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Longitudinal coupling impedance of a small hole in a coaxial liner near the cutoff frequencies
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We recently developed a general analysis for an azimuthally asymmetric rectangular slot in the inner
conductor of a coaxial liner, which allowed us to investigate the coupling impedance numerically. In
the present paper we obtain analytic expressions for a small hole of arbitrary shape. Specifically, we go
beyond the quasistatic (Bethe) approximation to explore and understand the structure of the impedance
in the frequency region near the cutoffs of the inner beam pipe and outer coaxial structure. Finally, we
extend our analytic analysis to a hole in a wall of finite thickness. [S1098-4402(98)00005-6]

PACS numbers: 29.27.Bd, 41.20.—q

[. INTRODUCTION [I. THE LONGITUDINAL COUPLING

. N . . IMPEDANCE

Beam pipes in high-energy superconducting collid-
ers require a shielding tube (liner) with pumping slots The source fields in the frequency domain generated by
to screen cold chamber walls from synchrotron radi-the driving current
ation. The pumping slots in the liner are the cham- ik
ber discontinuities, and electromagnetic fields diffracted Jo(x,y,2:k) = L6 (x)8(y)e /™ )
_by them can affect beam_ stab!llty. This beam—cham_beére the following:
interaction can be described in terms of the coupling
impedance.

In an earlier work, Gluckstern and Neri [1] analyzed
the impedance of a small azimuthally symmetric pillbox
in a beam pipe at frequencies of the same order as the EW(r,z;k) = 0, 3)

cutoffs of the TM,, modes in the pipe. They found that hereZ, — 1207 [Q], k = w/c. The definition of the

the admittance could be written as the sum of a ter L o
depending primarily on the pillbox width and thickness requency dependent longitudinal coupling impedance of
'any obstacle can be taken to be

and a term depending primarily on the pipe radius. In
fact, the broad resonance used frequently by others to -1 [~ ©

describe the behavior near cutoffs was shown to be due to 2= [_w dze’™E-(0,0,z: k), 4)
a change of sign of the imaginary part of the admittance.

We recently constructed a variational form for thewhere E.(r,6,z;k) is the axial electric field in the
impedance of a rectangular hole in the wall of a coaxiafrequency domain, with frequency dependence(gxp),
liner [2]. Our analysis allowed us to study numerically Whereo = kc. This expression can be rewritten as
the frequency dependence of the coupling impedance of Zy(k) 1
a transverse rectangular slot, small square hole [2], and = —

a longitudinal rectangular slot, including the resonances Zo 2maZolo
due to the slot length [3]. However, it is possible towhere the surface integral is over only the hole, sihce
obtain an approximate analytic expression, analogous teanishes on the liner wall.

that obtained in [1], for a small hole of arbitrary shape Since the driving current on axis is proportional to
which would allow us to understand the structure ofexp(—jkz), the problem is simplified by obtaining results
the impedance in the frequency region near the cutoffor an even driving current cdg and an odd driving

of the beam pipe. In the case of a narrow pillbox thecurrent —j sinkz separately. In the even proble,,
dominant contribution comes from the magnetic portionH,, and H, are even inz, while in the odd problenE,,

of the problem; therefore, in [1], only the magnetic partH,, and Hy are odd inz (wherez = 0 is chosen to be
was considered. In the present paper we extend théme center of the hole). In any cage, E,, andHy are
analysis to the azimuthally asymmetric problem of a holealways even i, andH,, H,, andE, are always odd i@.

in the wall of a coaxial liner. We also consider both theWe use the superscri¢) for the even problem and the
electric and magnetic portions of the problem. Finally,superscript(o) for the odd problem. The field matching
we extend our analysis to a hole in a wall of finite is performed at the radius of the inner conductor (liner) in
thickness. the opening. We call the region inside the inner conductor

(s)

