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Quantum-enhanced distributed phase sensing with a truncated SU(1,1) interferometer
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In recent years, distributed quantum sensing has gained interest for a range of applications requiring networks
of sensors, from global-scale clock synchronization to high energy physics. In particular, a network of entangled
sensors can improve not only the sensitivity beyond the shot noise limit, but also enable a Heisenberg scaling
with the number of sensors. Here, using bright entangled twin beams, we theoretically and experimentally
demonstrate the detection of a linear combination of two distributed phases beyond the shot noise limit with
a truncated SU(1,1) interferometer. Specifically, we show a quantum noise reduction of 1.7 £ 0.3 dB below
what is possible with the corresponding classical configuration. Additionally, we theoretically extend the use of
a truncated SU(1,1) interferometer to a multi-phase-distributed sensing scheme that leverages entanglement as a
resource to achieve a quantum improvement in the scaling with the number of sensors in the network. Our results

pave the way for developing quantum-enhanced sensor networks that can achieve an entanglement-enhanced

sensitivity.
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I. INTRODUCTION

Quantum metrology allows us to estimate an unknown
parameter with enhanced sensitivity over classical approaches
by exploiting quantum resources [1-7]. Quantum sensors
that use entanglement or other quantum correlations pro-
vide a promising platform that has been used in a variety
of sensing scenarios [8—10], from optomechanical sensors
[11-13] to proposed dark matter detectors [14,15]. More re-
cent developments in quantum metrology have been directed
towards multi-parameter estimation techniques for various ap-
plications such as imaging, microscopy, and sensor networks
[16-21]. In the case of a network of sensors, the goal of dis-
tributed quantum sensing is to measure the linear combination
of spatially distributed parameters beyond the shot noise limit
(SNL) [22-27]. Distributed quantum sensing has already been
shown to provide advantages for applications such as local
beam tracking and global-scale clock synchronization [28,29].
Moreover, recent proposals point to further sensitivity im-
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provements from entanglement-enhanced arrays of distributed
optical sensors for phase sensing, which could enable the
detection of ultraweak signals in high energy physics, such as
enhanced gravitational wave detection and detection of dark
matter [13-15,30-32].

One approach for quantum-enhanced phase sensing is the
use of a nonlinear interferometer, such as an SU(1,1) interfer-
ometer, where nonlinear amplifiers replace the beamsplitters
in a standard SU(2) interferometer [33—35]. In these devices,
entanglement is present inside the interferometer between
the two optical paths and the nature of the quantum corre-
lations requires the measurement of a linear combination of
observables, such as the sum of the phase quadratures or the
difference of the amplitude quadratures, in order to obtain the
quantum noise reduction necessary to surpass the SNL. The
SU(1,1) interferometer offers the potential to outperform its
classical counterparts by a factor proportional to the nonlinear
gain of the nonlinear amplifiers. Additionally, when seeded,
the SU(1,1) interferometer can take advantage of the increased
sensitivity due to the large number of photons that are used to
perform the estimation [35,36].

A modified version of the SU(1,1) interferometer, the
truncated SU(1,1) interferometer (tSU(1,1) interferometer),
replaces the second nonlinear amplifier with two local bal-
anced homodyne detectors, while obtaining the same quantum
advantage of a full SU(1,1) interferometer [9,35]. Given that
optical interference of the beams after sensing the parameter
of interest is not needed with the tSU(1,1), it offers a natural
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FIG. 1. Experimental setup to estimate the linear combination of two distributed phases in a tSU(1,1) interferometer. Bright two-mode
squeezed states are generated by seeding a four-wave mixing process in a °Rb vapor cell with a weak coherent state. Each of the modes of the
two-mode squeezed state experiences a phase shift, ¢; and ¢,, respectively. The two modes are then measured with two homodyne detectors to
perform a joint measurement to estimate ¢ = B¢ + Br¢,. BD: beam dump; M: mirror; EOM: electro-optic modulator; LO: local oscillator;

BS: beamsplitter; PZT: piezoactuator; SA: spectrum analyzer.

way to implement a distributed quantum sensor to measure
two distributed phases, one in each of the two entangled
arms of the interferometer. Despite these advantages such as
entanglement between two paths, the large number of pho-
tons, and local measurements, the tSU(1,1) has previously
only been used to measure a single-phase along one of its
arms [8,12,35], and its application to distributed quantum
sensing has remained largely unexplored. Here, we introduce
the use of the tSU(1,1) interferometer for distributed quantum
phase sensing, demonstrating its ability to measure two dis-
tributed phases simultaneously. Additionally, the presence of
entanglement in this system has the potential to improve the
scaling of the distributed sensor when extending beyond two
phases.

In this paper, we theoretically and experimentally study
the use of two-mode squeezed states in a distributed quantum
sensor to measure the linear combination of two phases with
a quantum-enhanced phase sensitivity. For the experimental
two-phase distributed sensing, we achieve a quantum noise
reduction of 1.7+ 0.3 dB beyond the SNL when using a
distributed two-mode squeezed light source in a tSU(1,1) in-
terferometer configuration. This allows us to experimentally
demonstrate that signals hidden in the noise in the classical
sensing approach become observable when measured with
the tSU(1,1) interferometer. We additionally extend the the-
ory to study entanglement-enhanced distributed phase sensing
for M distributed phases. To this end, we consider a beam-
splitter network to extend from a two-mode entangled state
to a multimode entangled state and show that an additional
entanglement-enhanced phase sensitivity can be achieved over
that of an optimal distributed sensor network probed with
separable quantum states. We theoretically demonstrate the
expected Heisenberg sensitivity scaling with the number of
sensors and show that the tSU(1,1) interferometer has the
potential to surpass practical classical approaches with bright
two-mode squeezed light in a distributed sensor network
that enables an entanglement-enhanced sensitivity beyond the
SNL.

