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Density-and-phase domain walls in a condensate with dynamical gauge potential
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We show how one can generate domain walls that separate high- and low-density regions with opposite
momenta in the ground state of a harmonically trapped Bose-Einstein condensate using a density-dependent
gauge potential. Within a Gross-Pitaevskii framework, we elucidate the distinct roles of vector and scalar
potentials and how they lead to synthetic electromagnetic fields that are localized at the domain wall. In
particular, the kinetic energy cost of a steep density gradient is compensated by an electrostatic field that pushes
particles away from a special value of density. We show numerically in one dimension that such a domain wall
is more prominent for repulsive contact interactions, and becomes metastable at strong electric fields through a
first-order phase transition that ends at a critical point as the field is reduced. We also provide simple variational
Ansätze that reproduce this metastability. Our findings build on recent experimental developments and may be
realized with cold atoms in a shaken optical lattice, providing insights into collective phenomena arising from
dynamical gauge fields.
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Introduction. An important challenge facing engineered
quantum systems is simulating the physics of gauge theories
[1–3]. The goal is to probe phenomena such as confinement
[4] as well as uncover new collective effects. A major advance
was to realize artificial magnetic fields for neutral atoms and
photons [5], which enabled, e.g., a realization of the Haldane
model [6] and photonic Laughlin states [7]. Recent years
have seen a coordinated effort to make such fields dynam-
ical in order to probe interacting matter and gauge fields
[8,9], as in quantum chromodynamics [10,11]. In particular,
density-dependent gauge potentials, which play a key role
in Chern-Simons physics [12], have been realized in Bose-
Einstein condensates (BECs) by shaking [13,14] and Raman
dressing [15,16]. These gauge fields do not have an indepen-
dent degree of freedom but already produce intriguing domain
walls in the experimental ground state [14], whose generation
and dynamics are not well understood. Here, we elucidate
how the emergent Lorentz forces allow one to stabilize and
engineer a wider class of such domain walls.

Domain walls generally arise as topological defects in
nonlinear media, which are of fundamental interest in mag-
netism [17,18] and astroparticle physics [19,20], and have
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applications in information processing [21] and optical com-
munication [22]. In quantum-gas experiments, domain walls
spontaneously excited in quenches provided an important test
of Kibble-Zurek universality [23,24]. They are also created
deterministically by shining light on parts of a condensate to
imprint a phase, leading to dark solitons [25], or by applying a
nonuniform magnetic field to a spinor condensate, which led
to the observation of Dirac monopoles [26] and knot solitons
[27] (see Ref. [28] for a review). A density-dependent gauge
potential, on the other hand, allows one to shape the ground-
state phase profile by coupling it to the local density [29]. This
scheme was used by Yao et al. [14] to create phase domains in
a harmonic trap, where the condensate switches between equal
and opposite (canonical) momenta of a double well. However,
the density profile itself was unaffected by the potential, i.e.,
no feedback was observed, limiting the range of accessible
physics.

We show that the experimental scenario effectively corre-
sponds to the case of a pure vector potential, for which the
Lorentz forces vanish in a static condensate. Generically, ap-
plying a density-dependent tilt A(ρ) · p to the single-particle
dispersion ε(p), as in Ref. [14], yields both electric and vector
potentials, which can be used to tailor density as well as phase
variations. In particular, we show that instead of switching
between opposite momenta, if one lets the single-particle
ground state interpolate smoothly with density, e.g., by tilting
a quadratic dispersion, then the electric potential can give
rise to domain walls where the density falls sharply as the
phase gradient reverses direction. We discuss a minimal model
where such domain walls are tunable over a wide range of ex-
perimental parameters. Crucially, they represent ground-state
topological structures where the synthetic electromagnetic
fields are concentrated and may host previously unknown
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collective modes. Furthermore, at sufficiently strong fields it
can become energetically favorable to annihilate the domain
wall through a first-order transition that ends at a critical point,
which may be used to probe topological defect generation by
false-vacuum decay relevant to inflationary cosmology [30].

Below, we first discuss the equations of motion within
a Gross-Pitaevskii formalism before presenting numerical
results and variational Ansätze for a one-dimensional (1D)
model and discussing possible experimental realizations.

Synthetic Lorentz forces. The hydrodynamic equations of
a BEC subject to a dynamical gauge potential were derived
in Ref. [29]. Here, we explain how the resulting density-
dependent electromagnetic forces shape the ground state.
Note that the hydrodynamic form is equivalent to the Gross-
Pitaevskii equation [31] and originates from the collective
nature of a zero-temperature condensate, as opposed to col-
lisional equilibration.

We consider identical bosons with quadratic dispersion and
unit mass, i.e., ε(p) = |p|2/2. A synthetic vector potential A
shifts the canonical momentum p ≡ −ih̄∇, rotating the phase
of the wave function like a true vector potential acting on
a unit charge. This shift results in the kinetic energy εkin =
|p − A|2/2, where p − A is the mechanical momentum. In
shaking experiments a gauge potential may be realized by
tilting the dispersion by A · p [14]. However, this does not
account for the |A|2 term in εkin. Stated differently, such a
tilt is equivalent to a vector potential A and a scalar potential
−|A|2/2. As we show below, these two play very separate
roles in a static condensate, with important consequences.

