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Quantum-inspired information entropy in multifield turbulence
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An information entropy for turbulence systems with multiple field quantities is formulated, as a new paradigm
to explore the nonlinear dynamics and pattern formations. Combining quantum state descriptions in quantum
mechanics into the turbulence field analysis, the von Neumann entropy (vNE) and the entanglement entropy
(EE) are derived from a density matrix for the turbulence state in terms of the multifield singular value
decomposition (MFSVD). Applying the information-theoretic entropy analyses to spatio-temporal dynamics
in turbulent plasmas with phase-transition–like behavior, we discover a new nontrivial transition threshold
regarding the vNE, which significantly deviates from the transition threshold of the field energy considered
in the conventional approaches. These findings provide us with physically more diverse classifications of the
turbulence state from the new perspective of “information”, in addition to the energetics of turbulent vortices. It
is also revealed that the EE for nonlinear interactions in turbulence extracts the information regarding the strength
of nonlinear mode couplings and the direction of net energy transfer. A plausible application of the EE to the
turbulence measurements is demonstrated, as well as the associated reconstruction technique for fluctuation
fields.
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I. INTRODUCTION

“Information” from a probabilistic point of view can
provide us with new physical insights to extract essential
properties in complicated dynamics of fields and particles.
In these decades, information theory has been extensively
combined into physical analyses in, e.g., quantum mechanics
[1,2], the quantum gravity theory of black holes [3–5], the
nonequilibrium thermodynamics [6,7], and the statistical me-
chanics of critical phenomena in many-body systems [8–12].
Especially, Matsueda introduced a von Neumann entropy in
a classical Ising model, and discussed its scaling law around
the transition and the relationship to the entanglement entropy
[12]. Moreover, Pizzi and Yao formulated bipartite mutual in-
formation (MI) in classical systems by analyzing information
propagation in elementary cellular automata. They demon-
strated that MI is not merely a difference of entropies but a
physical measure of correlations and dynamical characteris-
tics of the system [13].

Not just in quantum mechanics, information-theoretic
entropy analyses are also utilized for the studies of tur-
bulent fluids and plasmas. One of the most standard and
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well-established paradigms of studying turbulence dynam-
ics is based on the “energetics” of vortices with various
scales, where the power spectrum of the turbulence energy
in the wave number space is examined. Some statistically
universal properties have been revealed in the formation of
the power-law spectrum known as the Kolmogorov’s law in
homogeneous turbulence (e.g., Ref. [14]). Nevertheless, the
energy cascade processes associated with significant nonlin-
ear interactions among turbulent vortices in more general
turbulence with multiple field quantities and background
inhomogeneity have not fully been clarified due to their
complexity and high-dimensional nature in the third-order
correlation of fluctuations.

Beyond these conventional studies by turbulence energet-
ics, there have been several recent attempts to understand
turbulence in terms of entropy. For example, Falkovich et al.
introduced a relative entropy for homogeneous steady tur-
bulence in shell-averaged wave number space, based on
multimode correlations with the Gaussian statistics [15].
Tanogami and Araki explored the nature of information
flow in turbulent energy cascade processes, where the time
derivative of the mutual information for the joint probability
density function of the turbulence intensity at neighbor-
ing shell-averaged wave numbers is formulated [16]. Also,
the von Neumann entropy for the time series data ob-
served in laboratory plasma turbulence has been investigated
[17]. It is noted that the previous works examined the
information entropy concerning the integrated turbulence
intensity and the temporal evolution. Thus, the inhomoge-
neous and/or anisotropic nature of spatial patterns of the
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FIG. 1. The schematic diagram showing how the density matrix and the associated information entropies for multifield turbulence are
constructed.

turbulence is ignored. Extensions towards the simultaneous
treatment of multiple components in turbulent fields are also
yet achieved.

In this work, we propose a novel information-theoretic
entropy analysis for more general turbulent fields, as a
new paradigm to explore the world of turbulence. The key
idea is to combine quantum state arguments employing
the unitary basis expansion in quantum mechanics into the
turbulence field analysis. To this end, we construct a den-
sity matrix, which originally represented a quantum state,
with a unitary basis reflecting spatio-temporal structures of
multiple turbulent fields and coherent flow patterns. The
formulation is based on our previous work of constructing
“multifield” singular value decomposition (MFSVD), which
is suitable for decomposing the multicomponent inhomoge-
neous and/or anisotropic fields [18,19]. The density matrix of
turbulence enables us to derive straightforwardly the von Neu-
mann entropy (vNE) and the entanglement entropy (EE) to
quantify the coupling of subsystems, in the formal analogies
of quantum mechanics and quantum information theory. Note
that the EE defined here does not mean the true quantum
entanglement such as Bell state, but works as a useful measure
of the cross correlations in nonlinearly coupled turbulence
and flows associated with the density matrix description.
As will be shown later, these entropy analyses discovered
a new nontrivial classification and/or description of the
phase transition and nonlinear correlations in multicomponent
turbulence. The key concept of this work, i.e., the integra-
tion of quantum information and turbulence dynamics, is
summarized in Fig. 1.

