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Longitudinal coupling impedance of a small hole in a coaxial liner near the cutoff frequencies

Alexei V. Fedotov and Robert L. Gluckstern
Physics Department, University of Maryland, College Park, Maryland 20742

(Received 14 May 1998; published 19 June 1998)

We recently developed a general analysis for an azimuthally asymmetric rectangular slot in the inner
conductor of a coaxial liner, which allowed us to investigate the coupling impedance numerically. In
the present paper we obtain analytic expressions for a small hole of arbitrary shape. Specifically, we go
beyond the quasistatic (Bethe) approximation to explore and understand the structure of the impedance
in the frequency region near the cutoffs of the inner beam pipe and outer coaxial structure. Finally, we
extend our analytic analysis to a hole in a wall of finite thickness. [S1098-4402(98)00005-6]

PACS numbers: 29.27.Bd, 41.20.–q
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I. INTRODUCTION

Beam pipes in high-energy superconducting coll
ers require a shielding tube (liner) with pumping slo
to screen cold chamber walls from synchrotron ra
ation. The pumping slots in the liner are the cha
ber discontinuities, and electromagnetic fields diffract
by them can affect beam stability. This beam-cham
interaction can be described in terms of the coupli
impedance.

In an earlier work, Gluckstern and Neri [1] analyze
the impedance of a small azimuthally symmetric pillbo
in a beam pipe at frequencies of the same order as
cutoffs of the TM0n modes in the pipe. They found tha
the admittance could be written as the sum of a te
depending primarily on the pillbox width and thicknes
and a term depending primarily on the pipe radius.
fact, the broad resonance used frequently by others
describe the behavior near cutoffs was shown to be du
a change of sign of the imaginary part of the admittanc

We recently constructed a variational form for th
impedance of a rectangular hole in the wall of a coax
liner [2]. Our analysis allowed us to study numerical
the frequency dependence of the coupling impedance
a transverse rectangular slot, small square hole [2],
a longitudinal rectangular slot, including the resonanc
due to the slot length [3]. However, it is possible
obtain an approximate analytic expression, analogou
that obtained in [1], for a small hole of arbitrary shap
which would allow us to understand the structure
the impedance in the frequency region near the cu
of the beam pipe. In the case of a narrow pillbox t
dominant contribution comes from the magnetic porti
of the problem; therefore, in [1], only the magnetic pa
was considered. In the present paper we extend
analysis to the azimuthally asymmetric problem of a ho
in the wall of a coaxial liner. We also consider both th
electric and magnetic portions of the problem. Final
we extend our analysis to a hole in a wall of fini
thickness.
1098-4402y98y1(2)y024401(7)$15.00
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II. THE LONGITUDINAL COUPLING
IMPEDANCE

The source fields in the frequency domain generated
the driving current

Jzsx, y, z; kd ­ I0dsxddsyde2jkz (1)

are the following:

Essd
r sr , z; kd ­ Z0H

ssd
u sr , z; kd ­

Z0I0

2pr
e2jkz , (2)

Essd
z sr , z; kd ­ 0 , (3)

whereZ0 ­ 120p fVg, k ­ vyc. The definition of the
frequency dependent longitudinal coupling impedance
any obstacle can be taken to be

Zk ­
21
I0

Z `

2`
dzejkzEzs0, u, z; kd , (4)

where Ezsr , u, z; kd is the axial electric field in the
frequency domain, with frequency dependence expsjvtd,
wherev ­ kc. This expression can be rewritten as

Zkskd
Z0

­ 2
1

2paZ0I0

Z
dSEzsa, u, z; kdejkz , (5)

where the surface integral is over only the hole, sinceEz

vanishes on the liner wall.
Since the driving current on axis is proportional

exps2jkzd, the problem is simplified by obtaining resul
for an even driving current coskz and an odd driving
current 2j sinkz separately. In the even problemEz,
Hr , andHu are even inz, while in the odd problemEz,
Hr , and Hu are odd inz (wherez ­ 0 is chosen to be
the center of the hole). In any caseEz, Er , andHu are
always even inu, andHz, Hr , andEu are always odd inu.
We use the superscriptsed for the even problem and th
superscriptsod for the odd problem. The field matchin
is performed at the radius of the inner conductor (liner
the opening. We call the region inside the inner conduc
© 1998 The American Physical Society 024401-1
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r # a the “pipe region” and the region outside the inn
conductora # r # b the “coaxial region.” Note that we
consider the inside and outside surfaces of the liner b
to be atr ­ a, since we neglect the thickness of the lin
compared to the wavelength and to the dimensions of
hole. The technique consists of expanding fields in b
regions into a complete set of functions. At the comm
interface the fields have to be matched yielding equat
for the expansion coefficients.