To keep the discussion general, we consider a BEC with
arbitrary density-dependent vector and scalar potentials A(ρ)
and B(ρ), respectively. Additionally, the particles are trapped
in an external potential V (r) and have pairwise s-wave contact
interactions of strength g, which are both tunable in cold-atom
setups [32]. At the mean-field level [31], the condensate is
governed by the Hamiltonian

H = (1/2)|p − A(ρ)|2 + B(ρ) + V (r) + (g/2)ρ. (1)

The total energy is E = 〈ψ |H |ψ〉, where ψ (r, t ) is the con-
densate wave function varying in position r and time t .
Writing ψ = √

ρeiϕ , where ϕ is the phase, we find

E =
∫

dr

[
h̄2

2

|∇ρ|2
4ρ

+ 1

2
ρ|v|2 + (B + V )ρ + g

2
ρ2

]
, (2)

where v := h̄∇ϕ − A is the velocity of the condensate, and
B(ρ) + V (r) := V (ρ, r) is the net scalar potential. In Eq. (2)
the second term gives the classical kinetic energy and the
first term describes a quantum correction, which vanishes for
h̄ → 0. The third and fourth terms represent potential and
interaction energies, respectively.

The equation of motion can be obtained by minimizing the
action S = ∫

dt〈ψ |ih̄∂t − H |ψ〉 [33] with respect to ρ and ϕ,
with the constraint

∫
drρ(r) = N , where N is the total particle

number. Using 〈ψ |i∂t |ψ〉 = − ∫
drρ∂tϕ and Eq. (2) gives the

Euler-Lagrange equations

∂tρ + ∇ · j = 0, (3a)

h̄∂tϕ + Q + |v|2/2 + � + V + gρ − μ = 0, (3b)

where we have introduced a chemical potential μ as a La-
grange multiplier for the particle-number constraint, j := ρv
is the current density, Q := −(h̄2/2)(∇2√ρ/

√
ρ ) is a quan-

tum potential, and

� := ∂ρ (ρB) − j · ∂ρA (4)

is a potential resulting from the density-dependent fields.
Equation (3a) is the continuity equation and Eq. (3b) is a
quantum Hamilton-Jacobi equation [34], which differ from
those of a standard condensate only by the presence of �.
Note that when A and B do not depend on ρ, � + V simply
gives the net external potential V (r). To interpret � generally,
we take the gradient of Eq. (3b) to find the Cauchy momentum
equation

Dv
Dt

= −∇(Q + V + gρ) + E + v × B, (5)

where D/Dt := ∂t + v · ∇ is the convective or total time
derivative for a fluid element, and

E = −∇� − ∂tA and B = −∇ × v (6)

are the synthetic electric and magnetic fields, which encap-
sulate the effects of the density-dependent potentials. Thus,
� acts as the electric potential. From Eq. (6) the magnetic
field is set by the local vorticity and can be rewritten as
B = ∇ × A − h̄∇ × ∇ϕ. The second term vanishes except
where ∇ϕ is singular, e.g., at centers of quantized vortices
[35]. Conversely, from Eqs. (4) and (6) the electric field is set
by both ρ and v.

Note that for B = 0 the Lorentz forces vanish whenever
the condensate is stationary. Thus, a nonzero scalar potential
is necessary in order to modify the stationary density profiles,
including that of any 1D ground state.

For such stationary states, v = 0 implies ∇ϕ = A/h̄, i.e.,
the phase gradient is determined by the local vector potential,
which was utilized in Ref. [14] to create phase domains. On
the other hand, Eq. (3b) gives a generalized Gross-Pitaevskii
equation (GPE) for the density,

Q[ρ] + �0[ρ] + V (r) + gρ = μ − h̄ω, (7)

where ω is the rate of phase winding, which can be different
for ground and excited states, and �0 := ∂ρ (ρB) is the elec-
trostatic potential, which does not depend on A. Hence, the
roles of the vector and scalar potentials are uncoupled: B(ρ)
changes the density variation caused by the trap, and A(ρ)
sets the phase profile.

To understand how the form of B affects the ground state
in particular, note that in Eq. (2) it adds an energy per unit
volume of ρB(ρ), favoring more weight in values of density
for which ρB(ρ) is reduced. In particular, if the energy cost
rises sharply around a special density ρc, the particles will
be pushed away from ρc in both directions along the density
axis by the electric field, which can give rise to domain walls
separating high- and low-density regions, as we illustrate in
the next section.