As a representative model of a multicomponent and/or
multifield turbulence system with phase-transition–like be-
havior, we consider the Hasegawa-Wakatani equations which
will be explained in Sec. III [20,21]. The nonlinear advection
in the model can produce the transition between incoherent
vortices and coherent sheared-flow patterns, so-called zonal

flows (ZF). The Hasegawa-Wakatani plasma turbulence is,
thus, a good measure to examine our new formulations on
vNE and EE of turbulence.

II. INFORMATION ENTROPIES OF TURBULENCE

A. Multifield singular value decomposition

How to construct the density matrix and associated vNE
and EE for multifield turbulence is given as follows. Here,
we consider two-dimensional turbulence fields (the extension
to the higher dimensional case is straightforward). Let
fp(x, y, t ) (p = 1, . . . , M) be the p-th field component,
e.g., p = 1 for the particle density field, p = 2 for
the velocity field, p = 3 for the temperature field, etc.
After discretizing on the spatial grids, the p-th field
at time t is rearranged to a one-dimensional vector
f p(t ) = ( fp(x1, y1, t ),· · ·, fp(xNx , y1, t ),· · ·, fp(x1, yNy , t ),· · ·,
fp(xNx , yNy , t ))T, where Nx and Ny are the grid numbers in the x
and y direction, respectively. Then, the time series of vectors
for p = 1, . . . , M are combined into a (NxNy) × (Nt M )
matrix F ; F = (f1(t1), · · · , fM (t1), · · · , f1(tNt ), · · · , fM (tNt )),
where Nt is the number of discretized time points. A
schematic illustration for the construction of the matrix F
is shown in Fig. 1 in Ref. [18]. Note that the matrix F
simultaneously contains the spatio-temporal data for the
multiple turbulence fields of interest. By applying SVD,
the matrix F is decomposed by an N × N diagonal matrix
of singular values � = diag(s1, . . . , sN ), an (NxNy) × N
unitary matrix U , and a (Nt M ) × N unitary matrix V , i.e.,
F = U�V †, where N = min(NxNy, MNt ) is the number of
SVD modes. The mode indices are sorted in descending
order of the singular values si. Inversely converting from
the matrix form to the continuous field representation, the
original p-th field quantity fp(x, y, t ) is decomposed by means
of the orthonormal spatial basis ψi and the coefficient of the
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FIG. 2. The spatio-temporal evolution of the vorticity ζ in the numerical simulation of the Hasegawa-Wakatani equation. Depending on
the physical parameters, turbulence dynamics bifurcates into (a) zonal-flow-dominated case (κ, α) = (1, 1) or (b) turbulence-dominated case
(κ, α) = (2, 1). The snapshots of the linear growing phase (left), the saturated phase (center), and the quasisteady phase (right) are also shown.

temporal evolution h(p)
i :

fp(x, y, t ) =
N∑

i=1

sih
(p)
i (t )ψi(x, y), (1)

where h(p)
i depends on the field index p. We emphasize that

si and ψi are common to the fields of interest fp(x, y, t ),
and thus ψi reflects the multifield correlation, preserving the
orthonormality of the spatial structures∫

dxψiψ j = δi j . (2)

It is noted that each field fp(x, y, t ) is reconstructed using
the common spatial basis function ψi(x, y). In the multi-
variate empirical orthogonal function (MEOF) method [22],
which employs singular value decomposition for meteorologi-
cal analysis, the time evolution coefficients are identical for all
fields by definition, while the spatial structures differ for each
field. In contrast, MFSVD is designed to decompose spatially
correlated nonlinear quantities, which are often integrated
over space. To achieve this, we adopt a formulation distinct
from that used in meteorology. Specifically, a single set of
spatial basis functions ψi(x, y) is shared across multiple fields
of interest, where the label of each field is denoted by (p)
in the time evolution coefficients h(p)

i (t ). For further details
of the MFSVD, including convergence properties, refer to
Refs. [18,23].

B. Density matrix and information entropies

From the MFSVD, one can construct a density matrix
of turbulent systems. Since the orthonormal spatial structure
ψi(x, y), which results from the unitary matrix U , can be
regarded as a basis in the Hilbert space of physical field quan-
tities in (NxNy) dimension. Hereafter, we denote this basis

using bra-ket notation such as |ψi〉 = ψi(x, y). Then, we can
define a mixed state for a subsystem X ⊂ � = {1, 2, . . . , N}
in the whole SVD mode space � as follows:

ρX :=
∑
i∈X

ηi|ψi〉〈ψi|, (3)

ηi := (
sih

(p)
i

)2

/∑
i∈X

(
sih

(p)
i

)2
, (4)

where
∑

i∈X ηi = 1. Once we obtained the density matrix ρX ,
the von Neumann entropy (vNE) SX

vN is derived in a similar
manner to quantum systems

SX
vN := −Tr(ρX ln ρX ) = −

∑
i∈X

ηi ln ηi. (5)

The typical spectrum of the singular value si is shown in
Fig. 3(a) (explained in detail later). Since h(p)

i ∼ O(1), the
vNE is approximately regarded as the Shannon entropy re-
flecting the broadness of the SVD mode spectrum si under the
appropriate normalization.