II. DISTRIBUTED QUANTUM SENSING WITH
A TRUNCATED SU(1,1) INTERFEROMETER

Our initial goal is to demonstrate a distributed quantum
sensing configuration that can measure a linear combination
of two distributed phases beyond the SNL with a two-mode
squeezed state, as shown in the experimental schematic in
Fig. 1. We start by considering two unknown phases, ¢; and
¢, that are distributed in different locations, with the goal of
estimating the linear combination ¢ = B¢ + B¢, with the
normalization condition |B;| + | 82| = 1 [37,38].

In general, the phase sensitivity of a measurement, A¢, can
be evaluated from the signal-to-noise ratio (SNR), which is
given by

(3 (X ))*
AZ—X+A ®, (1

SNR =
where X represents an observable and A%2X, describes the
variance of the measurement, ic., A2X, = ()?er) —(X,)?
[8,9,12,35]. The minimum detectable phase shift is then de-
termined when the SNR = 1. We thus define the measurement
sensitivity as [8,39]

. NX,
(X))

Here, we analyze the measurement sensitivity of the dis-
tributed sensing configuration in a tSU(1,1) interferometer
in the limit of bright quantum states of light, which can en-
able the extension of the sensing configuration to practical
applications.

In our configuration, bright two-mode squeezed light is
generated as part of the tSU(1,1) interferometer. A four-wave
mixing (FWM) process in a double-lambda scheme in a 5Rb
vapor (see inset in Fig. 1) [40,41] is used to generate the
required two-mode squeezed states. To generate bright beams,
the probe beam for the FWM is weakly seeded with a coherent
state with an average photon number |«|?. This then leads to
the generation of an amplified probe with a photon number of
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FIG. 2. Comparison of (a) distributed quantum sensing in a tSU(1, 1) and (b) classical sensing approaches. To obtain a fair comparison
between the sensitivities for the two schemes, the total optical power that interacts with the phase elements is held constant, i.e., (i) = (7;) and
{ficonj) = (M2). (c) Measurement sensitivities multiplied by the total number of photons probing the phase elements, (fisample) = (fipr) + (ficonj)»
for the two sensing approaches as a function of gain G when 8; = B, = 1/2. The solid traces correspond to the lossless case, with n = 1, while
the dashed traces correspond to the case with some loss, specifically with n = 0.8. (d) Measurement sensitivities multiplied by (7mpie) for
the same two cases shown in (c) as a function of the classical gain factor g when G = 5 for the lossless case (n = 1, solid lines) and the case
with losses (n = 0.8, dashed lines). A quantum-enhanced sensitivity can be achieved from g = 0.618 to g = 1.618 in the lossless case, which
translates to a linear phase superposition of ¢ = 0.644¢; + 0.356¢, and ¢ = 0.409¢; + 0.591¢,, respectively. HD: homodyne detection.

Gla)* 4+ (G — 1) and a corresponding conjugate beam with a
photon number of (G — 1)|a|*> + (G — 1), where the (G — 1)
term is due to spontaneous FWM while the terms proportional
to |o|? result from the stimulated process. In the case of
loe]? > 1 the stimulated process dominates and the mean pho-
ton numbers can be approximated as G|a|? and (G — 1)|a/|?,
respectively. In these equations, G is the gain of the nonlinear
interaction and is related to the squeezing parameter according
to r = cosh™'(v/G).

After the FWM process, phase shifts ¢; and ¢, are im-
parted on the probe and conjugate beams, respectively. The
probe and conjugate are then sent to balanced homodyne
detectors with local oscillator (LO) phases 6; and 6,, respec-
tively, to measure the corresponding generalized quadrature
operators, X, (¢1, 61) and Yz(d)g, 6»), which are defined in Ap-
pendix A. To simplify the notation, we focus on the LO phases
that provide the optimal measurement sensitivity, specifi-
cally 6; = 6, = /2, that correspond to measurements of the
phase quadratures, and drop the 6 dependence throughout the
manuscript. To obtain an estimate of the linear combination of
the unknown phases (¢), we define the operator X, such that
X, (@) = X1(¢1) + gXa(¢pr), with g representing a classical
gain factor to scale the homodyne detection of X (¢,) [42,43].
When losses are accounted for, one obtains (see Appendix A)

(X () = 20./n[VGsin(py) + g/G — 1 sin(¢)]
~ 20NV G + gv/G — 1¢2)
=20 /N(vG+ gvG — D)g, 3)

where 1 € [0, 1] is the transmission through the system, such
that n = 1 indicates no loss. In deriving this result we made
the assumption that the losses on the probe and conjugate are
the same and that ¢; and ¢, are small, such that sin(¢;) ~
¢;. Additionally, the weighting factors, i and fB,, of the
two terms in the linear combination of phases, ¢ = B¢ +
Bas, are defined as B = VG/(v/G + g/G — 1) and B, =
gv/G —1/(v/G + g/G —1). Putting all of this together, the
measurement sensitivity for our sensing approach with a
tSU(1,1) interferometer to sense the linear combination of two

phases is theoretically calculated to be

_ (& + (1 —2n+423G) — 4gn/G(G — 1)
4la2n(vG + gvG — 1) '

We also calculate the quantum Cramér-Rao bound (QCRB)
for our configuration to be A2¢>QCRB =1 -2n4+2nG —
21/G(G — 1)/ 2lel*n(v/G + /G — 1)), as outlined in
Appendix A [42,43]. As can be seen, the measurement sen-
sitivity given by Eq. (4) saturates the QCRB for g = 1, which
means that the measurement is optimal [42—44].

