse frequenc
before interacting with the plasma wave. The phase s
f experienced by the laser pulse in the wakefield
determined by using the same ray-tracing trajectories
writing

fprobesz, td ­
Z z

0
ksz, td dz 2

Z t

0
vsz, td dt , (10)

where ksz, td and vsz, td are the wave number and fr
quency along the ray-tracing trajectory. We can then
termine the total phase shift relative to a pulse propaga
in an unmodulated plasma

Dfsz, td ­ fprobesz, td 2 frefsz, td . (11)

The phase of the reference pulse can be written in
form

frefsz, td ­
Z z

0
k0 2

v0

ygref

dz , (12)

wherek0 andv0 are the wave number and the frequen
of the reference pulse. The group velocity of the refere
laser pulseygref is given by

ygref ­
k0c2q

k2
0c2 1 v2

p0

­ c

vuut1 2
v2

p0

v
2
0

, (13)

where vp0 is the plasma frequency of the homogeno
unmodulated plasma.

A. Laser wakefield scaling laws

For the sake of completeness, we present here
expressions for the laser wakefield excitation in the lin
nonrelativistic two-dimensional (2D) regime. Using t
solution of the linearized 2D fluid equations given
[18,19], we have, in terms of the normalized vec
potentialaL of the pump pulse, the second-order den
perturbation

dne

ne0

­
a2

Lsz , rd
2

1 kp

Z `

z

sinfkpsz 2 z 0dg
a2

Lsz , rd
2

dz 0

2
1

kp

Z `

z

sinfkpsz 2 z 0dg

3

"
1
r

≠

≠r
r

≠

≠r
a2

Lsz , rd
2

#
dz 0, (14)

where r is the radial coordinate describing the distan
from the pump laser propagation axis. Assuming that
pump beam is Gaussian in the radial direction and tha
longitudinal pulse shape is also Gaussian, we have

a2
Lsz , rd ­ a2

0 expf2sz yszd2g expf2srysr d2g . (15)

Inserting the above identity in (14), we can obtain [20]

dne

ne0

­
a2

0

2
expf2srysr d2g

Ω
1 1

4
skpsrd2

∑
1 2

µ
r

sr

∂2∏æ
3

p
p hkpsz expf2skpszd2y4gj sinskpz d , (16)
031301-4
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wherekp ­ s4pe2neymec2d1y2 is the wave number of th
plasma wave.

For a better understanding of our calculations, we w
work with laboratory-oriented parameters: pump pu
energyE0, pulse widthsz ­ ctys2

p
ln 2d (wheret is the

FWHM pulse width), and central wavelengthl0. In terms
of the new parameters and using the following relation

a2
0 ­

I

s p2

2
mec2

reyc
1

pl
2
0
d

, (17)

I ­
c

p
p

E0

pszs2
r

, (18)

wherere is the classical electron radius andme is its mass,
we rewrite (16) as

dne

ne0

­
2

p2
p

p

µ
lre

s2
r

∂2 1p
r3

e ne

E0

mec2

3 expf2srysrd2g exps2prenes2
z d

3

Ω
prenes2

r 1

∑
1 2

µ
r

sr

∂2∏æ
sinskpz d . (19)

For a Gaussian focus,sr varies longitudinally ass2
r ­

s2
r0

f1 1 szyzrd2g, where the Rayleigh length iszr ­
s2pylds2

r0
. Of particular interest is the electron dens

ne0 which maximizesdne. For this we use the reduce
expression, in the 2D limit, for the resonant densitynres ­
1y2pres2

z [20].
Finally, the requirement thatdneyne0 # 1 in the laser

focus imposes a minimum size to the laser focal spotsr0 .
We used this limit in our simulations in order to optimi
our density perturbation. For simplicity, we have decid
to analyze, in all the simulations, only the trajectories
r ­ 0 (1D simulations), where Eq. (19) reduces to

dne

ne0

­
2

p2
p

p

µ
lre

s2
r

∂2 1p
r3

e ne

E0

mec2 exps2prenes2
z d

3 sprenes2
r 1 1d sinskpz d . (20)