The vNE is for a mixed state in the subsystem of multifield
turbulence. On the other hand, we can define a compound state
in two subsystems A, B ⊂ � as a tensor product form:

|ψAB〉 :=
∑
i∈A

∑
j∈B

σi j |ψi〉 ⊗ |ψ j〉, (6)

where σi j denotes the coefficients such that
∑

i, j (σi j )2 = 1.
The entanglement entropy (EE) of the compound state SEE is
derived as the vNE of the reduced density matrix

ρA = TrB|ψAB〉〈ψAB|, (7)

SEE := −TrA(ρA ln ρA). (8)
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FIG. 3. The SVD spectrum of (a) the singular value si and (b) the
zonal-flow amplitude 〈〈ψi〉〉ZF. SVD modes with 〈〈ψi〉〉ZF > 0.4 and
〈〈ψi〉〉ZF < 0.4 constitute the zonal-flow subsystem Z and the turbu-
lence subsystem T , respectively.

Note that, in the case of the subsystems being “entangled”,
the coefficients σi j must satisfy the form of σi j �= aib j . If it is
expressed as a simple product form for each subsystem, i.e.,
σi j = aib j , then the compound state is called a “separable”
state, where the EE is equal to zero. The proper form of σi j is
chosen to describe the nonlinear correlation of interest, as will
be discussed in Eq. (13).

It should be noted that the EE defined here does not refer
to quantum entanglement in the sense of a Bell state but rather
serves as a novel measure of cross correlations in nonlinearly
coupled classical turbulence and flows, formulated in terms of
the density matrix. This definition is based on the framework
where the turbulent field is decomposed into modes using the
MFSVD, illustrating an analogy to the mathematical descrip-
tion of quantum states in Hilbert space to define the VNE
and the EE.

III. MULTIFIELD TURBULENCE SYSTEM

In order to demonstrate the effectiveness of the present in-
formation entropy analysis, here we consider multicomponent
plasma turbulence as a typical physical system with a compli-
cated spatio-temporal dynamics, where the phase transition
and the nonlinear correlation between multiple fields are
prominent.

The waves (called the drift waves) in weakly collisional
high-temperature plasmas in ambient magnetic fields can
be destabilized by background inhomogeneity (in the x di-
rection described below) of the density and/or temperature
of ions and electrons. The instability growth saturates at
a certain level through the nonlinear interaction of fluctu-
ations, and then the statistically steady turbulence state is
sustained. Such drift-wave turbulence in the two-dimensional
plane perpendicular to the magnetic field is described by the
(modified) Hasegawa-Wakatani equation in the normalized

form [20,21]

∂tζ = {ζ , φ} + α(φ̃ − ñ) − D∇4ζ , (9)

∂t n = {n, φ} + α(φ̃ − ñ) − κ∂yφ − D∇4n, (10)

∇2φ = ζ , (11)

where ∇2 = ∂2
x + ∂2

y , {A, B}=∂xA∂yB − ∂yA∂xB. Ã=A − 〈A〉
is the nonzonal component of the quantity A(x, y, t ), where
〈A〉 = 1/Ly

∫
dyA(x, y, t ) is the zonal average in the y direc-

tion. The multiple field quantities of the electrostatic potential
φ = φ(x, y, t ), the vorticity ζ = ζ (x, y, t ), and the electron
density n = n(x, y, t ) are considered in this system. Note that
the present model involves the phase-transition–like behav-
ior between turbulence-dominated and zonal-flow-dominated
states. The former is composed of incoherent vortices with
various scales, whereas the latter is associated with the sponta-
neous generation of coherent sheared flows (will be explained
below) through the turbulence cascade processes.

The turbulence dynamics bifurcates, depending on three
parameters; the density gradient κ as the driving source of
the linear instability, the adiabatic parameter α controlling
the coupling strength of the two fields (associated with the
electron motion along the magnetic field), and the dissipation
coefficient D. We normalize all physical quantities to be di-
mensionless using the parameters of the typical scale of the
turbulence or background plasmas; the time by a/Cs where a
is the system length and Cs = √

Te/mi is the ion sound speed,
the length by ρs = Cs/ωci where ωci is the ion gyrofrequency,
the electrostatic potential φ by Teρs/ea where Te is the back-
ground electron temperature, and the electron density n by
n0ρs/a, where n0 is the equilibrium electron density.

We numerically integrate the Hasegawa-Wakatani equa-
tion in the two-dimensional rectangular geometry. The
periodic boundary condition is applied to both the x and y di-
rections for simplicity. The fourth-order Runge-Kutta method
is used for time integration and the Fourier spectral method
is used for calculating the spatial derivatives. The grid points,
the size of the simulation box, and the dissipation parame-
ter are set as Nx = Ny = 100, Lx = Ly = 2π/0.15 � 42, and
D = 10−4, respectively. Typically, the computation times for
numerical simulation of the Hasegawa-Wakatani equation and
the singular value decomposition are 0.5 CPU(48 cores) h and
1.5 CPU(48 cores) h, respectively.