Model with domain wall. We focus on the case B =
−|A|2/2 which is realized by applying only a tilt A(ρ) · p,
as we explained in Sec. II. For this condition, the density and
phase domains will coincide. However, this is not essential
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FIG. 1. (a), (b) Ground-state density profiles for x > 0 of a 1D BEC with N bosons in a harmonic trap of length d with interaction strength
g in the presence of a density-dependent gauge potential given by Eq. (8) with Nl/d = 30 for (a) g̃ = 0 and (b) g̃ = 40, where g̃ := (2Nd/h̄2)g
and k0 := p0/h̄. The solid and dashed horizontal lines correspond to ρc and ρc ± 1/l , respectively. As the gauge potential is increased, a steep
slope emerges where ρ = ρc, becoming more prominent for stronger repulsive interactions. (c) Reversal of the phase gradient (dark blue) and
a synthetic, localized electrostatic field [Eq. (6)] (red) for the k0d = 3 curve in (b), where E0 := h̄2k3

0Nl/d . The vertical and horizontal lines
show where ρ = ρc and ϕ′ = 0, respectively.

and more general profiles may be created by tuning A and B
separately.

Physical considerations. The simplest way to create a
phase domain wall is by having A(ρ) switch direction de-
pending on whether the local density is above or below ρc,
A = p0 sign(ρ − ρc)x̂, where p0 is the amplitude, x̂ is a unit
vector, and sign(.) is the sign function. In the ground state ∇ϕ

follows A to minimize the kinetic energy, i.e., the canonical
momentum also changes sign where ρ crosses ρc [14]. How-
ever, this choice gives B = −p2

0/2, which is simply a constant
and does not affect the density profile.

To produce a sharp fall in density, the crossover between
±p0 needs to occur over a finite density interval l−1, as exem-
plified by

A = p0 tanh[(ρ − ρc)l]x̂. (8)

Note that l has the dimension of volume, reducing to a length
in 1D. Then, B = −(p2

0/2) tanh2[(ρ − ρc)l] is peaked at ρc

and penalizes densities in the range ρ± := ρc ± 1/l . For suf-
ficiently large p0 this effect can overcome the kinetic energy
cost of steep density gradients [Eq. (2)] and stabilize a domain
wall where ρ falls from ρ+ to ρ−. Concurrently, ∇ϕ also
changes direction across the domain wall [Eq. (8)], so the
density and phase variations are correlated. For l → ∞, A
goes back to the sign function, whereas for l = 0 the poten-
tials vanish. Thus, a nonzero and finite value of l is necessary
to see this physics.

Since A and B vary appreciably only across the domain
wall, the electromagnetic fields in Eq. (6) would also be con-
centrated there. This structure is reminiscent of flux-attached
particles that give anyons in fractional quantum Hall physics
[12,36,37]. Here also it is plausible that the domain walls will
have interesting particle-like degrees of freedom, as suggested
by first experiments [14].

The tanh form in Eq. (8) is by no means a prerequisite. In
fact, in Appendix A we construct a family of smooth curves
that approach a piecewise linear form of A(ρ) and produce
even sharper domain walls in 1D.

The density gradient at such a domain wall can be es-
timated for strong fields from a competition between the
electrostatic and kinetic energies. For this purpose, we assume
a domain wall of width w across which the density changes by

	ρ ∼ 2/l . The domain wall has a surface area A and a volume
wA. From Eq. (2) the electrostatic energy cost of having
particles in this volume is Eel ≈ (p2

0/2)ρcwA. On the other
hand, the kinetic energy cost of having a steep gradient of
magnitude s ≈ 	ρ/w is Ekin ≈ (h̄2/2)[s2/(4ρc)]wA. Hence,
the net energy cost, with p0 := h̄k0, is

Edw ≈ h̄2

2
A	ρ

(
s

4ρc
+ k2

0ρc

s

)
, (9)

which is minimized for s = 2k0ρc. Including the interaction g
gives a correction ∼O(1/k0) to s. This estimate agrees very
well with numerical simulations in 1D (see Appendix B).
Thus, whereas the density drop is set by l , the slope is set
by k0ρc for sufficiently large k0.

Numerical profiles. To reduce computational cost we ex-
plore ground states in 1D, where v = 0, which already exhibit
the salient features. Such 1D condensates have been realized
in highly elongated traps [38] where the transverse motion
is frozen out and the interaction g is renormalized [39]. We
assume that the vector potential in Eq. (8) points along the
longitudinal direction, which has a harmonic confinement of
frequency ω. We take the trap length d := √

h̄/ω as our unit
of length, and rescale the density by the particle number N ,
which gives the dimensionless parameters k̃0 := k0d , ρ̃c :=
ρcd/N , l̃ := Nl/d , and g̃ := (2Nd/h̄2)g. From Eq. (2) the
rescaled energy functional is given by

Ẽ =
∫ ∞

−∞
dx̃

[
(∂x̃ρ̃ )2

4ρ̃
+ ρ̃B̃(ρ̃) + x̃2ρ̃ + g̃

2
ρ̃2

]
, (10)

where Ẽ := 2E/(Nh̄ω), x̃ := x/d , B̃ := 2B/(h̄ω), and the
rescaled density ρ̃ := ρd/N satisfies

∫
dx̃ρ̃(x̃) = 1. We min-

imize Ẽ subject to this constraint, using an adaptive grid to
accurately resolve the domain walls.

