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Exotic beams produced by fast neutrons
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First results from the research and development program PARRNE (Production d’Atomes Radioactifs
Riches en NEutrons) are presented. Its aim is the investigation of the optimum conditions for the pro-
duction of neutron-rich fission fragment beams extracted from thick targets irradiated by fast neutrons.
[S1098-4402(98)00001-9]
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On several recent occasions, it has been established
neutron-rich beams with energies around the Coulo
barrier will provide a wealth of new opportunities i
nuclear structure physics [1,2]. Fission is a very power
mechanism to produce such beams, e.g., the ISOL
facility has used high-energy proton induced fission
many years [3]. Inverse kinematic fission of relativist
projectiles has allowed the first synthesis of78Ni [4] at the
GSI fragment separator; thermal neutron induced fissio
used to study the region around132Sn at Studsvik [5] and
is at the basis of projects for radioactive beam facilities
Grenoble (ILL) and at Munich [6]. Proton induced fissio
allows particularly high luminositiessL , 1013 b21 s21d,
fragment separators excel in the efficient selection of v
short-lived speciessL , 103 106 b21 s21d, whereas the
highest cross sections in the top of the isotopic distribut
are found for thermal neutronssL , 1011 b21 s21d.

A novel concept has been proposed by Nolen [
Fast neutrons may be used for achieving the high
possible luminosities without dissipating too much pow
in the fissioning target, the traditional Achilles heel
charged-particle-induced reactions. Indeed, by break
up an intense deuteron beamsE ­ 100 300 MeVd in
a dedicated (and well-cooled) converter, and irradiat
a thick fission target by the secondary neutrons fl
the luminosities may, at least in principle, exceedL ­
1015 b21 s21 [7]. Of course, the challenge consists in th
research and development (R&D) for a device in which t
produced activities are transferred to an ion source w
high efficiency. This will be crucial for the viability of
projects like the one proposed by the Argonne laborat
[8]. It will also be of high interest for radioactive beam
facilities under construction [1,2], which like SPIRAL
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at GANIL (Caen, France) may benefit from an inten
deuteron beam.

We have decided to build a test bench for the R&D w
thick fission targets at the 15 MV tandem of IPN Ors
where a1 mA deuteron beam is available. Literature
cross sections [9] shows that the threshold for fast neu
induced fission on238U is at 2 MeV. It rises from 0.5 b
by a factor of 3 for a tenfold energy increase.

In a first test, PARRNE-0, a 1 mm thick and 30 m
diameter uranium disk was irradiated for 2 min by ne
trons produced from a 20 MeV, 100 nA deuteron be
stopped in a carbon covered Faraday cup 7 cm in fron
the U disk. Under these conditions the neutron flux e
mated with a Rem counter is about108 nys. Off-lineg-ray
spectroscopy showed that it is easy to identify numer
radioactive species with a neutron excess of up to 10;
Table I. This validates the method in accordance wit
somewhat similar recent test at Cyclotron Laboratory
Michigan State University (see [8]).

We now have constructed a first version of an Ux
target, PARRNE-1, containing 20 g of uranium, which
heatable up to 2000±C for fast effusion of the produce
activity. A graphite container housing 50 disks of Ux
with a diameter of 14 mm, surrounded by a heated
tube, was kept in a vacuum vessel with 1 mm thin
window. This vessel was installed at the end of a be
line from the tandem. The deuteron to neutron conve
was a 3 mm thick Be disk placed 8 cm in front of t
UCx target. The neutron flux was about108 nys, derived
from an activation measurement. The effective deute
energy after a window in the beam pipe was ab
15 MeV. The target container had a 10 mm opening
the middle to which a 7.2 m long transfer line, throug
1 m concrete shielding, was connected. Thus the act
could be collected under good background conditions
g-spectroscopy measurements. We collected the n
gases Kr and Xe on a cold Cu finger. The latter w
kept below 20 K by means of a cryogenerator. Tabl
© 1998 The American Physical Society 013501-1
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TABLE I. Production of neutron-rich species in a 1 mm
thick U metallic disk by neutrons from a C target expose
to a 20 MeV, 100 nA deuteron beam.N0 indicates the total
number of atoms produced andR the rate per micro Coulomb
of deuterons and gram of uranium.

Isotope T1y2 N0 f106g R f103ymC gg
84Se 3.1 min 1 6.9
86Br 54 s 0.8 9.7
89Kr 3.07 min 4.1 30
90Kr 32.32 s 1.6 25
94Sr 1.24 min 5.7 54.9

103Tc 54.2 s 6.3 6.9
132Sn 40 s 0.5 6.2
132Sbm 2.8 min 3.4 25
133Sb 2.3 min 3 23
136Ig 1.38 min 2.3 20.8
136Im 46 s 0.8 9.7
140Cs 1.07 min 3.8 39.6
137Xe 3.83 min 6.6 45.2
139Xe 39.5 s 1.4 20.1
144La 40.7 s 2 27.8
145Ce 3 min 3.7 26.4

shows the collected yields for90,91,92Kr and139Xe. In this
first test the target was intentionally kept at a relative
modest temperaturesT ­ 1560 ±Cd in order to be saved
for further experiments. The release and transport ti
distributions could be studied by pulsing the deuter
beam. Figures 1 and 2 show such distributions. T
solid line corresponds to a fit with one set of fou
parameters developed for describing the behavior
targets at ISOLDE [10].

It is interesting to note that the observed yields (neutr
luminosityL , 107 b21 s21 are only about a factor of104

below those from 1 GeV protons (luminosityL , 6 3

1012 b21 s21) impinging at ISOLDE on ThC targets [11]
This clearly shows the potential of the use of fast neutro
at a facility with an intense driver beam. One may no
that substantially higher temperatures, i.e., 1900±C have
been used in [11], allowing significantly shorter releas
By modifications of the test setup at the Orsay tande
(effective deuteron energy, neutron angular distributi
seen by the UCx target), an order of magnitude can b
gained in the luminosity. The main goal of the R&D
program will be to verify if a further improvement by

TABLE II. Yields for noble gas atoms collected on a col
finger.

Isotope T1y2 [s] Yield f1ymCg
90Kr 32.3 2 3 105

91Kr 8.6 4 3 104

92Kr 1.8 1 3 104

139Xe 39.7 2 3 105
013501-2
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FIG. 1. (Color) Time distribution for release and transport
139Xe observed at cold finger. The solid line corresponds t
fit (see text).

one order of magnitude, by increasing the target thickne
can be obtained without a deterioration of the relea
properties. This is the aim of the setup PARRNE-
presently under construction, where we will connect a11

charge-state ion source followed by a small ISOL separa
to UCx targets.
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