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Exotic beams produced by fast neutrons
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First results from the research and development program PARRNE (Production d’Atomes Radioactifs
Riches en NEutrons) are presented. Its aim is the investigation of the optimum conditions for the pro-
duction of neutron-rich fission fragment beams extracted from thick targets irradiated by fast neutrons.
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On several recent occasions, it has been established thatt GANIL (Caen, France) may benefit from an intense
neutron-rich beams with energies around the Coulomldeuteron beam.
barrier will provide a wealth of new opportunities in  We have decided to build a test bench for the R&D with
nuclear structure physics [1,2]. Fission is a very powerfukhick fission targets at the 15 MV tandem of IPN Orsay
mechanism to produce such beams, e.g., the ISOLD®here al wA deuteron beam is available. Literature on
facility has used high-energy proton induced fission forcross sections [9] shows that the threshold for fast neutron
many years [3]. Inverse kinematic fission of relativistic induced fission oR*®U is at 2 MeV. It rises from 0.5 b
projectiles has allowed the first synthesistfli [4] atthe by a factor of 3 for a tenfold energy increase.
GSI fragment separator; thermal neutron induced fission is In a first test, PARRNE-0, a 1 mm thick and 30 mm
used to study the region arouhttSn at Studsvik [5] and diameter uranium disk was irradiated for 2 min by neu-
is at the basis of projects for radioactive beam facilities atrons produced from a 20 MeV, 100 nA deuteron beam
Grenoble (ILL) and at Munich [6]. Proton induced fission stopped in a carbon covered Faraday cup 7 cm in front of
allows particularly high luminositieéL. ~ 103 b™!'s™!),  the U disk. Under these conditions the neutron flux esti-
fragment separators excel in the efficient selection of verynated with a Rem counter is abd@® n/s. Off-liney-ray
short-lived speciesL ~ 10°-10° b~'s™!), whereas the spectroscopy showed that it is easy to identify numerous
highest cross sections in the top of the isotopic distributiomadioactive species with a neutron excess of up to 10; see
are found for thermal neutrorig ~ 10'! b=!s™1). Table I. This validates the method in accordance with a

A novel concept has been proposed by Nolen [7]:somewhat similar recent test at Cyclotron Laboratory of
Fast neutrons may be used for achieving the highedflichigan State University (see [8]).
possible luminosities without dissipating too much power We now have constructed a first version of an ,UC
in the fissioning target, the traditional Achilles heel of target, PARRNE-1, containing 20 g of uranium, which is
charged-particle-induced reactions. Indeed, by breakinpeatable up to 2000 for fast effusion of the produced
up an intense deuteron beaf® = 100-300 MeV) in  activity. A graphite container housing 50 disks of UC
a dedicated (and well-cooled) converter, and irradiatingvith a diameter of 14 mm, surrounded by a heated Ta
a thick fission target by the secondary neutrons fluxfube, was kept in a vacuum vessel with 1 mm thin Al
the luminosities may, at least in principle, exceed=  window. This vessel was installed at the end of a beam
10" b~!s7! [7]. Of course, the challenge consists in theline from the tandem. The deuteron to neutron converter
research and development (R&D) for a device in which thevas a 3 mm thick Be disk placed 8 cm in front of the
produced activities are transferred to an ion source withJC, target. The neutron flux was abol@® n/s, derived
high efficiency. This will be crucial for the viability of from an activation measurement. The effective deuteron
projects like the one proposed by the Argonne laboratorgnergy after a window in the beam pipe was about
[8]. It will also be of high interest for radioactive beam 15 MeV. The target container had a 10 mm opening in
facilities under construction [1,2], which like SPIRAL the middle to which a 7.2 m long transfer line, through a
1 m concrete shielding, was connected. Thus the activity
could be collected under good background conditions for
y-spectroscopy measurements. We collected the noble
*Permanent address: Faculté des Sciences, Chouaib Doukkglases Kr and Xe on a cold Cu finger. The latter was
University, El-Jadida, Morocco. kept below 20 K by means of a cryogenerator. Table Il
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TABLE |. Production of neutron-rich species in a 1 mm
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thick U metallic disk by neutrons from a C target exposed 50000

to a 20 MeV, 100 nA deuteron beam¥, indicates the total Data fit

number of atoms produced amdthe rate per micro Coulomb 45000+ o

of deuterons and gram of uranium. 400001 - - - - - Irradiation 1 10000
Isotope Al No [10°) RO0/nCy] g 35000 TF:iIT‘Si o
84Se 3.1 min 1 6.9 T 20000 Tf=47s | 5@
$oBr 54 s 0.8 9.7 £ Ts=60s | B 5
89Ky 3.07 min 4.1 30 5 250004 a =50% 38
OKr 32.32s 1.6 25 IS - o
%Sy 1.24 min 5.7 54.9 g =% No=se10 & &
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iig'g 46 s ) 0.8 9.7 0 100 200 300 400 500

S 1.07 min 3.8 39.6 Time [s]

137Xe 3.83 min 6.6 45.2

139% @ 395 s 1.4 20.1 FIG. 1. (Color) Time distribution for release and transport of
144 g 40.7 s 2 27.8 139Xe observed at cold finger. The solid line corresponds to a
145Ca 3 min 3.7 26.4 fit (see text).

shows the collected yields f8#°1-92Kr and '3°Xe. In this
first test the target was intentionally kept at a relativelycan be obtained without a deterioration of the release

modest temperatur€l’ = 1560 °C) in order to be saved properties.

one order of magnitude, by increasing the target thickness,

This is the aim of the setup PARRNE-2,

for further experiments. The release and transport tim@resently under construction, where we will connedt'a
distributions could be studied by pulsing the deuterorcharge-state ion source followed by a small ISOL separator

beam. Figures 1 and 2 show such distributions. Thdo UC, targets.

solid line corresponds to a fit with one set of four
parameters developed for describing the behavior of
targets at ISOLDE [10].

It is interesting to note that the observed yields (neutron
luminosity L ~ 107 b~!s™! are only about a factor afo*
below those from 1 GeV protons (luminosify ~ 6 X
10'2 b~!'s™1) impinging at ISOLDE on ThC targets [11].
This clearly shows the potential of the use of fast neutrons
at a facility with an intense driver beam. One may note
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60000+

Data fit
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that substantially higher.temperg_tures, i.e., 19DMhave = Release w
been us'e.d in [11], allowing significantly shorter releases. 2 400001 Tr=05s g
By modifications of the test setup at the Orsay tandem j; Tf=20s S
(effective deuteron energy, neutron angular distribution g _ T,
; 2 Ts=40s
seen by the UC target), an order of magnitude can be 7 300004 — 500 %
gained in the luminosity. The main goal of the R&D § o= 0 =
program will be to verify if a further improvement by g No = 4.3 16 IS
= 3
©
o
10000 o
TABLE II. Yields for noble gas atoms collected on a cold
finger.
. 0 — : : 0
Isotope T2 [8] Yield [1/uC] 0 100 200 300 400 500
OKr 323 2 X 10° Time [s]
oKy 8.6 4 X 10* _ o
2Ky 1.8 1 % 10* FIG. 2. (Color) Time distribution for release and transport of
139% @ 39.7 2% 10° 22Kr observed at cold finger. The solid line corresponds to a fit
- (see text).
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