Figure 1(a) shows the density profiles for g = 0. When the
scalar potential B is absent this is simply the Gaussian ground
state of a harmonic trap. As k0 is increased, a steep slope
develops where ρ crosses ρc, signifying the domain wall.
This becomes much more prominent if one turns on repulsive
contact interactions, g > 0 [Fig. 1(b)]. As seen from Eq. (10),
such interactions penalize density fluctuations, favoring a uni-
form profile. For k0 = 0 this effect competes with the trap and
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FIG. 2. (a) Discontinuous transition in the ground-state density
for g̃ = 40, Nl/d = 30, and k0d = 5. As ρc crosses above the tran-
sition point (horizontal line), it becomes energetically favorable to
annihilate the domain structure (red) and create a flatter profile (blue)
below ρc. (b) Phase diagram for g̃ = 10 and k0d = 2, where ρ0 is
the peak density for k0 = 0. The phase boundary (black curve) ends
at a critical point for small l where the electric field is weak. The
color tracks the potential energy difference, Epot/E0,pot − 1, where
E0,pot is the potential energy for k0 = 0, showing one approaches the
unperturbed ground state for l → 0 and l → ∞.

leads to a parabolic Thomas-Fermi profile for g̃ � 1. On the
other hand, when a domain wall is established by large k0 the
effect of g is to flatten the density on both sides of the wall,
producing a wedding-cake-like structure.

Figure 1(c) shows how the phase reverses slope and the
synthetic electric field is strongly localized at such a domain
wall, as we argued previously. From Eqs. (4) and (6) the
maximum value of the electric field scales as k3

0 l . Note that
there is no magnetic field in 1D.

Discontinuous phase transition. Creating a domain wall is
one way to save electrostatic energy by removing particles
from the range ρ ∼ ρc ± 1/l . Another way is to push the
density everywhere below ρc − 1/l [see Fig. 2(a)]. Such a
state also lowers kinetic energy as it is flatter. However, it has
high potential energy, as the cloud extends much farther from
the center of the trap. This is particularly costly for ρc 
 ρ0,
where ρ0 is the peak density without the gauge potential.
Thus, for small ρc a domain wall is energetically favorable.
However, as ρc is increased beyond ρ0 the flatter state has

to become the ground state. For sufficiently strong electric
fields the two states are always separated by an energy barrier,
at least in the Gross-Pitaevskii formalism, which results in a
discontinuous phase transition as shown in Fig. 2(b). As one
crosses the transition curve, the ground state changes dramat-
ically [Fig. 2(a)] and the domain wall becomes metastable.

The decay of such a metastable state or “false vacuum”
through quantum fluctuations plays a key role in models of
the early universe [30], and experimental efforts are underway
to probe this physics with quantum simulators [40,41]. The
metastable lifetime depends on the energy barrier, which in
our model can be tuned continuously by the gauge potential.
In fact, as the electric field is reduced by decreasing l , we
find the energy barrier shrinks to zero as the transition curve
ends at a critical point [Fig. 2(b)]. For smaller values of l
the two states are described by the same energy minimum
and are no longer distinguishable. This structure is similar to
the liquid-gas phase transition of water. At the critical point,
the ground-state observables (e.g., the central density) vary
infinitely fast with the system parameters (see Appendix C),
as in a continuous phase transition.

Note that for l → 0 or l → ∞ the scalar potential B be-
comes insignificant and the ground state approaches that of
the unperturbed system, as seen in Fig. 2(b).

Variational Ansätze. The ground states for both noninter-
acting and Thomas-Fermi limits can be reproduced by simple
variational Ansätze, as detailed in Appendixes D and E. Be-
low, we discuss the Thomas-Fermi limit for a piecewise linear
potential A(ρ) that varies from p0 to −p0 between ρc ± 1/l .

The Ansatz for the domain-wall solution is motivated by
the numerical profiles in Figs. 1(b) and 3(a), which show
a domain wall around ρc superimposed on a Thomas-Fermi
background. We approximate the domain wall as a line seg-
ment of finite slope s, centered at some position xd , which
joins a Thomas-Fermi profile via constant-density plateaux at
ρc ± 1/l . This gives the following Ansatz (for x � 0) with s
and xd as the variational parameters:

ρdw(x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g−1(μ − x2) if x � xl

ρc + 1/l if xl � x � x−
ρc + s(xd − x) if x− � x � x+
ρc − 1/l if x+ � x � xr

g−1(μ − x2) if xr � x � √
μ

. (11)

Here, the boundaries xl , xr , and x± are determined from con-
tinuity and μ is set by normalization.