The typical simulation results are shown in Figs. 2(a) and
2(b), where the zonal-flow-dominated state with κ = 1 and
the turbulence-dominated state with κ = 2 are displayed. In
the initial period of the simulation, the fluctuation in the drift
waves linearly grows due to the primary instability [t = 140
in (a) and t = 60 in (b)]. Then, the turbulence saturates and
spreads homogeneously over the entire domain [t = 190 in (a)
and t = 75 in (b)]. In a reference case of κ = 1, the sheared
flow with a series of antiparallel flows, which is called zonal
flow (ZF), dominates the steady turbulence state [t = 400 in
(a)]. The zonal flow is generated in the direction perpendicular
to the density gradient that drives the turbulence (y direction
in this case) due to the Reynolds stress through the nonlinear
interactions of turbulent vortices [24]. On the other hand, in
the case of relatively larger κ of κ = 2, the linear growth
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rate of the drift wave turbulence increases and significantly
exceeds the generation of the zonal flow due to nonlinear
interactions. Then, the energy is dominated by the turbulence
rather than the zonal flow, and the strongly turbulent state
persists until the end of the calculation [t = 400 in (b)].

IV. RESULTS OF THE ENTROPY ANALYSIS

A. A new transition threshold of von Neumann entropy

In order to demonstrate the effectiveness of the present
information entropy analysis, here we consider multicom-
ponent plasma turbulence as a typical physical system with
complicated spatio-temporal dynamics, where the phase tran-
sition and the nonlinear correlation between multiple fields
are prominent. We carry out numerical simulations of the
(modified) Hasegawa-Wakatani equation [20,21], explained
in Sec. III in detail. In this numerical model, turbulence and
spontaneously generated sheared flows, referred to as “zonal
flow” (ZF), are described. The multiple field quantities of the
electrostatic potential φ, the electron density n, and the vor-
ticity ζ are considered. The quasisteady states of these fields
bifurcate between the turbulence-dominated and the zonal-
flow–dominated states depending on the physical parameters
of the density gradient κ , the adiabatic parameter α, and the
dissipation coefficient D as will explained in Fig. 2.

Since the spontaneous zonal-flow formation occurs by the
nonlinear interactions between φ and ζ , the MFSVD for these
two fields is applied to the simulation data for the quasis-
teady state. The resultant singular value spectra for κ = 1
and 2 are shown in Fig. 3(a). Then we divide the SVD
modes into two subsystems, i.e., the zonal-flow subsystem
Z and the turbulence subsystem T , according to a threshold
of the relative zonal-flow amplitude of the mode 〈〈ψi〉〉ZF;
Z = {i |〈〈ψi〉〉ZF > 0.4} and T = {i |〈〈ψi〉〉ZF < 0.4}, where
〈〈ψi〉〉ZF = ∫

dx(
∫

dy ψi )2/
∫

dxdy (ψi )2. The SVD spectra of
〈〈ψi〉〉ZF are shown in Fig. 3(b). The zonal-flow subsystem
Z exists in the first few modes, modes, i.e., the first five
modes for κ = 1 in Fig. 3(b), and the turbulence subsystem T
consists of the later thousands of modes , i.e., all other modes
for κ = 1 in Fig. 3(b). By doing this, one can examine vNE
for the zonal flow and the ambient turbulence separately.

Figure 4(a) shows the κ dependence of the relative energy
ratio of the zonal flow, indicating a clear transition at
κ � 1.5, defined by the point where EZF/ET = 0.5,
where EZF = ∫

dx(−〈φ〉〈ζ 〉) is the zonal-flow energy
and ET = ∫

dx(−φζ ) is the total energy, where 〈A〉 =
1/Ly

∫
dyA(x, y, t ) is the zonal average in the y direction. This

is the conventional way of identifying the phase transition
between the zonal-flow-dominated and turbulence-dominated
states (e.g., Ref. [21]). For fixed α = 1, the zonal flow is
strongly generated in the region of κ < 1.5 with the moderate
linear growth rate of the turbulent fluctuations, while the
zonal flow is suppressed in the large κ region where the
ambient turbulence strongly grows.

The κ dependence of vNE for the turbulence subsystem
ST

vN and the zonal-flow subsystem SZ
vN are shown in Fig. 4(b).

ST
vN is considerably larger than SZ

vN in the whole region of
κ . This is because the zonal-flow subsystem consists of only
several SVD modes as shown in Fig. 3(b), while the turbu-
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FIG. 4. (a) κ dependence of the relative zonal-flow energy ratio,
and (b) the von Neumann entropy of the zonal-flow subsystem (blue)
and the turbulence subsystem (red).

lence subsystem is composed of a number of SVD modes
with a broader distribution. In contrast to the conventional
energy-ratio argument, another kind of phase transition with
respect to vNE is discovered in the turbulence subsystem,
where the transition threshold, κ � 0.7, is clearly smaller than
that in the energy ratio, κ � 1.5. Here, the threshold of ST

vN is
defined by the κ value where the ST

vN bisects the maximum and
the minimum values with α fixed. It is also noted that SZ

vN cap-
tures the energy-ratio transitions as well. Indeed, for κ < 1.5,
nearly zero value of SZ

vN is associated with a significantly
shrunk SVD mode spectrum. Around the critical value in the
energy ratio, κ � 1.5, SZ

vN increases because of the broadening
of the SVD mode spectrum, which is physically interpreted as
a perturbed state with the various scales of zonal flows. In the
large κ limit where SZ

vN decays, the number of the zonal-flow
modes quickly decreases.