Next, we compare the sensitivity of the distributed sensing
approach in which phase shifts are simultaneously present
in both arms of the tSU(1,1) interferometer with the corre-
sponding classical sensing approach, as shown in Figs. 2(a)
and 2(b), respectively. For these cases, the total phase shift
for each phase element was kept constant, which we believe
closely resembles what would happen in an actual experiment
where one is trying to measure a signal, such as a gravitational
wave, that is spatially distributed [13,30-32]. To have a fair
comparison between the classical and quantum configura-
tions, we take the resources in the estimation to be the number
of photons probing the phase elements. In the quantum
scheme, (i) = Gla|* and (ficonj) = (G — 1)|at|* interact with
¢1 and ¢,, respectively. Similarly, in the classical scheme, (i)
and (7,) interact with ¢; and ¢,, respectively. These photon
numbers are kept at a constant value for all cases, i.e., (i) =
(A1) and (Aiconj) = (fi2). Under these conditions, the measure-
ment sensitivity for the classical approach can be shown to be
given by A%¢a, = (1 + &)/@lal’n(v/G + g/G — ).

Figure 2(c) shows the theoretically calculated measure-
ment sensitivity multiplied by the total number of photons
probing the phase elements, (fisampie) = (fipr) + (fconj), as
a function of gain (G) with n =1 (solid lines) and n =
0.8 (dashed lines) when By = B, = 1/2. There is a clear
quantum-enhanced sensitivity for the distributed two-phase
sensing with a tSU(1,1) interferometer over the corresponding
classical approach. In addition, we calculate the normalized
measurement sensitivity as a function of the classical gain fac-
tor gwhen G = 5, as shown in Fig. 2(d). A quantum-enhanced
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023231-3



SEONGIJIN HONG et al.

PHYSICAL REVIEW RESEARCH 7, 023231 (2025)

sensitivity over that of the corresponding classical benchmark
can be obtained in the range of 0.618 < g < 1.618, which
translates to an adjustment of ¢ from ¢ = 0.644¢; + 0.356¢,
to ¢ = 0.409¢; + 0.591¢,. Note that the weightings between
phases ¢, and ¢, are adjustable while still maintaining a
certain amount of quantum noise reduction in the sensor even
without optimizing g. Further details on the sensitivity calcu-
lations can be found in Appendix A.

III. EXPERIMENTAL RESULTS

The tSU(1,1) interferometer used for our distributed
sensing experiments uses a two-mode squeezed light state
generated with a FWM process in a 3>Rb vapor cell (see
Appendix D for details) to probe two independent phase
shifts, as shown in Fig. 1. As noted previously, this config-
uration can be used for distributed sensing as there is no need
to optically interfere the two modes after interfacing with the
phase elements. For our experiment, a strong (360 mW) pump
beam and a weak (5 uW) probe seed beam (redshifted by
3.044 GHz from the frequency of the pump) are mixed at
an angle of 0.3° in a 12.7 mm long 35Rb vapor cell, which
is heated to 100 °C. The pump and probe have beam diame-
ters of 920 um and 560 um, respectively. This configuration
leads to a gain of G & 5, such that seeding the probe beam
leads to an optical power for the probe and conjugate beams of
26 uW (an average of 10 x 10'3 photons) and 17 uW (an aver-
age of 6.8 x 10" photons), respectively. These power levels
are kept constant for all experiments and used to probe the
phase elements. Note that the generated bright beams of light
have significantly larger optical power than squeezed vacuum
states or Fock states and thus they can be applied to practi-
cal sensing applications requiring few tens of microwatts or
higher powers [4].

To ensure an optimal spatial mode matching for the ho-
modyne measurements, we generate the required LOs with
a second independent FWM process (not shown in Fig. 1)
as described in Appendix D. For this, a coherent state with
44.5 uW is also injected into the same vapor cell and mixed
with its own pump beam in order to generate an LO pair
with matching spatial mode properties to those of the probe
and conjugate beams [45]. The LOs also experience gain in
the cell, leading to optical powers approximately an order of
magnitude larger than their respective probe and conjugate
beams due to the larger seed power. For homodyne detection,
the probe and conjugate are interfered with their respective
LOs, after which they are independently detected with a dif-
ference measurement using a pair of balanced photodiodes.
The external phase references are set by the LOs, such that
the probe and conjugate are locked with a 7 /2 phase offset
with respect to these references to measure phase squeezing
(for details on the LO lock see Appendix D). The observable
X, (¢) is then measured using a hybrid junction to obtain the
sum of the signals from the dual balanced homodyne detectors
and read out with a spectrum analyzer (SA).

Before detection, phase shifts at a frequency of 300 kHz are
imparted on the two-mode squeezed state using two electro-
optic modulators (EOMs), as shown in Fig. 1. The signal
resulting from the 300 kHz modulation appears as a peak
on the SA. The SNL for all signals is measured with the

tSU(, 1) with 30 mV

(4%X,) (dBm)

tSU(1, 1) with 10 mV

260 280 300 320 340
Frequency (kHz)

FIG. 3. Measured spectrum analyzer traces. The red and green
lines indicate the quantum sensing approach in a tSU(1,1) when
driving the EOMs with signal amplitudes of 30 mV and 10 mV at
300 kHz, respectively. The black line represents the corresponding
SNL. A quantum noise reduction of 1.7 £ 0.3 dB relative to the SNL
is achieved. Settings for the spectrum analyzer: resolution bandwidth
(RBW) = 3 kHz; video bandwidth (VBW) = 100 Hz; sweep time =
1 s. All traces are averaged 15 times.

same setup when only the order of magnitude larger LOs are
incident on the balanced detectors and the squeezed light is
blocked.