Zol, ;
E(r,z:k) = ZoHy et

k) =
(r,z; k) Ty ,

()

deEz(a,H,z;k)eij, 5)
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r = a the “pipe region” and the region outside the innerfirst part in square brackets corresponds to the pipe region
conductore = r = b the “coaxial region.” Note thatwe r = a4, and the second part corresponds to the coaxial re-
consider the inside and outside surfaces of the liner botgiona = r = b, with the functionF, being the solution

to be atr = a, since we neglect the thickness of the linerof the Maxwell equations for the coaxial region for the
compared to the wavelength and to the dimensions of th&M modes an(u) = Y,(u)J,(kb) — J,(w)Y,(kb)]. The
hole. The technique consists of expanding fields in both:oefficientA )(g) is the same for both < @ andr > a,
regions into a complete set of functions. At the commorsmceE(e) is contmuous at = g within the hole and on
interface the fields have to be matched yielding equationgoth sides of the liner surface, wheft&) = 0.

for the expansion coefficients. For the TE portion of the modes we similarly have

ll. GENERAL BACKGROUND ZOHy)(r,e,z)=qusinqz¢<f)(r,0), (8)

In the pipe region the fields are given by the source
fields plus a general solution of the Maxwell equationswhere
for the cylindrical waveguide. In the coaxial region we (k1) Galr)
have a general solution of the Maxwell equations for the (©)(r,9) = — Zsinnngf |: - :| 9)
coaxial waveguide. Because of the asymmetry of the Ty (ka)’ G (ka)
problem we need to consider both the TM and TE modesWlth the function G,

We first consider the even portion of the problem. (xr) being the solution of the

Maxwell equations for the coaxial region for the TE

For the TM portion of the modes we have modes () = Yu()J' (k) — J,()Y.(xb)]. The
E§e>(r,9,z) = [ dq cosqzd'“(r,0), (6) other TE and TM field components can be easily ob-
tained using Maxwell equations [2]. For the expansion
where . ;
Jo(kr) Fo(kr) coefficients we obtain [2]
¢, 0) = > cosnfAL )[ n KT al }
r (k) Fy(xa) A©(g) = dS cosgz cosnfE(a,0,z) (10)

2
with «, defined byx? = k2 — 42, being the radial prop- dma
agation constant. Here we use the notation where jthey matchingkE, atr = a, and

B9 (q) = ji ! de[Sinqz SinnﬂEée)(a,H,z) — ﬂCOqu COSnGE(e)(a,Q,z):| (12)
" k 472a ak? z
by matchingE, at r = a, which also must vanish on the [ dds = X [E©(a—) — E¥V)(a+)]
metallic surface. 2 '
For the odd portion of the problen®! is an odd x [zl
function in z. We perform expansion for the fields =5 5 COSkz - jaZ/ dqqA' P, (q)

similar to those for the even portion of the problem.

In the expressions for the fields in Egs. (6)—(9) we _ ] I 50)

replace cogz by —jsingz and singz by jcosgz. In kZ- dq K Bi"Cn(a) |- (13)
the expressions for the coefficients in Egs. (10) and (11)

we replace cogz by j singz and singz by —j cosgz. where y is the electric polarizability of a hole, and the
functions P, (¢) and Q,(g) are given by the following
IV. THIN WALL ANALYSIS expressions:
A. Odd part B J!(ka) F!(xa)
We now assume that the hole dimensions are small Pula) = | kaJ,(ka) - kaF,(ka) (14)

compared to the wavelength, and we can use the quasistatic
solutions for the field components in the vicinity of the

hole. The odd part of the impedance is then given by [ J.(ka) G,(ka)
(0) 0u(q) = - - p (15)
Zy (k) j _ | kaJ)(ka)  kaG)(ka)
= — f ds smszg")(a, 0,z;k)
Z() 27TaZ()I() ) . i
) In the small hole approximation for the expansion
- _ jk ] ds (12) coefficients we obtain
27TaZ()I()
where the electrostatic approximatiaf, = —‘1,2 was (0) _ f __Zoly
, A bds = ) 16
used. We rewrite the above integral as ) " 477 a 1673 ZMX (16)
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gl — _Zolo_ nk (17) WhereV is defined as
" 1673a3 « , n2g?
For the odd part of the impedance we then have V= ;U dq[k Pulq) = KZaZQ"(q)}}' (26)
Zﬁ") jk As before, foryV <« 1 we can write
Zo 8m2a? 8 872 e J8m a’>  ja
zov)" = - v, 27)
whereW is defined as _ kiby k _
We can also combine Egs. (18) and (25) to obtain the
W — Z{f dq[ 2p.(q) — Q (q)“ (19) expression for the total impedance
2 n