III. GENERAL BACKGROUND

In the pipe region the fields are given by the sou
fields plus a general solution of the Maxwell equatio
for the cylindrical waveguide. In the coaxial region w
have a general solution of the Maxwell equations for
coaxial waveguide. Because of the asymmetry of
problem we need to consider both the TM and TE mod
We first consider the even portion of the problem.

For the TM portion of the modes we have

Esed
z sr , u, zd ­

Z
dq cosqzfsedsr, ud , (6)

where

fsedsr, ud ­
X
n

cosnuAsed
n sqd

"
Jnskrd
Jnskad

,
Fnskrd
Fnskad

#
, (7)

with k, defined byk2 ­ k2 2 q2, being the radial prop
agation constant. Here we use the notation where
e

s
m
we

(11

ma
sta
he
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first part in square brackets corresponds to the pipe re
r # a, and the second part corresponds to the coaxia
gion a # r # b, with the functionFn being the solution
of the Maxwell equations for the coaxial region for t
TM modes [Fnsud ­ YnsudJnskbd 2 JnsudYnskbd]. The
coefficientAsed

n sqd is the same for bothr , a andr . a,
sinceEsed

z is continuous atr ­ a within the hole and on
both sides of the liner surface, whereEsed

z ­ 0.
For the TE portion of the modes we similarly have

Z0Hsed
z sr , u, zd ­

Z
dq sinqzcsedsr, ud , (8)

where

c sedsr, ud ­ 2
X
n

sinnuBsed
n

"
Jnskrd
J 0

nskad
,

Gnskrd
G0

nskad

#
, (9)

with the function Gnskrd being the solution of the
Maxwell equations for the coaxial region for the T
modes [Gnsud ­ YnsudJ 0

nskbd 2 JnsudY 0
nskbd]. The

other TE and TM field components can be easily
tained using Maxwell equations [2]. For the expans
coefficients we obtain [2]

Ased
n sqd ­

1
4p2a

Z
dS cosqz cosnuEsed

z sa, u, zd (10)

by matchingEz at r ­ a, and
Bsed
n sqd ­ j

k

k
1

4p2a

Z
dS

∑
sinqz sinnuE

sed
u sa, u, zd 2

qn
ak2

cosqz cosnuEsed
z sa, u, zd

∏
(11)
.

e

on
by matchingEu at r ­ a, which also must vanish on th
metallic surface.

For the odd portion of the problem,Esod
z is an odd

function in z. We perform expansion for the field
similar to those for the even portion of the proble
In the expressions for the fields in Eqs. (6)–(9)
replace cosqz by 2j sinqz and sinqz by j cosqz. In
the expressions for the coefficients in Eqs. (10) and
we replace cosqz by j sinqz and sinqz by 2j cosqz.

IV. THIN WALL ANALYSIS

A. Odd part

We now assume that the hole dimensions are s
compared to the wavelength, and we can use the quasi
solutions for the field components in the vicinity of t
hole. The odd part of the impedance is then given by

Z
sod
k skd
Z0

­ 2
j

2paZ0I0

Z
dS sinkzEsod

z sa, u, z; kd

­ 2
jk

2paZ0I0

Z
FdS , (12)

where the electrostatic approximationEz ­ 2
≠F

≠z was
used. We rewrite the above integral as
)

ll
tic

Z
FdS ­

x

2
fEsod

r sa2d 2 Esod
r sa1dg

­
x

2

"
Z0I0

2pa
coskz 2 ja

X
n

Z
dqqAsod

n Pnsqd

2 k
X
n

Z
dq

n
k

Bsod
n Qnsqd

#
, (13)

where x is the electric polarizability of a hole, and th
functions Pnsqd and Qnsqd are given by the following
expressions:

Pnsqd ­

"
J 0

nskad
kaJnskad

2
F0

nskad
kaFnskad

#
, (14)

Qnsqd ­

"
Jnskad

kaJ 0
nskad

2
Gnskad

kaG0
nskad

#
. (15)

In the small hole approximation for the expansi
coefficients we obtain

Asod
n ­

jq
4p2a

Z
FdS ­

Z0I0

16p3a2
jqx , (16)
024401-2
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Bsod
n ­

Z0I0

16p3a3

nk
k

x . (17)

For the odd part of the impedance we then have

Z
sod
k

Z0
­ 2

jk
8p2a2

x

µ
1 1

x

8p2
W

∂
, (18)

whereW is defined as

W ­
X
n

ΩZ
dq

∑
q2Pnsqd 2

n2k2

k2a2
Qnsqd

∏æ
. (19)

For a small hole, the term proportional toxW will be
small compared to 1, and we can write an expression
the admittance as

Z0Y
sod
k ­

j8p2a2

kx
2

ja2

k
W . (20)

B. Even part

We now haveZ
dSEzsa, u, zd ­ jkcu

Hu1 2 Hu2

2
, (21)

where cu is the transverse magnetic susceptibility
a hole. Similarly to the odd part, for the expansi
coefficients we obtain

Ased
n ­

1
4p2a

Z
dS cosqz cosnuEsed

z sa, u, zd

­
2jkcu

2
sHu2 2 Hu1d

Z0

4p2a

­ 2
jkcu

16p3a2
Z0I0 , (22)

Bsed
n ­

jk

4p2ak

Z
dS sinqz sinnuE

sed
u sa, u, zd

2
1

4p2a
jqn
kak

Z
dS cosqz cosnuEsed

z sa, u, zd

­ 2
qncu

16p3a2

Z0I0

k
. (23)

Using the following relation

Z0sHu2 2 Hu1d ­
Z0I0

2pa
2 jka

X
n

Z
dqAsed

n Pnsqd

2
X
n

Z
dq

qn
k

Bsed
n Qnsqd , (24)

for the even part of the impedance we obtain

Zsed

Z0
­

jk
8p2a2 cu

µ
1 2

cu

8p2 V

∂
, (25)
024401-3
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whereV is defined as

V ­
X
n

ΩZ
dq

∑
k2Pnsqd 2

n2q2

k2a2
Qnsqd

∏æ
. (26)

As before, forcuV ø 1 we can write

Z0Y
sed
k ­ 2

j8p2a2

kcu

2
ja2

k
V . (27)

We can also combine Eqs. (18) and (25) to obtain
expression for the total impedance

Zk

Z0
­

jka
8p2a3

∑
c 2 x 2

1
8p2

sc2V 1 x2W d
∏

. (28)

Below the pipe cutoffs one readily gets the express
for ResZd, already reported in [2,3], corresponding
the TEM mode [n ­ 0, q ­ k in Eqs. (19) and (26)].
The structure obtained in Eq. (28) is similar to the o
presented in [4], but we now have additional contribut
from the modes in the coaxial region.

C. Discussion

We now remind the reader of the expression for
admittance of an azimuthally symmetric pillbox, obtain
only for the magnetic (“even” in our notation) portion
the problem [1]:

Z0Yk ­ 2pka

"
2

j
k2gsb 2 ad

1
X̀
s­1

e2jbsgya

bs
1 j

2 ln 2
p

#
, (29)

where the pillbox of outer radiusb extends fromz ­
0 to z ­ g along the axis of the pipe, withkg ø 1,
ksb 2 ad ø 1, a being the radius of the pipe, andb2

s ­
k2a2 2 p2

s with ps being the roots ofJ0spsd ­ 0. One
sees in the above expression that the real part of
admittance is independent of all features of the pillb
for g ø a. It can be shown that this term corresponds
the energy which is lost as the pillbox generates outgo
propagating modes in the pipe. Apparently the reac
part arises from the evanescent pipe modes generate
the pillbox.