B. Propagation velocity effects

As mentioned in the previous sections, it is curren
assumed in the FDI diagnostic [3,4] that the probe la
pulse always stays in phase with the plasma wave,
ygprobe ­ yp . This is not valid for two reasons: (i) Th
probe group velocity depends on the local electron pla
densityygprobe sz, td ­ c

q
1 2 v2

psz, tdyv at each point of
the pulse trajectory [see Eqs. (7) and (8)], and (ii)
phase velocity of the wakefieldyp , which is nearly
equal to the group velocity of the pump laser pul
can be considerably different from the velocity giv
by the linear dispersion relation in a plasma (ygpump fi

c
q

1 2 v2
pyv), due to nonlinear and 3D effects. The

two aspects of the velocity effects in the probe pulse
discussed separately in this subsection.
031301-4
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In our simulations we have considered typical param
ters for the pump laser pulse used in recent laser wake
experiments [3,4]:E0 ­ 2.5 mJ, tpump ­ 100 fs (sz ­
18 mm) which can be focused down tosr0 ø 3.6 mm
(for dneyne0 # 1) in the 2D resonant plasma density
ne0 ø 1.74 3 1017 cm23. Since in this type of experi
ments the probe pulse is usually a small fraction of
pump beam, we use the same wavelengthl0 ­ 800 nm
for both beams.

In Figs. 3(a) and 3(b) we present the phase
frequency shift of the probe pulse, after interacting w
the plasma perturbation, for different time and sp
delays. These delays enable us to insert the probe p
at different positions of the laser wakefield and to sam
different regions of the plasma wave oscillations.
Fig. 3(a) we compare the phase shift obtained forygprobe ­
yp (dashed curve) with the phase shift, considering
probe pulse group velocity as a function of the lo
densityygprobe fdnesz, tdg (solid curve). The phase veloci
of the plasma perturbation is given, in this case, by
group velocity of a pump laser pulse in a homogene
unmodulated plasma densityne0 (yp ­ c

q
1 2 v2

p0
yv2).

From Fig. 3 it is clear that the obtained phase s

-0.1

0.0

0.1

(a)

∆φ
 (

ra
d)

0.0 0.5 1.0 1.5 2.0

-0.4

0.0

0.4

(b)

∆λ
 (

nm
)

Delay (λp)

FIG. 3. Wakefield oscillation map given by the numeri
results for (a) phase shift and (b) frequency shift for differ
delays, assuming thatygprobe ­ yp (dashed curves) or that th
probe pulse group velocity depends on the local plasma de
ygprobe fdnesz, tdg (solid curves). In (b) the dashed curve a
the solid curve overlap. The pump laser pulse parameter
E0 ­ 2.5 mJ,tpump ­ 100 fs.
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oscillation is amplified when we consider that the pro
group velocity depends on the local electron plas
density, so the measured phase shift can mislead u
the evaluation of the plasma wave amplitude. This
be explained by the fact that we are comparing the pr
pulse phase and the reference pulse phase at the
spatial point but at different times, due to the difference
their group velocities. Comparatively, the frequency s
[see Fig. 3(b)] remains the same in both cases.

Now let us assume that the phase velocityyp of
the wakefield is no longer equal to the group veloc
of the pump, but it is an independent parameter.
yp ­ 0.9c the simulations are shown (solid curve
in Figs. 4(a) and 4(b) for the probe pulse phase
frequency shifts, respectively. Comparing these res
with the previous ones (dashed curves), we notice
the wavelength of the phase shift and the freque
shift oscillations are enlarged by nearly 12% and t
the amplitudes are slightly smaller. So, in this case,
wavelength measured by the probe pulse phase o
the frequency shift will be larger than the waveleng
of plasma wakefield (lmeasured ø 1.12lp for yp ­ 0.9c).
To overcome this problem we need an independ
measure of the phase velocity of the plasma wakefi
which can be obtained by comparing the frequency shi
copropagation and in counterpropagation, as demonstr
in recent photon acceleration experiments [8].