For a small hole, the term proportional yeW will be

ﬂ _ jka
Zo 8m2a3

[t// X - #(Wv + XZW)] (28)

small compared to 1, and we can write an expression foBelow the pipe cutoffs one readily gets the expression

the admittance as

) j8772£12 jaz
ZoYy = - —W. 20
oL kx X (20)
B. Even part
We now have
Hy, — Hyp_
]dSEz(a,H,z) = jkiy %, (21)

where iy is the transverse magnetic susceptibility of
Similarly to the odd part, for the expansion

a hole.
coefficients we obtain

(e) —
A= 4m2a

—Jjk
= ]2% (Ho- — H0+)

] dS cosqz COSnBEEe)(a, )

= - Z()I() N (22)
mToa

B(f) — JK
" 4772ak
I jgn
472%2a kak

_ _ ¥ Zolo (23)

167342 «

Using the following relation

] ds singz SinnHEéE)(a, 0,z)

dS cosqz cosnfE'(a, 6, z)

Zolo

ZotHo- ~ Hye) = 2~ jta Y [ dgap.(a)

- Z [ da ™ B0, @29
for the even part of the impedance we obtain

z© ik
_ <1 _ Yo V)
Zo 82a?

s (25)
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for Re(Z), already reported in [2,3], corresponding to
the TEM mode £ = 0, ¢ = k in Egs. (19) and (26)].
The structure obtained in Eq. (28) is similar to the one
presented in [4], but we now have additional contribution
from the modes in the coaxial region.

C. Discussion

We now remind the reader of the expression for the
admittance of an azimuthally symmetric pillbox, obtained
only for the magnetic (“even” in our notation) portion of
the problem [1]:

_J
k2g(b — a)

e /”sg/a 2In2
+ Z - } (29)

where the pillbox of outer radlué extends fromz =

0 to z = g along the axis of the pipe, witlhg < 1,

k(b — a) < 1, a being the radius of the pipe, ad =

k*a* — p? with p, being the roots of/y(p;) = 0. One
sees in the above expression that the real part of the
admittance is independent of all features of the pillbox
for g < a. It can be shown that this term corresponds to
the energy which is lost as the pillbox generates outgoing
propagating modes in the pipe. Apparently the reactive
part arises from the evanescent pipe modes generated by
the pillbox.

We now examine our results in Egs. (20) and (27).
One sees that each admittance separates into a part which
includes the geometry of the hole (parametgrand y)
and the term involving the pipe and the coaxial region.
In the present case, the real part includes dependence
on parameter$ and a (where b is the radius of the
outer pipe) and is present even below all possible cutoffs
because of the existence of the TEM mode in the coaxial
region. Additional energy is lost when other outgoing
propagating modes are generated in the coaxial and the
pipe regions. In fact, experience with Eq. (29) suggests
that these expressions are valid in the region of the mode
cutoffs whereka and k(b — a) are of the order of 1.
This speculation is confirmed in the numerical studies that
follow.

ZoY) = 2mka |:—
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D. Numerical Implementation this number for different frequencies froku = 0.1 to
ka = 0.5 and hole lengthl/a = 0.15, 0.25, 0.35, and
0.5 with w/a = 0.25, and find that to several significant

usual small hole (Bethe) approximation is contained Infigures this number is independent of the frequency and

the quantitiesw and v def'n?d in Eqs. (19) and (26). hole dimensions, corresponding to the TEM mode in the
Evaluation of these quantities analytically presents a

. L coaxial region. We then perform a similar calculation
major challenge requiring some form of cutoffs for large

for b/a = 1.2 to obtain G = 17.23, which is again
q qnd largen. We assume thesg cutoffs maWéa_de independent of frequency and hole dimensions, and agrees
finite and proceed to explore their values numerically.