In the experiment, we set the phases along each arm of
the interferometer to the same value ¢ = ¢y = ¢, and B,
and B, are set to 1/2 by adjusting the classical gain g. We
apply both phase shifts simultaneously along each optical
path, as shown in Fig. 2(a). The measured signals are shown
in Fig. 3, with the red (large signal) and green (small signal)
traces corresponding to the tSU(1, 1) approach with two-mode
squeezed states and the black trace corresponding to the SNL.
As can be seen, for the quantum approach a 1.7 + 0.3 dB
quantum enhancement with respect to the corresponding SNL
was achieved. As a result, small signals are only observable
when using the quantum approach, as shown in Fig. 3 by the
green trace, which illustrates the usefulness of the tSU(1,1)
for distributed sensing.

IV. DISTRIBUTED MULTIPHASE SENSING
WITH A tSU(1,1) INTERFEROMETER

We now extend the theory developed for the case of two
distributed phases with a tSU(1,1) interferometer to that of
a generalized configuration for sensing M distributed phases
with M entangled probe beams in a tSU(1,1) interferometer.
In Ref. [24], it has been theoretically and experimentally
proposed that Heisenberg scaling for both the average photon
number and the number of sensors, each probed by a separate
mode, can be achieved in distributed quantum sensing using a
single-mode squeezed state and a beamsplitter array. Here we
show that the two-mode squeezed states that were the basis
for our experiments can also be used to generate a multimode
entangled state by utilizing a balanced beamsplitter network
(BSN) consisting of beamsplitter arrays, similar to those in
Refs. [22,24]. The multimode entangled state can then be
used to measure a linear combination of M phases. Here, we
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FIG. 4. Schemes for distributed sensing of a linear superposition of M unknown phases with (a) a classical sensing scheme, (b) a separable
scheme composed of multiple independent single-mode squeezed states, and (c) a multimode entangled scheme based on a two-mode squeezed
state in a tSU(1,1) interferometer. The average photon number n, which is incident on each phase element, is kept fixed for all the schemes.
(d) Theoretical prediction for the measurement sensitivity, in the case of no loss, as a function of the number of unknown phases (M) for n =
100. Blue, orange, and green solid lines indicate the measurement sensitivity for the classical, separable, and entangled schemes, respectively.
As can be seen, the entangled scheme has a better sensitivity than the other schemes for the estimation of the average of the distributed phases.
S : single-mode squeezing operator; S,: two-mode squeezing operator; BSN: beamsplitter network.

consider the average of the phases, i.e., ¢ = Z[JW: 1 @;/M, with
M being the number of unknown phases.

We compare the measurement sensitivities for the measure-
ment of the average of M unknown phases for the three cases
shown in Figs. 4(a) through 4(c): a classical scheme, a separa-
ble scheme composed of multiple independent single-mode
squeezed states [24], and the multimode entangled scheme
with the two-mode squeezed states in a tSU(1,1) interferome-
ter, respectively. For the theoretical analysis, we consider the
optimal separable configuration, as shown in [24], to better
illustrate the quantum advantage from entanglement of the
proposed scheme. Finally, we constrain the average photon
number, 7, incident on each phase element to be constant
for all three schemes. This is done by appropriately setting
the input seed powers for the three cases (i.e., |y|?, ||,
and |a]?).

More specifically, the classical scheme consists of a coher-
ent state as the input to a BSN, which is used to distribute
it to M phases elements that impart phase shifts ¢; to ¢y
prior to a joint measurement. The separable scheme consists
of M single-mode squeezed states that independently probe
M distributed phases prior to a joint measurement. Finally,
for the M mode entangled case, BSNs are used to distribute
a two-mode squeezed state to probe the M distributed phase
elements. In order to balance the power equally among the M
phase elements, we consider the case in which both probe and
conjugate beams of the tSU(1,1) are weakly seeded with a co-
herent state with mean photon number |« |?, such that the total
number of photons prior to the BSNs is equal to Ny = 2(G —
1) + 4G|a|? + 2|a)*( — 1 +24/G(G — 1)), where G is the
nonlinear gain. The BSNs split the two-mode squeezed state
into 2d = M modes, such that the average photon number
probing each phase element is equal to n = Ny /M prior to
detection with a joint measurement.

For all three schemes, we calculate the measurement sen-
sitivity when all phase elements introduce the same phase
shift, ¢y = ¢ =--- = ¢y = ¢, as a function of both n
and M for the lossless case with n = 1. Given this, we
find that the optimal sensitivities for each scheme take the

form
Ay = L : ®)
4Mn
Ay = __ (©6)
AMn(n + 1)
A eny = Lt 7
2Mn(Mn + 2)

Full details of the calculation for the multimode entangled
scheme for distributed sensing in a tSU(1,1) interferometer
can be found in Appendix C, along with the required calcula-
tions for determining the measurement sensitivity for the other
two schemes.