On the other hand, the Ansatz for the flattened solution
[Figs. 2(a) and 3(b)] has a central plateau at ρc − 1/l which
joins with a Thomas-Fermi wing at xb = √

μ − g(ρc − 1/l ).
This profile is entirely determined by normalization.

Figure 3 shows that the Ansätze agree well with exact
numerics at strong fields and predict a transition at ρc ≈ ρ0

for l̃ � 1, as in Fig. 2(b). However, at weak fields they do not
reproduce the critical point, but give a transition at ρc � 1/l .
This is an artifact of requiring a density jump of 2/l in the
domain-wall Ansatz and a peak density of ρc − 1/l � 0 in
the flat Ansatz, which cease to hold for small l . Instead, the
numerical profiles penetrate the field region and approach the
zero-field solution, producing a critical point at ρc ≈ ρ0 and
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FIG. 3. (a), (b) Comparison of the ground-state profiles from exact numerics (solid curve) and the Thomas-Fermi variational Ansätze (see
text; dashed curve) for a piecewise linear gauge potential [Eq. (A1) with η = 16] for g̃ = 40 with (a) ρcd/N = 0.2, k0d = 3, Nl/d = 30,
and (b) ρcd/N = 0.28, Nl/d = 20. Horizontal lines show ρ = ρc, ρc ± 1/l in (a) and ρ = ρc − 1/l in (b). (c) Phase boundaries from the
variational Ansätze for g̃ = 40, which approach ρc = 1/l (dashed curve) for small l and large k0.

l ∼ 1/ρ0. In Appendix D we discuss more general Ansätze to
capture this weak-field behavior.

Experimental realization. The key physical ingredient in
our setup is that the minimum of the single-particle dispersion
varies from −k0 to +k0 as the local density changes over a
finite interval where the domain wall would appear. For this
purpose we assumed a quadratic dispersion and a tilt that
is a nonlinear function of density, saturating at ±k0 [e.g.,
as in Eq. (8)]. Such a nonlinear dependence may be hard
to realize in experiments. However, one can circumvent the
problem by turning on a lattice in the x direction, where the
quasimomentum has a natural cutoff given by the Brillouin
zone boundary, which could act as k0. Then one requires only
a linear tilt A = A0(ρ − ρc)x̂, where A0 controls the strength
of the synthetic electrostatic field. This linear tilt was already
implemented in Ref. [14] by shaking an optical lattice and
oscillating the interaction strength g(t ) synchronously with
the micromotion; depending on whether the occupation of a
quasimomentum is in or out of phase with g, it gains or loses
an average energy in the stroboscopic Hamiltonian. As g can
be varied over a wide range through a Feshbach resonance
[42], it is plausible that one can realize a sharp domain wall in
density as well as probe its metastability and hysteresis across
the discontinuous phase transition.

Summary and outlook. We have shown that a matter-
dependent gauge potential can give rise to domain walls in
a BEC with localized electromagnetic fields. In particular, we
point out the necessity of a scalar potential for a sharp density
gradient. Such a domain wall may be realized with cold atoms
in a shaken lattice where one can probe its metastability across
a tunable first-order phase transition.

Our findings motivate several open questions for future
studies. First, how does one understand the dynamics of
the domain walls? Already for the usual GPE, solitonic
excitations exhibit rich dynamics [28]. What new degrees
of freedom are introduced by the localized electromagnetic
fields? How do velocity-dependent electric forces [Eq. (4)]
and the associated lack of immediate Galilean invariance
[43] manifest themselves in the dynamics? Does the domain
wall behave like a particle with a negative charge-to-mass
ratio, as suggested experimentally [14]? Further, what ad-
ditional structures emerge in higher dimensions? This is
particularly appealing because, starting in two dimensions,

a BEC can have vortices in the ground state [44–46] and
density-dependent magnetic forces [Eq. (5)], which add more
nonlinearity to the problem and may alter the stability of the
domain walls [47]. Answering these fundamental questions
will be crucial to develop our understanding of collective
structures arising from coupled matter and gauge fields.
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Appendix A: Other forms of the gauge potential. Our pre-
dictions for the domain wall do not rely on the tanh variation
of the gauge potential [Eq. (8)]. To illustrate this point we
consider a different set of vector potentials A = h̄k0 fη[(ρ −
ρc)l]x̂, where

fη(u) := 1

2η
ln

[
cosh(η(1 + u))

cosh(η(1 − u))

]
. (A1)

These functions are motivated by requiring their slope
to reproduce the unit box function for η → ∞, f ′

η(u) =
(1/2)[ tanh(η(u + 1)) − tanh(η(u − 1))]. Thus, for η � 1,
fη(u) is a smooth ramp, whereas for η � 1 it assumes a
piecewise linear form, as shown in Fig. 4(a). Figure 4(b)
shows that as η is increased the domain wall becomes more
clearly confined between ρ = ρc ± 1/l while its slope ρ ′(x)
is unaltered. From Eq. (7) the curvature ρ ′′(x) at an edge of
the domain wall is limited by k2

0 lρ2
c .