To understand the frequency dependence of the quant\ll\-/ith w/lIn(b/a)]. We therefore conclude that below all

. . X possible cutoffsV,, W, = a/[In(b/a)], with additional
tiesV andW, we rewrite expressions (27) and (20) as energy being lost when other outgoing propagating modes
kZy Zy

are generated.

It is clear from Eq. (28) that the departure from the

)
7@ " z@ |y —jva (30) To compare the frequency behavior of the admittance
and of a small hole with the one presented for a pillbox [1], we
perform numerical calculations for the square hole with
kzZy  Zy - iWal (31) the following parametersb/a = 1.3125, w/a = 0.25.
AC R ACOR PR Ja Results are shown in Figs. 3 and 4 for the imaginary
We then use the notatiotZ,/Z = k(G + jB) andW = and real parts of the admittance, respectively. Figure 4

W, + Wi, V=V, + V;. The real partsW,, V, con- clearly shows the steps which occur ks passes the

tribute to the imaginary part of the impedance. We use th§utoffs corresponding to the TM amd TE modes. For
computer program developed to calculate the impedan(:ttt.:'e(cg‘fgj par(tcoaoxr;e segispe'ghe cutoffscoggrrespondlng to the
of a rectangular hole to obtain data for small holes of TE;; ", TEy , TEj; ', and Tk, ~ modes, while
different dimensions. In Figs. 1 and 2 we plg§ 'kB  for the even part one sees the cutoff corresponding to the
vs k2a® for hole dimensionsw/a = I/a = 025 with ~ TMJ™™ mode. This leads to the conclusion that, for a
a = 16 [mm] (wherew is the width and! is the length small hole, the odd (electric) part primarily couples to
of the hole) for the odd and even parts, respectivelythe TE modes, while the even (magnetic) part primarily
We find linear dependence for both the odd and evemouples to the TM modes near the cutoffs. This behavior
parts. We therefore conclude that for low frequenciesan also be shown analytically (see for example [5]). We
V,,W, ~ k*. Note that in the limit of low frequencies also confirmed numerically that this behavior holds for
k* deviation from the constant value, which correspondslots with//a < 1 andkl < 1, in agreement with [5]. If

to the static approximation, is very small. Similar re- one goes to very high frequencki(~ =), the imaginary
sults were obtained fot/a = 0.15, 0.35, and 0.5 with part of the admittance in Fig. 3 eventually crosses the zero
w/a = 0.25, andl/a = 0.125, 0.15, 0.25, 0.35, and 0.5 axis and changes sign. This behavior corresponds to a
with w/a = 0.125. For the real part of the admittance in resonance due to the hole length. Note that the resonances
the limit of low frequency, we find that for both the odd occur at different frequencies for the odd and even parts.
and even part& = 11.55, which is#/[In(b/a)] for the  The detailed study of resonances related to the slot length
valueb/a = 1.3125 we used in the calculations. We test can be found in [3].

-1.8792

4.244 —

-1.8793 4

ot 4.242 el
£
E E
g T -1.8794-
5 g
“m4.240 i‘im
2
o b/a=1.3125 -~
N w/a=0.25 K3 b/a=1.3125
1/a=0.25 w/a=0.25
| a=16 [mm] -1.8795— 1/a=0.25
4.238 a=16 [mm]

0.02 004 006 0.08 010 012 0.14 0.16 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
2
(ka) (ka)

FIG. 1. Electric part of the imaginary admittance at low FIG. 2. Magnetic part of the imaginary admittance at low
frequencies. frequencies.
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FIG. 3. Imaginary part of the admittance near the cutoffFIG. 4. Real part of the admittance near the cutoff
frequencies. frequencies.