Notably, we find that, while the separable case with quan-
tum resources achieves a Heisenberg scaling with the number
of photons, the entangled scheme with a tSU(1,1) interfer-
ometer achieves Heisenberg scaling with both the average
photon number n and the number of modes M. Figure 4(d)
shows the measurement sensitivities for all three cases as a
function of the number of unknown phases M for the lossless
case with an average photon number n = 100. Both schemes
with quantum resources show a significant improvement in
their measurement sensitivity in comparison to the classical
scheme. Additionally, when more than two phases are sensed
in the distributed sensor network, there is a clear improvement
in sensitivity when using the entangled scheme in a tSU(1,1)
interferometer over that of using the separable scheme, thus
demonstrating that an additional entanglement-enhanced sen-
sitivity is possible.

We emphasize that our results provide useful guidelines for
practical application toward long-distance sensor networks.
One promising direction is exploiting state-of-the-art long-
distance entanglement distribution by applying techniques
such as high-efficiency coupling of two-mode squeezed states
into optical fibers and using low-loss antiresonant hollow
core fibers [46,47]. Additionally, exploring the use of quan-
tum memory for long-distance distribution, particularly with
bright, resonant two-mode squeezed states in alkali atoms,
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could be another interesting direction for future research [48].
By employing these techniques to multimode entangled states
across multiple modes, it would be possible to measure a
linear combination of multiple parameters across different
modes in a long-distance sensor network. For long-distance
distribution of multimode entanglement, multiplexing the LOs
with the entangled state or locally generating them is required
to enable proper detection at the network nodes [49,50]. Ad-
ditionally, optimizing measurement sensitivity with respect
to the squeezing level—while taking into account experi-
mentally feasible limits—is crucial for near-term applications
[51]. An extension of this work, beyond the scope of this
paper, would be to study the quantum enhancement in dis-
tributed phase sensing using different entanglement resource
states beyond those shown here. These entangled resources
could include states such as dual-rail cluster states, which can
be generated with an optical spatial mode comb [52].

V. CONCLUSION

We theoretically and experimentally investigate the mea-
surement of a linear combination of distributed phases in
a sensor network using bright quantum states of light. For
the distributed sensing of two phases, both theory and ex-
periment show that distributed phase sensing in a nonlinear
interferometer provides a measurement sensitivity improve-
ment over the corresponding classical sensing approach. In
the experimental demonstration, the distributed sensing ap-
proach in a tSU(1,1) interferometer provides up to 1.7 dB of
quantum noise reduction below the SNL. Further, we theo-
retically show that the distributed phase sensing scheme in
a tSU(1,1) interferometer can be generalized to estimate the
linear superposition of multiple phases with multimode en-
tangled states. This generalized M mode entangled distributed
phase sensor can be built by starting from the bright two-mode
squeezed source used in our experiments. This approach pro-
vides an improved sensitivity scaling over that of the optimal
separable distributed sensor using independent single-mode
squeezed states of light. Our results pave the way for devel-
oping quantum-enhanced sensor networks that can provide
a quantum advantage that also leverages entanglement for a
range of sensing applications from global-scale clock syn-
chronization to high energy physics, including applications
that benefit from bright probing fields to obtain sensitivities
that can go beyond the classical state of the art.
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APPENDIX A: PHASE SENSITIVITY CALCULATIONS

Here we derive the phase sensitivity for the distributed
two-phase sensing approach considered for the experimental
implementation. We consider the use of a tSU(1,1) interfer-
ometer as a distributed sensor, as shown schematically in
Fig. 5(a). For the generation of the two-mode squeezed state,
we consider two modes, ay and l;o, as the input for the para-
metric amplifier implemented with a FWM process. To model
the phase insensitive configuration used in the experiment,
mode & is taken to be a coherent state used as a weak probe
seed, with (&5&0) = |a|?, while mode by is taken to be a
vacuum state, i.e., (58130) = 0, as the conjugate is unseeded. In
the ideal case, the FWM process in the 33Rb vapor cell leads
to a nonlinear gain, G = cosh?(r), where r is the squeezing
parameter, that transforms the input modes into output modes
a, and l3g for the probe and conjugate beams, respectively,
according to [54]

VG 0 0 G—1\ (a0 a,

0 VG JG-1 0 al a;

G JG-1 G 0 bo | 7| bs

G—1 0 v J\bi) \bi
(A1)

After the FWM process, modes &, and b, interact with the
phase elements to introduce phase shifts ¢; and ¢,, re-
spectively, to produce output modes &, = ¢ %', and b, =
e~*2h,. Additionally, optical losses in the paths of the beams
need to be considered, which leads to the transformations
ap = Jma, +/T—néoand by = /nb, + /T — ndy, where
we have considered the case of equal loss for both probe
and conjugate beams. In this case, we model the loss with a
beamsplitter transformation with transmission n (where n = 1
is the lossless case) for each of the beams with vacuum modes
& and dy coupling in through the unused input port of the
beamsplitters in the probe and conjugate paths, respectively.
Given that the FWM process is seeded with |a|> > 1, the op-
tical power of the probe and conjugate can be approximated as
(@has) = n(=1+ G+ Gla) ~ nGla|* and (b}bs) = n(—
14+ G+ (G- 1)a?) = n(G — 1)|a|?, respectively.