Appendix B: Density gradient at the domain wall. In Fig. 5
we plot the numerically obtained density gradient at the do-
main wall for the profiles in Figs. 1(a) and 1(b). As the gauge
potential increases, the slope converges to our estimate from
the domain wall energy.

Appendix C: Variation across the phase transition. Figure 6
shows how ground-state observables change across the phase
transition in Fig. 2(b). As the smoothness parameter l is de-
creased, a discontinuous jump turns into an infinite slope at
the critical point, and subsequently becomes a crossover.

Appendix D: Thomas-Fermi Ansatz. In this Appendix, we
provide exact expressions for the normalization condition and
the energy functional corresponding to the Ansätze discussed
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FIG. 4. (a) One-parameter family of curves that yield a piecewise linear variation of the gauge potential for η → ∞. (b) Resulting ground-
state density profiles for g̃ = 40, Nl/d = 30, k0d = 3, and ρcd/N = 0.2 (solid horizontal line), corresponding to the red curve in Fig. 1(b), with
the same color convention as in (a). As A(ρ ) becomes sharper the domain wall gets more pronounced between ρc ± 1/l (dashed horizontal
lines).

in the main text. We use the rescaled variables (but denoted
without the tilde accents).

We discuss the domain wall Ansatz in Eq. (11) first. The
energy, a function of xd , s, and μ, can be decomposed as
follows:

E = Ekin + Efield + Etrap + Eint

Ekin = 2
∫ ∞

0
dx

(∂xρ)2

4ρ
; Efield = 2

∫ ∞

0
dx ρB(ρ);

Etrap = 2
∫ ∞

0
dx x2ρ; Eint = 2

∫ ∞

0
dx

g

2
ρ2, (D1)

which are the kinetic, scalar potential, trap, and interaction
energy respectively. The kinetic energy can be ignored for the
Thomas-Fermi profiles and is zero for the plateaux; thus, this
contribution only comes from the domain wall.

The scalar potential comes from the piecewise linear vector
potential and is given by

B(ρ) = −k2
0

2

{
1 if |ρ − ρc| � 1/l

l2(ρ − ρc)2 if |ρ − ρc| < 1/l
(D2)

FIG. 5. Slope at the domain wall location xc, where ρ(xc ) := ρc,
for Nl/d = 30, corresponding to Figs. 1(a) (blue) and 1(b) (orange).
In both cases ρ ′(xc ) approaches −2k0ρc at large k0, in accordance
with our estimate from Eq. (9).

We find it convenient to choose a shifted form of the scalar
potential that does not affect our results—we choose B(ρ) �→
B(ρ) + k2

0
2 . This is nonzero only in the domain wall region.

The energies are given by

Ekin = 1

2
s ln

(
ρc + 1/l

ρc − 1/l

)
, (D3)

Efield = k2
0

4ρc

3ls
, (D4)

Etrap = 2

15g

( − 3x5
l + 5x3

l μ
) + 2

3
(ρc + 1/l )

(
x3
− − x3

l

)

+4

3

ρc + sxd (3l2sxdρc − 2)

(sl )3
+ 2

3
(ρc − 1/l )

(
x3

r − x3
+
)

+ 2

15g

(
3x5

r − 5x3
r μ + 2μ

5
2
)
, (D5)

Eint = 1

15g

(
3x5

l − 10x2
l μ + 15μ2

) + g(ρc + 1/l )2(x− − xl )

+ g
6l2ρ2

c + 2

3l3s
+ g(ρc − 1/l )2(xr − x+)

+ 1

15g

( − 3x5
r + 10x3

r μ − 15xrμ
2 + 8μ

5
2
)
. (D6)

The normalization condition can be written as an expression
for the domain wall position xd as the following three equiva-
lent expressions:

xd = l

3g

[
x3

r − (
x2

r − 2g
) 3

2 − (
x2

r + g(ρc − 1/l )
) 3

2 + 3g

4

]

= l

3g

[
x3

r − x3
l − (

x2
r + g(ρc − 1/l )

) 3
2 + 3g

4

]

= l

3g

[(
x2

l + 2g
) 3

2 − x3
l − (

x2
l + g(ρc + 1/l )

) 3
2 + 3g

4

]
.

(D7)

We note that the full solution is valid only for a subset of the
parameter regime discussed in the phase diagram in Fig. 2(c).
In particular, this solution is valid when ρcl > 1 and ρc <

μ/g − 1/l . As ρc is increased (at fixed l), ρc grows quicker
than μ in a way that ρc becomes greater than μ/g − 1/l .
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FIG. 6. Variation of the (a) peak density and (b) potential energy, measured relative to the unperturbed ground state, across the phase
diagram for g̃ = 10 and k0d = 2 shown in Fig. 2(b). The observables exhibit an infinite slope at the critical point lc (orange), a jump across a
first-order transition for l > lc (blue), and a smooth crossover for l < lc (green).