Based on these findings from quantum-inspired infor-
mation entropy analyses, we can identify the new clas-
sification of states in plasma turbulence, i.e., [State i]
zonal-flow-dominated state with small ST

vN, [State ii]
zonal-flow dominated state with large ST

vN, and [State iii]
turbulence-dominated state with large ST

vN. These are summa-
rized in Table I, and the typical spatial structures for each case
will be discussed in Fig. 6.

Figure 5 shows the contour plots of the vNE for turbulence
and zonal-flow subsystems in the κ-α parameter space. The

TABLE I. The classification of quasisteady state based on the
energy ratio and the von Neumann entropy.

EZF/ET ST
vN SZ

vN

[State i] large small small
[State ii] large large small
[State iii] small large large
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FIG. 5. The contours of the von Neumann entropy of (a) the
turbulence subsystem ST

vN and (b) the zonal-flow subsystem SZ
vN in

the κ-α space. The white and cyan curves show the boundary of
ST

vN and the relative energy ratio where EZF/ET = 0.5, respectively.
The separation of the boundaries of EZF/ET (cyan) and ST

vN (white)
indicates the nontrivial classification of turbulent state by the vNE.
The boundary of SZ

vN also captures the conventional energy boundary.

cyan curves represent the transition threshold in the conven-
tional energy ratio, where the critical value of EZF/ET = 0.5
is considered. The entropy transition boundary for ST

vN, shown
by the white curve in Fig. 5(a), clearly deviates from the
energy transition boundary. Thus, it is repeatedly noted that
there exists a novel classification of the quasi-steady states
from the information point of view. On the other hand, the en-
tropy transition boundary of SZ

vN shown in Fig. 5(b) reasonably
coincides with the energy transition boundary, as explained
in Fig. 4(b).

B. Physical interpretation of the information entropy boundary

The contour of the spatial structure of each sub-
system φZ (x, y) = ∑

i∈Z sih
(φ)
i ψi(x, y) and φT (x, y) = ∑

i∈T

sih
(φ)
i ψi(x, y) is shown in Fig. 6. The zonal-flow velocity

profile U (x) = ∂x〈φ〉 is also displayed. The color bars for con-
tours φT and φZ and the y axis of the zonal-flow velocity U are
normalized to emphasize the spatial patterns. The actual ratio
for the amplitude of the two subsystems is shown in Fig. 4(b).
The two panels on the left correspond to [State i], the two pan-

information entropy boundary energy boundary

Z

κ = 0.1

T
U

κ = 0.5 κ = 1 κ = 1.3 κ = 2 κ = 3

FIG. 6. The contour of the spatial structure of each subsystem
φT (x, y) and φZ (x, y) and the zonal-flow velocity U (with black
lines representing U = 0) for several κ values. α is fixed to 1 in all
cases. The color scales for contours φT and φZ and the y axis of the
zonal-flow velocity U are normalized. Below the information entropy
boundary, the turbulent vortices are trapped in the crest of zonal flow
velocity U . On the other hand, the trapping becomes less significant
above the information entropy boundary despite the presence of the
strong zonal flow.

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 1  10  100  1000

η i

Mode index i

κ=0.1
κ=0.5

κ=1
κ=1.3

κ=2
κ=3

FIG. 7. The time-averaged spectra of ηi for κ =
{0.1, 0.5, 1, 1.3, 2, 3}, where α = 1 in all cases.

els in the middle correspond to [State ii], and the two panels on
the right correspond to [State iii] as discussed in Fig. 4. For the
turbulence subsystem, the vortex streets trapped in the crest
of the zonal flow [25,26] in [State i]. Note that the transition
of the information entropy for nonzonal turbulent fluctuations
occurs even in the zonal-flow–dominated state and has never
been captured by the conventional energetics arguments. Al-
though the trapping of turbulent vortices by the zonal flow is
recognized in previous works [27,28], the bifurcation of the
trapped and the untrapped states is newly revealed quantita-
tively by the present information entropy analyses.

The bifurcation of the vNE is directly observed from the
spectra of ηi in Eq. (4) shown in Fig. 7. In [State i] with
κ = 0.1 and 0.5, the spectra are dominated by first several
modes corresponding to trapped large-scale vortices, and
then the amplitude for latter modes significantly decays.
These peaked spectra correspond to relatively smaller values
of information entropy. On the other hand, in [State ii] and
[State iii] with the larger entropies, the broader spectra of
ηi indicate comparable contributions of the amplitude up to
approximately 1000 modes, corresponding to the co-existence
of multiscale vortices.

Detailed variations near the information entropy transition
point are shown in Fig. 8. As shown in panel (a), the transition
occurs smoothly, including intermediate states where ST

vN is
almost constant. In other words, this transition is considered
to be a kind of second- or higher-order phase transition,
although the relative energy ratio shows the first-order–like
transition within this resolution of the simulation. The contin-
uous change in entropy can also be read from the change in
the spectrum of e shown in panel (b). In the intermediate case
of the transition with 0.55 � κ � 0.8, the contribution of the
first few modes representing trapped vortex streets decreases,
while the contribution of the 100 to 1000 modes representing
homogeneous turbulence increases. This is confirmed by the
contours of the spatial structure of the turbulent subsystem
φT (x, y) in the intermediate case with κ = 0.7 shown in panel
(c). One can observe not only trapped vortex streets but
also smaller-scale turbulent eddies in the x region between
vortex streets.