-0.1

0.0

0.1

(a)1.12 λp

∆φ
 (

ra
d)

0.0 0.5 1.0 1.5 2.0

-0.4

0.0

0.4

(b)

Delay (λp)

∆λ
 (

nm
)

FIG. 4. Wakefield oscillation map given by (a) phase sh
and (b) frequency shift, assuming that the propagation velo
of the plasma waveyp ­ ygpump sne0 d (dashed curves) or tha
yp ­ 0.9c (solid curves). E0 ­ 2.5 mJ,tpump ­ 100 fs.
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C. Large frequency shifts effects

Another assumption, normally taken in the me
surements of the laser wakefield properties, is that
frequency shift experienced by the probe pulse is
glegible and that it can be neglected for phase s
calculations. This is usually true in present day exp
ments, but in the near future it will be possible to exc
larger EPW with the help of more powerful lasers a
to make them propagate along longer distances [
This will lead to much larger frequency shifts of th
probe laser pulse. In order to examine the importa
of a large frequency shift in FDI we have changed
pump laser pulse parameters: We have increased
pulse energy toE0 ­ 100 mJ and compressed the pul
duration to tpump ­ 30 fs (sz ø 5.4 mm). The new
plasma wakefield perturbation obtained from the sca
laws of Sect. IIIA is dne ø 1.93 3 1018 cm23 in the
laser focus (sr0 ø 8.2 mm for dneyne0 ø 1).

From Fig. 5(b) we can see that the frequency s
experienced by the probe pulse is of the same orde
its initial frequency. In this simulation, the frequen
shift can go up toDl ­ jl0 2 lj ø 200 nm for a
probe laser wavelength ofl0 ­ 800 nm. Like in the
simulations of Fig. 3, the frequency shift reaches
positive and negative maximum values when the pu
is positioned in the regions of the strongest negative

-20

-10

0

10

20
(a)

∆φ
 (

ra
d)

0.0 0.5 1.0 1.5 2.0

-200

-100

0

100
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FIG. 5. Wakefield oscillation map giving (a) the phase sh
and (b) the frequency shift for the laser pulse paramet
E0 ­ 100 mJ, tpump ­ 30 fs. The calculated phase shifts
(a) are obtained by neglecting the frequency shift of the pr
pulse (dashed curve) or by retaining it (solid curve).
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positive gradients of the electron density perturbat
respectively. But in the present situation the maxim
frequency up-shift (Dl1 . 113 nm) is much smaller tha
the maximum frequency down-shift (Dl2 . 196 nm).
This effect arises from the fact that the frequency shif
each point of the ray-tracing trajectory of the probe pu
is inversely proportional to its frequency [see Eq. (8)].

In Fig. 5(a) we present the phase shifts of the pr
pulse given by Eqs. (10)–(12) including the frequen
shift contribution (solid curve) or neglecting those co
tributions (dashed curve). Comparing these two cur
we can notice that not only the phase shift oscillations
come much stronger, but a similar nonlinear behavio
also present, i.e.,jDf2j . jDf1j. Figure 6 provides the
explanation for this effect. This is a typical plot of th
frequency shiftDl (solid) and phase shiftDf (dashed)
along the probe pulse trajectory through the laser wa
field. It is obvious that the phase shift of the probe pu
does not tend to a constant value, in contrast with
frequency shift. This is due to the fact that the final f
quency of the probe pulse is very different from the re
ence pulse frequency (which is constant), and the p
difference between these two pulses increases con
ously as long as they propagate inside the plasma. Th
fore, for a large frequency shift, the measured phase
will be strongly dependent on the propagation length.