Then, the central Thomas-Fermi domain gets removed and
the energy functional expressions in Eqs. (D5) and (D6) have
to be changed—the correct expressions can be obtained by
setting the first term and xl equal to 0. Next, as ρc is further
increased (at the same fixed l), there comes a point when
xd < 1/(sl ) and the plateau at ρc + 1/l vanishes; however,
we find that for our investigated parameter regimes, the phase
transition always occurs before this point.

The flattened Ansatz, defined below for x � 0, has a central
plateau at ρc − 1/l until it meets the Thomas-Fermi profile at
±xb.

ρflat(x) :=

⎧⎪⎨
⎪⎩

ρc − 1/l if 0 � x � xb

g−1(μ − x2) if xb � x � √
μ

0 if x � √
μ

(D8)

Here, xb = √
μ − g(ρc − 1/l ) and is fixed by normalization—

it is the positive real root of

x3
b − (

x2
b + g(ρc − 1/l )

) 3
2 + 3g/4 = 0. (D9)

The energy can be decomposed into the trap and interaction
energy, since the scalar potential is absent below ρc − 1/l and
the kinetic energy is zero in the plateau and negligible for the
Thomas-Fermi solution. In this case, we find

E = Etrap + Eint, (D10)

Etrap = 2

3
(ρc − 1/l )x3

b + 2

15g

(
3x5

b − 5x3
bμ + 2μ

5
2
)
, (D11)

Eint = g(ρc − 1/l )2xb

+ 1

15g

( − 3x5
b + 10x3

bμ − 15xbμ
2 + 8μ

5
2
)
, (D12)

where xb is given by the solution to Eq. (D9). Again, as
ρc is increased (at fixed l), ρc becomes greater than μ/g +
1/l . Then, the central plateau at ρc − 1/l vanishes and the
solution is the Thomas-Fermi inverted parabola given by
ρ(x) = (1/g)[(3g/4)2/3 − x2] and has an energy given by E =
3(3g/4)2/3/5.

For ρcl < 1, the profile has a central Thomas-Fermi dome,
a plateau at ρc + 1/l , and a domain wall that goes to zero
density. The central domain may be absent if ρc > μ/g − 1/l .

The corresponding energy expressions can be obtained in a
similar fashion as above, and we refrain from providing the
exact expressions in this Appendix in favor of conciseness.

We finally point out that the fixed domain wall height at 2/l
contributes to not finding a critical point for small l , where the
domain wall solution and the flattened solution are the same.
To allow for a critical point, one may adapt the domain wall
Ansatz by keeping a variable domain wall height h, which
leads to an additional variational parameter. The Ansatz can
be given by

ρdw(x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g−1(μ − x2) if 0 � x � xl or xr � x � √
μ

ρc + h/2 if xl � x � x−
ρc + s(xd − x) if x− � x � x+
ρc − h/2 if x+ � x � xr

0 if x � √
μ

,

(D13)

where xl = √
μ − g(ρc + h/2) and xr = √

μ − g(ρc − h/2).
We leave investigating the phase diagram with such an Ansatz
for future work.

Appendix E: Noninteracting Ansatz. In this Appendix, we
discuss the noninteracting Ansätze that approximate the nu-
merically obtained ground states. As in the Thomas-Fermi
limit, we expect the piecewise linear vector potential opens
a domain wall at ρc on top of the noninteracting zero-field
ground state. From our numerical solutions, we find that there
is no plateau at ρc ± 1/l (unlike the Thomas-Fermi limit) and
the domain wall of slope s can be directly joined with the rest
of the solution.

The normalized ground state is given by the Gaussian,
ρ(x) = (1/

√
π )e−x2

. The GPE given by

−∂x2√ρ√
ρ

+ x2 = μ (E1)

has the general solution√
ρ(x) = c1Dν1 (

√
2x) + c2 Dν2 (i

√
2x), (E2)

where ν1 = 1
2 (μ − 1), ν2 = − 1

2 (μ + 1), Dν (x) is the
parabolic cylinder function with parameter ν, and c1

and c2 are real coefficients, which can be determined by
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normalization and the properties of a physical wave function.
We thus propose that the Ansatz in the region x � 0 is given
by

ρdw(x)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ρc + 1/l )
( Dν (

√
2x)+Dν (−√

2x)
Dν (

√
2x− )+Dν (−√

2x− )

)2
if x � x−

ρc + s(xd − x) if x− � x � x+

(ρc − 1/l )
( Dν (

√
2x)

Dν (
√

2x+ )

)2
if x � x+

,

(E3)

where x± = xd ± 1/(sl ) denote the extent of the domain wall.
This Ansatz has three variational parameters as in the Thomas-
Fermi limit—xd , s, and ν, where ν is related to the chemical
potential.

Using the form of the parabolic cylinder function for x near
zero and ∞, we can approximate the Ansatz by the following
simpler expression in terms of the product of Gaussians and

polynomials:

ρdw(x) ≈

⎧⎪⎨
⎪⎩

(ρc + 1/l )e(1+2ν)(x2
−−x2 ) if x � x−

ρc + s(xd − x) if x− � x � x+
(ρc − 1/l )ex2

+−x2( x
x+

)2ν
if x � x+

.