Explicating the meaning of vNE, it is useful to examine the
Fourier wave number spectra between the information entropy
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FIG. 8. Detailed plots of the von Neumann entropy ST
vN near the information entropy transition point. (a) κ dependence of the von Neumann

entropy of the turbulence subsystem ST
vN, (b) the time-averaged spectra of ηi for κ = {0.5, 0.6, 0.7, 0.8, 0.9, 1}, (c) the contour of the spatial

structure of the turbulence subsystem φT (x, y) in the typical intermediate case with κ = 0.6, where α = 1 in all cases.

boundary. Figure 9 shows the time-averaged Fourier spec-
trum of the electrostatic potential φkx,ky , where the boundary
between zonal (ky = 0) and turbulence (ky > 0) modes is in-
dicated by the cyan line. One can see that when κ exceeds the
information entropy boundary of κ � 0.7, the spectral shapes
for turbulence modes are expanded to the high-wave number
region. It should be noted that the multidimensional investiga-
tions in the whole wave number space are needed to identify
such transition by the Fourier decomposition approach even
though one can recognize the spectral deformation by direct
visualizations. Also, the transition at κ � 0.7, as shown in
Fig. 4(a), is no longer captured by the conventional energet-
ics argument that evaluates the ratio of the spectral integral

for zonal and turbulence modes in the Fourier wave num-
ber space. On the other hand, the vNE constructed in this
study can quantify the change of spectral shape by only a
single scalar value. It is also remarkable that the combined
argument with individual vNE for the zonal and turbulence
modes can capture the energy boundary as well [see Fig. 4(b)].
This highlights the beneficial characteristics of the vNE
from a turbulence analysis point of view. The information
entropy analysis is straightforwardly applicable even in non-
uniform turbulence systems where the Fourier decomposition
is invalid.

The physical mechanism of the novel bifurcation dis-
covered by the vNE is understood as follows. Even in

FIG. 9. The contours of the time-averaged Fourier spectra of φkx ,ky in the cases of (a) κ = 0.5, (b) κ = 1, and (c) κ = 3, where α = 1 in
all cases. The grids of the zonal modes (ky = 0) are encircled by cyan squares.
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FIG. 10. The time average of (a),(c),(e) the y-averaged turbulence intensity, (b),(d),(f) the shear and the curvature of the zonal flow. (a),(b)
show the case of κ = 0.1, (c),(d) show κ = 0.5, and (e),(f) show κ = 1, where α = 1 in all cases.

the zonal-flow-dominated state, several destabilization mech-
anisms to drive turbulent vortices through the nonlinear
interactions with the zonal flow U (x) have been revealed.
Particularly important factors are known as the shearing ef-
fect ∂xU (x) [24,29] and the curvature effect ∂2

x U (x) [27,30].
Then, we investigate the correlation between the turbulence
intensity, the shear, and the curvature. Figure 10 compares
the time-averaged spatial patterns of the turbulence intensity
averaged in the y direction, the zonal-flow shear, and the
zonal-flow curvature around the information entropy bound-
ary. For [State i] with κ = 0.1 [panels (a) and (b)] and κ = 0.5
[panels (c) and (d)], one can see that the region where the
turbulence is locally trapped corresponds to the region with
the negative curvature. On the other hand, for [State ii] with
κ = 1 shown in Figs. 10(e) and 10(f), the maxima of turbu-
lence intensity coincide with regions of the positive curvature.
Moreover, the turbulence intensity is broadened over the x
region where the zonal-flow shear is significant. This suggests
that the predominant contribution of driving mechanisms for
the zonal-flow instabilities and the resulting vortex trapping
changes between the information entropy boundary. The in-
tensity balance of zonal-flow shear and the negative/positive
curvature is a key factor to characterize the qualitative differ-
ence in the spatial patterns, which is reflected in the vNE.

C. Entanglement entropy of nonlinear interaction

In both the Fourier wave number space and SVD mode
space, the nonlinear interactions in the turbulence system are
described by the triad energy transfer J i, j

l [18,31]. In the
present formulation using the MFSVD, it is expressed as

J i, j
l := 1

2

∫
dx φl ({φi, ζ j} + {φ j, ζi})

= 1

2
sis jslh

(φ)
l

(
h(φ)

i h(ζ )
j − h(φ)

j h(ζ )
i

) ∫
dx ψl{ψi, ψ j}.