We now examine our results in Eqs. (20) and (2
One sees that each admittance separates into a part w
includes the geometry of the hole (parametersc and x)
and the term involving the pipe and the coaxial regi
In the present case, the real part includes depend
on parametersb and a (where b is the radius of the
outer pipe) and is present even below all possible cut
because of the existence of the TEM mode in the coa
region. Additional energy is lost when other outgoi
propagating modes are generated in the coaxial and
pipe regions. In fact, experience with Eq. (29) sugge
that these expressions are valid in the region of the m
cutoffs whereka and ksb 2 ad are of the order of 1
This speculation is confirmed in the numerical studies
follow.
024401-3
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D. Numerical Implementation

It is clear from Eq. (28) that the departure from t
usual small hole (Bethe) approximation is contained
the quantitiesW and V defined in Eqs. (19) and (26
Evaluation of these quantities analytically presents
major challenge requiring some form of cutoffs for lar
q and largen. We assume these cutoffs makeW andV
finite and proceed to explore their values numerically.

To understand the frequency dependence of the qu
tiesV andW , we rewrite expressions (27) and (20) as

kZ0

Zsed 1
Z0

Zsed

Ç
k!0

­ 2jVa2 (30)

and

kZ0

Zsod 2
Z0

Zsod

Ç
k!0

­ 2jWa2. (31)

We then use the notationkZ0yZ ­ ksG 1 jBd andW ­
Wr 1 Wi , V ­ Vr 1 Vi. The real partsWr , Vr con-
tribute to the imaginary part of the impedance. We use
computer program developed to calculate the impeda
of a rectangular hole to obtain data for small holes
different dimensions. In Figs. 1 and 2 we plotZ21

0 kB
vs k2a2 for hole dimensionswya ­ lya ­ 0.25 with
a ­ 16 fmmg (wherew is the width andl is the length
of the hole) for the odd and even parts, respectiv
We find linear dependence for both the odd and e
parts. We therefore conclude that for low frequenc
Vr , Wr , k2. Note that in the limit of low frequencie
k2 deviation from the constant value, which correspon
to the static approximation, is very small. Similar r
sults were obtained forlya ­ 0.15, 0.35, and 0.5 with
wya ­ 0.25, and lya ­ 0.125, 0.15, 0.25, 0.35, and 0.
with wya ­ 0.125. For the real part of the admittance
the limit of low frequency, we find that for both the od
and even partsG ­ 11.55, which is pyflnsbyadg for the
valuebya ­ 1.3125 we used in the calculations. We te

4.244

4.242

4.240

4.238

Z 0
-

1 k
B

(o
d

d
) [m

m
-

1 Ω
-

1 ]

0 .160 .140.120.100.080.060.040.02
(ka )

2

b/a=1.3125
w/a=0.25
l /a=0.25
a=16 [mm]

FIG. 1. Electric part of the imaginary admittance at lo
frequencies.
024401-4
a

ti-

e
ce
f

.
n
s

s

this number for different frequencies fromka ­ 0.1 to
ka ­ 0.5 and hole lengthlya ­ 0.15, 0.25, 0.35, and
0.5 with wya ­ 0.25, and find that to several significa
figures this number is independent of the frequency
hole dimensions, corresponding to the TEM mode in
coaxial region. We then perform a similar calculati
for bya ­ 1.2 to obtain G ­ 17.23, which is again
independent of frequency and hole dimensions, and ag
with pyflnsbyadg. We therefore conclude that below a
possible cutoffsVr , Wr ­ pyflnsbyadg, with additional
energy being lost when other outgoing propagating mo
are generated.

To compare the frequency behavior of the admitta
of a small hole with the one presented for a pillbox [1],
perform numerical calculations for the square hole w
the following parameters:bya ­ 1.3125, wya ­ 0.25.
Results are shown in Figs. 3 and 4 for the imagin
and real parts of the admittance, respectively. Figur
clearly shows the steps which occur aska passes the
cutoffs corresponding to the TM amd TE modes. F
the odd part one sees the cutoffs corresponding to
TE

scoax.d
11 , TE

scoax.d
21 , TE

spiped
11 , and TE

scoax.d
31 modes, while

for the even part one sees the cutoff corresponding to
TM

spiped
01 mode. This leads to the conclusion that, fo

small hole, the odd (electric) part primarily couples
the TE modes, while the even (magnetic) part prima
couples to the TM modes near the cutoffs. This beha
can also be shown analytically (see for example [5]).
also confirmed numerically that this behavior holds
slots withlya , 1 andkl , 1, in agreement with [5]. If
one goes to very high frequency (kl , p), the imaginary
part of the admittance in Fig. 3 eventually crosses the
axis and changes sign. This behavior corresponds
resonance due to the hole length. Note that the resona
occur at different frequencies for the odd and even pa
The detailed study of resonances related to the slot le
can be found in [3].