The modes after probing the phase elements, d; and
b r, are measured with two independent balanced homodyne
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FIG. 5. Schematics for the models used to derive the phase sensitivity when using (a) a two-mode squeezed state in a tSU(1,1)
interferometer and (b) the corresponding classical configuration. S,: two-mode squeezing operator; BS: beamsplitter.

detectors that have LOs with phases 6, and 0,, respectively,
that serve as external phase references. We define general-

ized quadrature operators X;(¢, 0;) = e~ &; +eay and

X (¢a, 65) = e"'ezl;} + b, for the probe and conjugate,
respectively. These generalized quadratures are combined
to obtain the joint quadrature operator X, (¢) = X,(¢1, 0, =
m/2) +g)22(¢2, 0 = m/2), where g is a classical gain fac-
tor that provides a relative scaling between the probe and
conjugate homodyne detectors and the external phase refer-
ences given by the LOs are set to 6, = 8, = 7 /2 to perform
measurements of the phase quadratures. In this case, the ex-
pectation value and variance for X, are given by

(X () = 20 /NG sin(¢1) + gv/G — 1 sin(¢,)]
~ 2a. /(N Goi + gvG — 1)

= 2a/N(vG + gvG — 1o, (A2)
(A’X)) = (X2(9) — (Xi(9)?
= (& + D1 — 21 + 2nG)
—4gn/G(G — 1)cos(¢; + ¢2)
~ (& + 1)(1 =21 +2nG) — 4gny/G(G — 1), (A3)

where the linear combination of the two measured phases
is defined as ¢ = B¢ + Bohr, with B = VG/(VG +
g/G—1) and B, = g/G — 1/(+/G + g/G — 1), such that
the normalization condition |8;| 4+ |B2] = 1 is satisfied. We
also assume that the phase shifts ¢; and ¢, are small enough
such that the small-angle approximations sin(¢;) ~ ¢; and
cos(¢; + ¢») = 1 can be used. Using Eqgs. (A2) and (A3), one
can obtain the measurement sensitivity for distributed sensing
in a tSU(1,1) interferometer as follows:

(A2Xy)

Az = —FX———

U = oK) P
_ (&> 4+ (1 — 20+ 21G) — 4gn/G(G — 1)
4a2n(VG + g/G — 1)? '

(A4)

We can compare this result to the fundamental limit
given by the QCRB for a two-mode squeezed state in a
tSU(1,1) interferometer. Given that the two-mode squeezed
state is a Gaussian quantum state, it is completely charac-
terized by displacement vector d and covariance matrix o
[55]. The elements of the displacement vector d are defined
according to d; = (A;), while the ones for the covariance ma-
trix are defined as o; ; = (A,-A; +A;A,~) - Z(A,-)(A';), where

A= (ar, l;f, &;, B})T. Note that a5 and Bf are the modes after
the phase elements and losses in Fig. 5(a). In the limit of bright
beams, the quantum Fisher information (QFI) takes the form
[42,55]

Fj=205d"07",d. (AS)

Using the QFI, one can show that the QCRB for phase esti-
mation is given by

Agocrs = (B ﬂ»i?*(m>

B2
1 =2n+20G -2nyG(G - 1) (A6)
I CENCE N

From here we can see that A’¢ocrp = A%¢isy for g = 1. Note
that this is the case given that equal losses are considered for
the probe and conjugate beams. In this case, the measurement
sensitivity of the tSU(1,1) interferometer saturates the QCRB.

Next, we calculate the measurement sensitivity for the cor-
responding classical configuration using two coherent states,
a. and 136, to probe the phases elements ¢; and ¢, respec-
tively, as shown in Fig. 5(b). We consider coherent states
with the same optical power, (a'a.) = Gla|?> and (b!h.) =
(G — 1)|a|?, as the probe and conjugate in the tSU(1,1) inter-
ferometer in the limit of |«|? > 1. Experimentally, an input
coherent state |y) is split into two with a beamsplitter to
generate beams with the required optical powers. After the
phase elements, optical losses are considered with beamsplit-
ter transformations, which leads to (&If&cf) = nGla|* and
(I;Z fl;Cf> = (G — 1)|a|?, respectively. Following the same
derivation as the one used to obtain A2¢sy, one can show
that the expectation value for the joint quadrature operator for
the classical distributed sensing case is given by (Xc,(¢)) =
Za\/ﬁ(\/é—f- gvG — )¢, where ¢ = B1¢; + Brp, with the
same definition for 8, and B, as used for the tSU(1,1) in-
terferometer. Similarly, the variance can be calculated to be
(AZXCJr) = (g2 + 1), which leads to a measurement sensitiv-
ity for the classical configuration of the form

£ +1

A2¢c a — .
"7 4aPn(VG + g/ 17

(A7)

Equation (A7) serves as the classical limit to compare with for
distributed sensing with the tSU(1,1) interferometer in order
to demonstrate a quantum-enhanced sensitivity. Finally, using
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FIG. 6. Schematics for the models considered for the separable sensing configurations when using (a) two tSU(1,1) interferometers and
(b) the corresponding classical configuration. The separable sensing configurations that we consider are composed of two interferometers with
each one measuring a single phase. S,: two-mode squeezing operator; BS: beamsplitter.

Egs. (A4) and (A7), we calculate the range for which the coef-
ficients B; and B, will still lead to a quantum enhancement. A
quantum-enhanced sensitivity can be achieved for 8, ranging
from 0.409 (B, = 0.591) to 0.644 (B, = 0.356) in the lossless

case.