(12)

Here, (i, j, l ) means the SVD mode indices. Note that J i, j
l =

J j,i
l and J i, j

l + J l,i
j + J j,l

i = 0.
The triad energy transfer is a multivariable function that

depends on three mode indices (i, j, l ) and the time t . In
particular, the mode index in the Fourier decomposition is a

wave number that is itself a multidimensional quantity. There-
fore, the triad energy transfer can be a seven-variable function
in two-dimensional fluid or a ten-variable function in three-
dimensional fluid. Then, it is quite difficult to analyze simul-
taneously the temporal evolution and the mode-space
structures in terms of the Fourier decomposition. In the
MFSVD, however, the dimension of J i, j

l is reduced since
the mode index in the SVD is just an integer. Then, it is pos-
sible to visualize and analyze the time-averaged mode-space
structure of J i, j

l as shown in Fig. 11. Here, the contour of J i, j
l

in (a) the zonal-flow-dominated state and (b) the turbulence-
dominated state are compared. It is found that the nonlinear
interaction is concentrated on several modes in the zonal-
flow-dominated state, while it is widely distributed in many
modes in the turbulence-dominated state. Although this type
of analysis renders substantial understandings of nonlinear
interactions in turbulent systems, it is limited to the time aver-
age of J i, j

l , and the temporal behavior is completely ignored.
Then, we propose the EE as the dimensionality-reduced J i, j

l
retaining the structural information on the SVD mode space,
rather than a simple average of variables. Since the triad
energy transfer J i, j

l indicates the negative and positive values
depending on the direction of energy flow, the exponential
form is appropriate to the condition of

∑
i, j (σi j )2 = 1:

σ±
i j := C exp

( ± J i, j
l

)
, (13)

where C = {∑i, j exp(±J i, j
l )}− 1

2 and l is arbitrary but fixed
here. Two expressions of the EE are then derived from Eq. (8);
S+

EE for σ+
i j and S−

EE for σ−
i j . We choose this form of the

coefficients in order not to make the state separable and to
distinguish between inflows (S+

EE) and outflows (S−
EE) of the

energy transfer. In this formulation, the EE is just a real
scalar value that extracts the nonlinear coupling of turbulence
fields as the information quantity. The EE enables the di-
mensionality reduction of the original J i, j

l , still retaining the
information on the direction of the transfer and the structures
in the mode space, which is lost by the simple summa-
tion by the indices (or wave numbers). Similar to quantum
mechanics, a large value of the EE means that only several
limited modes are strongly coupled to drive energy transfer
via the zonal mode.
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FIG. 11. The contour of the time-averaged triad energy transfer J i, j
l in the SVD mode space. (a) shows the zonal-flow-dominated state

with (κ, α) = (1, 3) and (b) shows the turbulence-dominated state with (κ, α) = (3, 1). The index l is fixed to 1 in both cases.

Figure 12 shows the comparison of the temporal evolution
of the field energy and the EE in the case of (κ, α) = (1, 3). In
all parameter regions in this work, the SVD mode of l = 1 is
the mode that represents the spatial structure of the zonal flow.
Then, the subscript l in J i, j

l is fixed to the zonal-flow mode
l = 1 to look into the nonlinear energy transfer mediated by
the zonal flow. As shown in panel (a), the field energy of the
zonal flow changes in the slow time scale. However, the EE
shown in panel (b) oscillates in a much smaller time scale
compared to the energy variation. Then, it is found that the
slow variation of the field energy results from the accumula-
tion of many instantaneous nonlinear interactions.

While both expressions of the EE S+
EE and S−

EE have similar
values during periods of increasing and decreasing energy, the
difference between them is shown in Fig. 12(c) as the tem-
poral evolution of the probability density function (PDF) of

FIG. 12. The temporal evolution of (a) the field energy of the
turbulence (red) and the zonal flow (blue), (b) the entanglement
entropy S+

EE (red) and S−
EE, and (c) the probability density function

(shown as the color bar) of the difference of the entanglement entropy
S+

EE − S−
EE in the case of (κ, α) = (1, 3).

S+
EE − S−

EE. During the field energy decaying (1350 < t <

1400), S−
EE is relatively larger than S+

EE, and the peak value of
the PDF moves to the negative region of S+

EE − S−
EE. Then, S+

EE
becomes dominant over S−

EE and the PDF peaks at the positive
region when the field energy is growing (1400 < t < 1470).
When the growth rate of the ZF energy settles down at t �
1480, the peak of the PDF tends to be negative again, implying
the saturation of growth.

Figure 13 shows the case where the turbulence dominates
and the field energy is nearly steady (κ, α) = (3, 1). The
EE has a finite value and rapidly oscillates like the case of
(κ, α) = (1, 3). However, S+

EE and S−
EE balance and the PDF

peaks at 0, corresponding to the fact that the energy transfer
is statistically constant in both the positive and negative direc-
tions. Therefore, the EE for the turbulence system provides
information on not only the strength of the nonlinear coupling

FIG. 13. The temporal evolution of (a) the field energy of the
turbulence (red) and the zonal flow (blue), (b) the entanglement
entropy S+

EE (red) and S−
EE, and (c) the probability density function

(shown as the color bar) of the difference of the entanglement entropy
S+

EE − S−
EE in the case of (κ, α) = (3, 1).
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FIG. 14. The snapshot of φ in (a) original and (b) reconstructed data with nd = 20 at t = 1200 in the case of (κ, α) = (1, 3). The procedure
of how to reconstruct the coarse-grained field from the spatially arrayed observation data is also displayed.

but also the direction of the energy transfer. In other words, the
present EE is a scalar quantity representing the information
flow in the nonlinear interaction, but keeping the spatial struc-
tures in the unitary basis ψ (x, y). Note that similar analyses to
examine directly J i, j

l including their temporal dynamics are
often difficult in the conventional mode-by-mode approach.