- 1 . 8 7 9 5

- 1 . 8 7 9 4

- 1 . 8 7 9 3

- 1 . 8 7 9 2

Z 0
-

1 k
B

(e
v

e
n

)  [
m

m
-

1 Ω
-

1 ]

0 .160 .140.120.100.080.060.040.02
(ka )

2

b/a=1.3125
w/a=0.25
l /a=0.25
a=16 [mm]

FIG. 2. Magnetic part of the imaginary admittance at l
frequencies.
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PRST-AB 1 LONGITUDINAL COUPLING IMPEDANCE OF A SMALL HOLE IN A COAXIAL LINER… 024401

(1998)

toff

of
wo
on
he

fine
en

er

ol

toff

e.

the
ipe
- 1 0 0

- 8 0

- 6 0

- 4 0

- 2 0

0

Im
(Y

e
v

e
n )

[Ω
-

1 ]

3 .02 .52 .01 .51 .00 .5
ka

b/a=1.3125
w/a=0.25
l /a=0.25

2 0 0

1 5 0

1 0 0

5 0

0

Im
(Y

o
d

d )
[Ω

-
1 ]

3 .02 .52 .01 .51 .00 .5
ka

b/a=1.3125
w/a=0.25
l /a=0.25

FIG. 3. Imaginary part of the admittance near the cu
frequencies.

V. THICK WALL ANALYSIS

When the field is incident on a hole in a wall
finite thickness, the usual approach is to split it into t
components: one with an asymmetric potential and
with a symmetric potential about the midpoint of t
wall [6]. The parametersc and x come from both the
symmetric and antisymmetric problem. We then de
the magnetic susceptibility and electric polarizability se
within the liner as

cin ­ cs 1 ca,

xin ­ xs 1 xa,
(32)

while the susceptibility and polarizability outside the lin
are defined by

cout ­ cs 2 ca,

xout ­ xs 2 xa.
(33)

For the wall of zero thicknessca ­ xa ­ 0, making
cin ­ cs, xin ­ xs.

A. Even part

We again treat the problem as quasistatic in the h
region whereEr , Hu are denoted byE1, H1 near the inside
024401-5
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R
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Y
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l /a=0.25
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Y
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3 .02 .52 .01 .51 .00 .50 .0
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b/a=1.3125
w/a=0.25
l /a=0.25

FIG. 4. Real part of the admittance near the cu
frequencies.

surface of the hole and byE2, H2 near the outside surfac
For the even part of the impedance we have

Zsed

Z0
­ 2

1
2paZ0I0

Z
dSEsed

z sa, u, zd coskz , (34)

which can be rewritten as

Zsed

Z0
­ 2

jkZ0

2paZ0I0

µ
H1

2
cin 2

H2

2
cout

∂
. (35)

Using the following expressionZ
r­a

dSEzsa, u, zd ­ 2
jkZ0

2
H1cin (36)

and performing field matching at the inner surface of
liner, we obtain the expansion coefficients in the p
region

Ased
n ­ 2

jkZ0H1

8p2a
cin , (37)

Bsed
n ­ 2

qnZ0H1

8p2a2k
cin . (38)

In the approximation of a small hole forH1 at the inner
surface of the liner, we then have
024401-5
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sion

dd

ss,
es the
Z0H1 ­
Z0I0

2pa
2 jka

X
n

Z
dqAsed

n
J 0

nskad
kaJnskad

2
X
n

Z
dq

qn
k

Bsed
n

Jnskad
kaJ 0

nskad

­
Z0I0

2pa

Ω
1 2

1
8p2a

cin

X
n

Z
dq

∑
k2J 0

nskad
kJnskad

2
q2n2

k2a2

Jnskad
kJ 0

nskad

∏æ
. (39)