APPENDIX B: SEPARABLE CONFIGURATION BASED
ON tSU(1,1) INTERFEROMETERS

We now consider the scenario involving the detection of
spatially distributed signals, such as gravitational wave detec-
tion or ultralight dark matter searches. In these cases, phase
shifts are extremely weak and are uniform over extended spa-
tial regions, which makes it worthwhile to consider whether it
is more effective to use a single sensing device, like the one
we implemented for our experiments on two-phase distributed
sensing, or to employ a separable quantum sensing config-
uration based on the same tSU(1,1) interferometer. For the
separable sensing configuration with quantum resources, we
consider the case of two tSU(1,1) interferometers with each
one measuring a single phase, either ¢ or ¢,, as shown in
Fig. 6(a). To calculate the phase sensitivity in this case, we can
take the results of Appendix A and consider the cases when
either one phase or the other is set to zero. For example, for the
tSU(1,1) interferometer for which only mode a, experiences
a phase shift of ¢;, the two output modes would be given by
a,=e"a, and b, = b,. In this case the generalized mea-
sured quadrature takes the form Xl(d)l) = (—i&} +iag) +
g(—il;} +ib r), which depends only on ¢; through &j} and ay.
In the same way, the second tSU(1,1) will lead to a generalized
measured quadrature of the form Xi(fﬁz) = (—i&;j + iaf) +
g(—ilgj. + i?f}), which depends only on ¢, through E}T and E’f
and where we have assumed that the phases of the LOs are set
to r /2. For this configuration the number of photons probing
the phase elements is kept the same as for the distributed
case, ie., (@lag) = (Apr) and (BB} = (ficonj) as shown in
Fig. 2.

To obtain a measure of the linear combination of the
phases, ¢, we define a joint quadrature operator of the form
X{®(¢) = X1(¢1) + X2(¢>). Through the use of Egs. (A2)

and (A3) we can then show that the expectation value and
variance of X" (¢) take the form

(X3P () = 20 /T[VG sin(¢1) + gv/G — 1 sin(¢)]
~ 20 /1(VGo1 + gVG — 162)

= 2a/N(v/G + g/G — 1)p, (B1)

(A2X3P(g)) = 2(& + 1)(1 — 21 +21G)
— 4gny/G(G — 1)[cos(¢) + cos(¢h)]

~ 2(g + D(1 — 2+ 21G) — 8gn/G(G — 1),
(B2)

where ¢ = B¢ + B2¢» and By and B, are kept the same
as those used in the distributed sensing configurations. With
Egs. (B1) and (B2), one can show that the measurement
sensitivity for the separable sensing configuration with two
tSU(1,1) interferometers is given by

AP =20 sy

_ (¢ 4+ (1 — 20+ 21G) — 4gn/G(G — 1)
20aPn(vG + g/G — 1) '

(B3)

Next, we consider the phase sensitivity for the equivalent
classical separable sensing configuration shown in Fig. 6(b).
For this, we take coherent states with the same optical power
as the probe and conjugate beams used for the two tSU(1,1) in-
terferometers, that is, (afa.) = (@fa.) = Gla|? and (blb.) =
(b1h.) = (G — 1)|a|® with |a|? 3> 1. After passing through
the phase shifters and considering the losses, one can calculate
the measurement sensitivity following the same derivation to
show that is given by

& +1)
20aPn(v/G + gJ/G — 1)
There are two things to note for these results. The first is that

the separable configuration offers the same degree of quan-
tum enhancement with respect to its corresponding classical

Ay =207 pa =

cla

(B4)
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configuration as the distributed one. The second is that the
distributed sensing configuration offers a 3 dB SNR improve-
ment over the separable one. It is important to note, however,
that this improvement is a classical one that results from the
use of additional reference beams for the considered separable
sensing configurations.

APPENDIX C: PHASE SENSITIVITY FOR DISTRIBUTED
MULTIPHASE SENSING

We generalize the theory for sensing M distributed phases.
Here, we only consider the estimation of the average of the
phases, i.e., ¢ = ijwzl ¢;/M, with an assumption that all the
phase shifts are small and the same.

1. Classical sensing scheme

For the classical scheme, we consider the case in which an
input coherent state with an optical power of |y|? is divided
with a BSN into M modes of the same optical power that are
used to probe M unknown phase elements. After the BSN,
the average photon number, n, incident on each of the phase
elements is given by n = |y |?/M. It has been shown that when
n photons are used to sense a phase shift, the sensitivity is
given by A2¢ i = 1/(4n) when there is a LO with an optical
power much larger than » that acts as an external phase refer-
ence [56]. Using error propagation, one can readily show that
the measurement sensitivity for ¢ = Zﬁi L ®;/M is given by
Az¢cla = 1/(4Mn).

2. Separable scheme composed of multiple single-mode
squeezed states

An optimal quantum-enhanced separable scheme is ob-
tained when M identical and independent single-mode
squeezed states are used to probe the M phase elements. We
consider the case in which each single-mode squeezed state
has an average photon number of n, such that the resources
used to sense each phase are kept constant. In this case,
the optimized sensitivity for the separable scheme has been
calculated in [24] and is given by

1
AMn(n+1)
As can be seen, in this case the sensitivity shows a Heisenberg

scaling in the number of photons 7, but not with the number
of modes M.