D. Application of the entanglement entropy

As is demonstrated above, the EE provides us with a new
perspective of turbulence nonlinearities from an information-
theoretic point of view. In addition to such conceptual
extensions, the EE involves important applications to the prac-
tical problems in turbulent plasmas, which are typical systems
of multifield turbulence. Here, we present a plausible appli-
cation of the EE to fluctuation field measurements, which are
important issues in laboratory plasma experiments and astro-
nomical observations. As will be shown below, the EE works
as a good measure to determine the necessary grid points of
spatio-temporal observation while keeping the information of
nonlinear interactions.

In magnetically confined plasma experiments, the spatial
patterns of the density or potential fluctuations in turbulence
are often measured by an array of detectors in the order of
several tens [32], where each line of sight corresponds to the
discrete spatial point in the fluctuation field to be observed.
Many efforts have been devoted to upgrading the spatial res-
olution by increasing the grid points of the detector array to
measure the finer- and faster-scale structures. Although the
spatio-temporal resolution cannot be large enough because of
the size of the detectors and/or the signal-to-noise ratio, it is
easier to obtain the data for a sufficiently long duration. The
EE with an associated reconstruction technique provides us
with a novel guideline to determine how many measurement

points are necessary to capture the nonlinear interactions in
the turbulent fluctuations.

To demonstrate the usefulness of the EE for turbulence
measurement, we imitate an experimental situation by a nu-
merical simulation, as shown in Fig. 14. Suppose the black
dots in the original fluctuation field (left panel in the figure)
to be the detection points Pm, then one can only obtain the
fluctuation data at those points in the measurement situa-
tion. Here, such spatially arrayed observation data is extended
around Pm by using the time series data with an interval of τ ,
which is sufficiently smaller than the turbulence time scale, to
reconstruct the global spatial profile of the fluctuation as the
N × N matrix data. First, let nd × nd be the number of detec-
tor array, then the original Nf × Nf fluctuation field at time t0
is divided into nd × nd blocks of (Nf /nd ) × (Nf /nd ) matrices.
The position of each measurement point is regarded as the rep-
resentative position in each block, i.e., (xmNf /nd +1, ymNf /nd +1)
where m = 0, . . . , nd − 1.

Secondly, at each representative point, the time series of
n2

d in [t0, t0 + n2
d�t ) at (xmNf /nd +1, ymNf /nd +1) are distributed

to the other spatial positions to fill up the undetected re-
gion. Then, one can obtain the reconstructed fluctuation field
shown in Fig. 14(b), where the spatial patterns are somewhat
coarse-grained in comparison to the original field. Once the
fluctuation field is reconstructed by the above technique, the
vNE and the EE are straightforwardly calculated by using
the MFSVD.

We investigated the dependence of the EE on the measure-
ment points or the division number nd as shown in Fig. 15. In
the case of nd = 5, it shows rapid oscillations as in the original
data that indicate the instantaneous nonlinear energy transfer
between turbulence and zonal flows. However, the time evo-
lutions are almost identical, and the original behavior for the
PDF of S+

EE − S−
EE is no longer reproduced. As nd increases,

e.g., nd = 20 and 50, the behavior of the EE approaches to
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FIG. 15. The temporal evolution of (a),(d),(g) the field energy of the turbulence (red) and the zonal flow (blue). (b),(e),(h) the entanglement
entropy S+

EE (red) and S−
EE. (c),(f),(i) the probability density function of the difference of the entanglement entropy S+

EE − S−
EE in the case of

(κ, α) = (1, 3). The left panels (a)–(c) show the case of the division number nd = 5, and the center (d)–(f) and right (g)–(i) panels indicate the
case for nd = 20 and nd = 50, respectively.

the original data, i.e., the PDF of S+
EE − S−

EE tends to negative
when the ZF energy decreases and vice versa, and the rapid
oscillation of the EE becomes less significant after the gradual
recovery of the zonal-flow energy for t > 1550.

The clarification of nd dependence implies that the EE
works as a good measure for the reproducibility of nonlin-
ear interactions even in the limited resolution of fluctuation
field measurements. In addition, the similar application of the
EE can be useful for the information reduction from large-
scale turbulence simulation and observation data, but keeping
the crucial nonlinear nature. The application of the informa-
tion entropy to detect the optimal spatio-temporal resolution,
which tends to be ambiguous, enables us to expand a new as-
pect beyond the conventional spectral or energetics approach
relying on Fourier decomposition.

V. SUMMARY

In this work, we formulate the quantum-inspired infor-
mation entropy of multifield turbulence. Using the multifield
singular value decomposition (MFSVD), the density matrix
for the turbulence state is constructed. Then, the von Neu-
mann entropy (vNE) and the entanglement entropy (EE) are
derived. As a result, we discover a novel transition of the

turbulence structure based on the information entropy, which
cannot be seen by the conventional energy argument. Further-
more, the present EE can provide new insights into nonlinear
interactions in turbulence. It should be emphasized that the
proposed formulation can be applied to any other kinds of
turbulent fields and related physical systems with nonlinear
correlations, beyond the present turbulent plasmas. We also
demonstrated a plausible application of the EE to the turbu-
lence measurements, as well as the associated reconstruction
technique for the fluctuation fields. Practical applications
of the vNE and the EE as novel turbulence measurement
principles will be addressed in realistic experiments and
observations.
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