This can lead to phase shifts several times larger
p. For instance, in the simulations of Fig. 5, where
total propagation distance inside the plasma isDz ø 30zr

[22], the phase shift oscillations reach amplitudes ofø
11p (peak to peak). This is an additional difficulty f
the FDI technique. In fact, the time-delay stepDt for this
diagnostic technique must be small enough to enable
count all of the displaced fringes in the frequency-dom
interferograms. The upper limit for this time-delay st
Dt is given by

Dt #
Tp

4sDfppypd
, (21)
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FIG. 6. Typical plot of the frequency shiftDl (solid) and
phase shiftDf (dashed) at each point of the probe pu
trajectory centered atzyzr ­ 0.
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FIG. 7. Map of the pump laser pulse parameters (pu
energy versus length). Solid curve defines the limit where
frequency shift is equal to the spectral width of the probe pu
(Dvshift ­ DvpFWHM ). Dashed and dotted curves define t
limits of applicability of the FDI. The vertical lines indicate th
100 GeVym goal for the future plasma accelerators as predic
by the 2D and 1D scaling laws.

whereTp ­ lpyyp is the plasma wave period andDfpp

is the expected phase shift oscillation amplitude (p
to peak).

We will now discuss the limits of application for eac
of the two diagnostic techniques. In order to illustra
these limits we have built up a map representing the pu
laser parameters, energyEp versus pulse lengthtp (see
Fig. 7). For each set of parameters, the correspon
laser wakefield scaling is obtained for the optimiz
situationdneyne0 ø 1 for the resonant density in the 2
limit. The criteria used to define the limiting curves a
as follows. The solid curve is given by the condition
frequency shiftDvshift measured by the PAD techniqu
equal to the spectral width of the probe pulseDvpFWHM

Dvshift ­ DvpFWHM . (22)

Since, from an experimental point of view, it is ve
difficult to measure a frequency shift smaller than
spectral width, this technique is only valid above th
curve.

The FDI technique is limited by the measured ph
shift Df, which must be lower than2p. We have
plotted two curves above which the FDI technique
not valid: one (dotted curve) considering the phase s
as given by the refraction indexDfk, Eq. (3), and the
other (dashed curve) retaining the contribution of
frequency variationDfk,v, Eqs. (10)–(12). In this map
we also represent two lines defining the100 GeVym
goal for accelerating gradients, already measured
indirect techniques in recent experiments [23]. The lin
correspond to the 2D and 1D limits of the reson
density. A close analysis of this map clearly shows t
photon acceleration is the most appropriate diagno
technique for the future laser wakefield accelerators.
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IV. CONCLUSIONS

In this work we have presented a detailed compa
son between two different diagnostic techniques for la
wakefields. Using the ray-tracing equations we cons
ered, for the first time, the group velocity dispersion a
frequency-shift effects, which have been neglected u
now in the current literature on FDI, but can be of gre
importance in the interpretation of future experiments,
we have shown in this paper. By simulating the tim
delay scanning of the plasma oscillations we were abl
identify and clarify the impact of these effects in both d
agnostic techniques.

Our numerical simulations show that for FDI th
wakefield oscillation reconstructed from the measu
phase shifts is significantly modified in both amplitu
and frequency, if the dispersion effects in the probe be
are included and/or assuming that the plasma wave p
velocity is different from the group velocity of the pum
laser beam. On the contrary, for the PAD technique,
results are not affected by these dispersion effects, wh
in fact, are fundamental processes in the PAD.

We have also considered experimental parameters
vant to future laser wakefield experiments. In these c
ditions, the frequency shift of the probe beam cannot
neglected. Moreover, we have studied the influence
a large frequency shift on the phase measurements m
with the FDI. In this case the frequency of the pro
pulse is completely different from that of the referen
pulse. Thus the phase difference will depend not o
on the plasma length but also on the dispersive optics
stalled in their optical path before reaching the detec
device. This fact, added to the complexity of measur
phase shifts much larger thanp and the difficulty of using
the FDI of two laser beams with very different freque
cies, will be the major drawback of this laser wakefie
diagnostic technique. Comparatively, the large freque
shifts play in favor of the PAD technique due to the fa
that the extraneous data contributions, such as stray l
pump leakage, and detector defects, are no longer a t
nical problem. For all of the reasons discussed abo
PAD is the most promising diagnostic for large amp
tude plasma waves in future laser wakefield acceler
experiments.
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