V. THICK WALL ANALYSIS surface of the hole and hy,, H, near the outside surface.
When the field is incident on a hole in a wall of For the even part of the impedance we have
finite thickness, the usual approach is to split it into two e
components: one with an asymmetric potential and one Z° 7] dSE(e)(a 6,z)coskz, (34)
with a symmetric potential about the midpoint of the Zy 2maZoly

wall [6]. The parametergy and y come from both the which can be rewritten as
symmetric and antisymmetric problem. We then define

the magnetic susceptibility and electric polarizability seen z© __ JkZy (H, Vi — Hy " (35)
within the liner as Zo 2mwaZoly me e
in = ¢ + P, (32) Using the following expression
Xin = X° + x% . ikZo y a6
while the susceptibility and polarizability outside the liner [,a SR ) 1¥in (36)
are defined by and performing field matching at the inner surface of the
Your = ° — O, liner, we obtain the expansion coefficients in the pipe
, ; (33) region
Xout = X — X - K7 H
. . e _JkZod1
For the wall of zero thicknesg/“ = y“ = 0, making AP = ooy Vo (37)
Yin = &%, xin = X°.
o) _ anoHl
A. Even part By = 372a2 Vin- (38)

We again treat the problem as quasistatic in the holén the approximation of a small hole f@i, at the inner
region where,, Hy are denoted by, H; near the inside surface of the liner, we then have
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Zol J) Jn
ZoH, = 5= = jkay. f dgat x5 ] dg 4" g Trxa)

2ma kal,(ka) KaJ’(Ka)
Zolo 1 k2J! (ka) q2n2 Jo(ka)
= 1 - ; . 39
27a { 8m2a Yin ;] d [ kJ,(ka) K2a? KJ,’,(Ka)i” (39)
Using
ikZ
dSEZ(d? 05 Z) = _JTOHllpout’ (40)
r=d

for the H, at the outer surface of the liner, we similarly obtain
_ Zoly kzF/(Kd) _¢*n* Gu(kd)
ZoH, = d
072 2ma 8 2d %utzf [ K2d? KG,’l(Kd)i|

where r = d is the outer surface of the liner. Setting= d, except for the parametes;,, .., We obtain the
expression for the even part of the impedance

ze ik ( Pin v), 42)

(41)

Zo  8ma? Yin 872
where
_ Zf 2l k@) dow Fulka) 1 @*n’ [ Ju(ka) g Galxa) 43)
~ kal,(ka) Wi kaF,(ka) k%a? | kall(ka) 2 kaG)(ka)
. B. Odd part
For the odd part of the impedance we have

7/(0) j jk
= =——<2 | dSEY(a,0,z)sinkz = ———— Pds . 44
Zo 27TaZ()I() f < (a Z) ‘ 27TaZ()I() ( )

In the above expression the integral can be rewritten in the following form:
dds = E, sz - E X;“‘ . (45)

r=a
For the radial component of the electric fiegi] on the inner surface of the liner, we have the following expansion
coefficients:

A0 — Zoly

n 6m3a2 Jq Xin (46)

(0) _ Z()I() nk

" 16m3d? ka Xin - (47)
We then obtain
Zoly Xin q*Jl(ka)  n?k* J,(ka)
E,=—11+ d — . 48
' 27a { 872 ;f q[ kal,(ka)  k*a* J!(ka) ” (48)

By performing similar calculations for the electric fielty at the outer surface of the liner, we finally obtain for the odd
part of the impedance
Z(O) jk

Xin %
= +
Zo 87242 Xm<1 872 W) ’ (49)

where

kal,(ka) Xi KkaFy(ka) Kk2a? KaJ,’,(Ka) i KaG’(Ka)

Expressions foi’ and W include the parameterg and y; and, therefore, for the case of a wall of finite thickness,
the admittance doesor separate into a part which includes only the geometry of a hole and a term which includes the
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geometry of a pipe. But this separatianstill valid for ~ depending only on the pipe geometry and a part depending
a thin wall (vout = Xin» ¥our = ¥in) and for a very thick  primarily on the hole geometry.

wall (xYout = Your = 0).
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