(E4)

We can now compute the energy functional exactly. For the
domain wall solution, the energy can be decomposed as
follows:

E = Ekin + Efield + Etrap, Ekin = 2
∫ ∞

0
dx

(∂xρ)2

4ρ
;

Efield = 2
∫ ∞

0
dx ρB(ρ); Etrap = 2

∫ ∞

0
dx x2ρ. (E5)

The kinetic energy now contributes in the entire region, as
does the trap energy, while the scalar potential only con-
tributes in the domain wall region. We use the shifted scalar
potential given by B(ρ) + k2

0/2, where B(ρ) is stated in
Eq. (D2). The energy functional is found to be given by

E = Ekin + Efield + Etrap, (E6)

Ekin = 1

2
(ρc + 1/l )(1 + 2ν)

( √
π√

1 + 2ν
e(1+2ν)x2

−erf[
√

1 + 2ν x−] − 2x−

)
+ 1

2
s ln

(
ρc + 1/l

ρc − 1/l

)

+(ρc − 1/l )x−2ν
+ ex2

+

[
ν2


(
ν − 1

2
; x2

+

)
− 2ν


(
ν + 1

2
; x2

+

)
+ 


(
ν + 3

2
; x2

+

)]
, (E7)

Efield = k2
0

4ρc

3ls
, (E8)

Etrap = (ρc + 1/l )

2(1 + 2ν)

[ √
π√

1 + 2ν
e(1+2ν)x2

−erf[
√

1 + 2ν x−] − 2x−

]
+ 4

3

[ρc + sxd (3l2sxdρc + 2)]

(sl )3

+(ρc − 1/l )ex2
+ (x+)−2ν


(
ν + 3

2
; x2

+

)
, (E9)

where erf z = 2√
π

∫ z
0 dt e−t2

is the error function and


(a; z) = ∫ ∞
z t a−1e−t dt is the incomplete Gamma function.

The normalization condition is given by

(ρc + 1/l )e(1+2ν)x2
−

√
π√

1 + 2ν
erf[

√
1 + 2ν x−]

+4ρc

sl
+ (ρc − 1/l )ex2

+ (x+)−2ν


(
ν + 1

2
; x2

+

)
= 1. (E10)

The Ansatz must be minimized with respect to xd , s, and ν

subject to this normalization condition.
The flattened solution Ansatz is a plateau at ρc − 1/l up to

±xb and which connects to the zero-field parabolic cylinder
solution beyond that. For x � 0, we can write this as

ρflat(x) :=

⎧⎪⎪⎨
⎪⎪⎩

ρc − 1/l if 0 � x � xb

(ρc − 1/l ) Dν (
√

2x)
Dν (

√
2xb)

if xb � x � √
μ

0 if x � √
μ

. (E11)

We can approximate this as before, and write the Ansatz
as

ρflat(x) :=
⎧⎨
⎩

ρc − 1/l if 0 � x � xb

(ρc − 1/l )ex2
b−x2( x

xb

)2ν
if x � xb.

(E12)

Here, the energy functional has a component from the kinetic
energy and a trap energy. These are given by

E = Ekin + Etrap,

Ekin = (ρc − 1/l )x−2ν
b ex2

b

[
ν2


(
ν − 1

2
; x2

b

)

− 2ν


(
ν + 1

2
; x2

b

)
+ 


(
ν + 3

2
; x2

b

)]
,

Etrap = 2

3
(ρc − 1/l )x3

b + (ρc − 1/l )ex2
b (xb)−2ν


(
ν + 3

2
; x2

b

)
.

(E13)
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FIG. 7. Ground-state density profiles (blue) for x > 0 of a 1D BEC with N bosons in a harmonic trap of length d with no interactions
in the presence of a piecewise linear density-dependent gauge potential [given by Eq. (A1) with η = 16] with Nl/d = 30 for (a) the domain
wall solution at ρcd/N = 0.2 and k0d = 5 and (b) the flattened solution at ρcd/N = 0.4. The black dashed curves are the ground-state density
profiles obtained from the variational Ansätze in Eqs. (E4) and (E12). The gray dashed lines in (a) are at ρ̃c and ρ̃c ± 1/l , while the dashed line
in (b) is at ρ̃c − 1/l .

This energy has two variational parameters xb and ν. This
must be minimized subject to the normalization condition
given by

xb + 1

2
ex2

b (xb)−2ν


(
ν + 1

2
, x2

b

)
= 1

2(ρc − 1/l )
. (E14)

We compare the numerically obtained solutions with the vari-
ational solutions in Fig. 7 for the noninteracting limit and
find great agreement—even better than the agreement in the
Thomas-Fermi limit. We expect the phenomenology and the
phase diagram in the noninteracting limit to be qualitatively
similar to that of the Thomas-Fermi limit.
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