A2¢sep = (ChH

3. Multimode entangled scheme in a tSU(1,1) interferometer

To generalize the tSU(1,1) used to experimentally sense the
average of two phases, we consider a configuration in which
the two entangled output modes of a parametric amplifier
are split into M entangled modes with a BSN, as shown in
Fig. 7. Here, two input modes, dp and 50, in vacuum states,

ie., (&8&0) = <z§;§1§0> = 0, are displaced to become a; and by,

respectively, with (aa,) = (b(h;) = |a|?. These displaced
modes then serve as the seeds for a parametric amplifier (two-
mode squeezer). Note that, as opposed to the experimental
implementation in the two-phase case, for this generalized

scheme we consider seeding both input modes and assume all

a;
|0) - - a $1 m
L ==
10) - - gsn 2 m_’
dy | 4, | 4 | g : =
D(@) ba o
b ARAL a’ B
0 1 2 d+1 g2
o S [ |
: o : : -
BSN|d2q-1
o[
2d
0)--

FIG. 7. Generalization to distributed multiphase sensing with a
combination of a tSU(1,1) interferometer and a beamsplitter network
(BSN). S,: two-mode squeezing operator.

the involved fields have the same phase. The two output modes
of the parametric amplifier, a, and l;z, follow the same non-
linear gain transformations as the one given in Eq. (A1), such
that the total number of photons is given by Ny = (&;&2) +
(b1by) = =24 2G + 4Ga? + 20%(— 1 +2/G(G — 1)). Af-
ter the parametric amplifier, each mode is split into d = M/2
modes with a BSN. Each mode is then sent to a single phase
element and experiences a phase shift ¢;, with the resulting
modes labeled as a;. For each mode, one can measure the
generalized quadrature operator X;(¢;,0) = e”@&; +ea;.
We only consider the case in which @ is set to 7 /2. Then,
the total joint quadrature operator is defined as X, y(¢) =
21}/1:1 X i(¢;). The expectation value and variance of this
generalized distributed sensor network in the small-angle ap-
proximation can be shown to be given by

R 1 l
R (@)) ~ Wzﬁa(ﬁ +VG—1D ¢,

= 2V2VMa (VG + G = 1)¢, (C2)
(A2X, ($)) ~ M(—1+2G — 2,/G(G — 1)). (C3)

J=1

Equations (C2) and (C3) can then be used to obtain the mea-
surement sensitivity for the multiphase sensing scheme based
on the multimode entangled state obtained with a tSU(1,1)
interferometer and a BSN, such that

—142G-2/G(G—=1)
8laP(WG+ G =12

Note that Eq. (C4) does not explicitly depend on the number
of modes M. To better compare with the other schemes for
multiphase estimation, we use the constraint that the aver-
age number of photons hitting each phase element is n, i.e.,
Nt/ M = (&;& ;) = n. To optimize the sensitivity for a fixed
photon number incident on each phase shifter, we follow the
procedure in [24] based on Lagrangian multipliers with this
constraint. We can construct the Lagrange function as

Alpeny = (C4)

L, G, 1) = Apent + M (Niot/M) — n]. (C5)
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FIG. 8. Experimental setup for the implementation of the distributed two-phase sensing configuration with a tSU(1,1) interferometer. LO:
local oscillator; EOM: electro-optic modulator; PBS: polarizing beamsplitter; QWP: quarter waveplate; BS: beamsplitter.

By substituting the solution of Eq. (C5) into Eq. (C4), the
optimal measurement sensitivity becomes

1

Aoy = 7.
2Mn(Mn + 2)

(Co)
As can be seen, for this scheme in which entanglement is
distributed to all phase elements, Heisenberg scaling for both
the number of photons n and the number of modes M is
achieved.

APPENDIX D: EXPERIMENTAL DETAILS

We construct the tSU(1,1) interferometer using a FWM
process in a double-lambda configuration in a 83Rb vapor cell,
as shown in Fig. 8 [12]. The FWM process is a coherent pro-
cess in which two photons from a strong pump are absorbed
to generate probe and conjugate photons. The frequency of
the probe is redshifted by 3.044 GHz with respect to the
pump frequency by double passing an acousto-optic modula-
tor (AOM) set to impart a frequency shift of 1.522 GHz. The
pump and probe beams are overlapped at an angle of 0.34°
in a 8Rb vapor cell with 1/¢*> beam diameters of 920 um
and 560 pm, respectively. In our configuration, a pump with
360 mW of optical power leads to a FWM with a gain of
G =~ 5. A spatially separated FWM process in the same vapor
cell is used to generate LOs that have the same spatial modes
as the probe and conjugate beams for use in the dual balanced
homodyne detection. Note that the LOs generated by the
FWM are not coherent states. However, to first order, the noise
from the LOs does not affect the homodyne detection if the

system is properly balanced and has sufficient common mode
rejection. Therefore, the two entangled LOs do not affect the
measurement of the SNL [45].

For the dual balanced homodyne detection, the probe and
conjugate are interfered with their corresponding LOs using
a 50:50 beamsplitter and are then measured by a pair of
balanced photodetectors (PDs). The PD signals for the probe
and conjugate are each sent to an independent variable elec-
tronic attenuator to implement the classical gain/attenuation g.
Note that we moderately adjusted g to make §; = B, = 1/2
in the experiment. In order to set the LO phases such that
0, = 0, = /2, a bias tee is used to divide the electric signal
from each of the PDs into a low frequency (dc) and a high
frequency (rf) component with a cutoff frequency of 20 kHz,
with the dc component used to lock the difference signal at the
zero crossing with a piezodriven mirror. The rf signals, which
contain the squeezing and entanglement information, are sent
to a hybrid junction to obtain the joint quadrature operators.
The hybrid junction outputs both the sum and difference sig-
nals of the probe and conjugate homodyne detectors, with the
phase sum signal used here.

In order to introduce phase modulations that serve as the
signals, two EOMs are driven at a frequency of 300 kHz
with independently controlled voltages to implement the dif-
ferent experimental configurations. For the data shown by
the red traces in Fig. 3, the EOMs were driven with rf
drivers with an applied peak-to-peak voltage of 30 mV,
while, for the data shown by the green traces, the peak-
to-peak voltage was reduced to 10 mV to impart a smaller
signal.
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