Using Z
r­d

dSEzsd, u, zd ­ 2
jkZ0

2
H1cout , (40)

for theH2 at the outer surface of the liner, we similarly obtain

Z0H2 ­ 2
Z0I0

2pa
1

8p2d
cout

X
n

Z
dq

∑
k2F0

nskdd
kFnskdd

2
q2n2

k2d2

Gnskdd
kG0

nskdd

∏
, (41)

where r ­ d is the outer surface of the liner. Settinga ­ d, except for the parameterscin, cout, we obtain the
expression for the even part of the impedance

Zsed

Z0
­

jk

8p2a2
cin

µ
1 2

cin

8p2
Ṽ

∂
, (42)

where

Ṽ ­
X
n

Z
dq

Ω
k2

∑
J 0

nskad
kaJnskad

2
c2

out

c
2
in

F0
nskad

kaFnskad

∏
2

q2n2

k2a2

∑
Jnskad

kaJ 0
nskad

2
c2

out

c
2
in

Gnskad
kaG0

nskad

∏æ
. (43)

B. Odd part
For the odd part of the impedance we have

Zsod

Z0
­ 2

j
2paZ0I0

Z
dSEsod

z sa, u, zd sinkz ­ 2
jk

2paZ0I0

Z
r­a

FdS . (44)

In the above expression the integral can be rewritten in the following form:Z
r­a

FdS ­ E1
xin

2
2 E2

xout

2
. (45)

For the radial component of the electric fieldE1 on the inner surface of the liner, we have the following expan
coefficients:

Asod
n ­

Z0I0

16p3a2
jqxin , (46)

Bsod
n ­

Z0I0

16p3a2

nk
ka

xin . (47)

We then obtain

E1 ­
Z0I0

2pa

Ω
1 1

xin

8p2

X
n

Z
dq

∑
q2J 0

nskad
kaJnskad

2
n2k2

k2a2

Jnskad
J 0

nskad

∏æ
. (48)

By performing similar calculations for the electric fieldE2 at the outer surface of the liner, we finally obtain for the o
part of the impedance

Zsod

Z0
­ 2

jk

8p2a2
xin

µ
1 1

xin

8p2
W̃

∂
, (49)

where

W̃ ­
X
n

Z
dq

Ω
q2

∑
J 0

nskad
kaJnskad

2
x2

out

x
2
in

F0
nskad

kaFnskad

∏
2

k2n2

k2a2

∑
Jnskad

kaJ 0
nskad

2
x2

out

x
2
in

Gnskad
kaG0

nskad

∏æ
. (50)

Expressions for̃V andW̃ include the parametersc andx; and, therefore, for the case of a wall of finite thickne
the admittance doesnot separate into a part which includes only the geometry of a hole and a term which includ
024401-6 024401-6
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geometry of a pipe. But this separationis still valid for
a thin wall (xout ­ xin, cout ­ cin) and for a very thick
wall (xout ­ cout ­ 0).

VI. SUMMARY

We obtained analytic expressions for the impedanc
a small hole which includes effects of energy propaga
along the inner beam pipe and/or outer coaxial pipe. T
allows us to understand the structure of the impeda
in the frequency region near the cutoffs of the inn
beam pipe and the outer coaxial structure. Express
for both the electric and magnetic problems for a h
without azimuthal symmetry were obtained and explo
by means of numerical calculations. We then exten
our analytic treatment to a wall of finite thicknes
discussed the resulting expressions, and concluded
the admittance could no longer be separated into a
024401-7
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depending only on the pipe geometry and a part depen
primarily on the hole geometry.

[1] R. L. Gluckstern and F. Neri, inProceedings of the 198
Particle Accelerator Conference, Chicago, Illinois(IEEE,
New York, 1989), p. 1271.

[2] A. V. Fedotov and R. L. Gluckstern, Phys. Rev. E56, 3583
(1997).

[3] A. V. Fedotov and R. L. Gluckstern, Phys. Rev. E56, 7217
(1997).

[4] S. S. Kurennoy, R. L. Gluckstern, and G. V. Stupak
Phys. Rev. E52, 4354 (1995).

[5] G. V. Stupakov, in Proceedings of the 1995 Partic
Accelerator Conference, Dallas, Texas(IEEE, New York,
1995), p. 3306.

[6] R. L. Gluckstern and J. A. Diamond, IEEE Tran
Microwave Theory Tech.39, 274 (1991).
024401-7


