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Theory of x-ray photon correlation spectroscopy for multiscale flows
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Complex multiscale flows associated with instabilities and turbulence are commonly induced under high-
energy density (HED) conditions, but accurate measurement of their transport properties has been challenging.
X-ray photon correlation spectroscopy (XPCS) with coherent x-ray sources can, in principle, probe material
dynamics to infer transport properties using time autocorrelation of density fluctuations. Here we develop a
theoretical framework for utilizing XPCS to study material diffusivity in multiscale flows. We extend single-
scale shear flow theories to broadband flows using a multiscale analysis that captures shear and diffusion
dynamics. Our theory is validated with simulated XPCS for Brownian particles advected in multiscale flows.
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We demonstrate the versatility of the method over several orders of magnitude in timescale using sequential-pulse
XPCS, single-pulse x-ray speckle visibility spectroscopy (XSVS), and double-pulse XSVS.

DOI: 10.1103/PhysRevResearch.7.023202

I. INTRODUCTION

X-ray photon correlation spectroscopy (XPCS) is an exper-
imental technique that leverages coherent x-rays to investigate
material dynamics at the microscopic scale [1,2]. XPCS is the
x-ray equivalent of dynamic light scattering (DLS) [1,3.4].
While both DLS and XPCS aim to characterize the time
evolution of density fluctuations within samples, XPCS can
probe dynamics at nanometer length scales, which are smaller
than those accessible by DLS due to the shorter wavelength
of x-rays. State-of-the-art x-ray free-electron lasers (XFELs)
deliver ultrashort x-ray pulses in the femtosecond range with
high peak brightness [5,6] and can produce pulses with short
separations [7], which are advantages over synchrotrons for
applications requiring high temporal resolution. Pulses gener-
ated by XFELs also have high-degree coherence, which refers
to the consistent phase difference of waves over time and
space, leading to wave interference that provides information
about the structure of a material. When coherent x-rays are
scattered off a sample, an area detector captures the interfer-
ence of scattered waves. The intensity distribution on the area
detector is a so-called speckle pattern for its granular shape,
where each speckle pattern reveals spatial density distribution
in the sample. Thus, by collecting a batch of speckle patterns,
the temporal dynamics of the material can be explored using
intensity autocorrelation in time [8—10]. The Siegert relation
[11,12] is then often used to link the intensity autocorrelation
with the underlying density autocorrelation, providing a quan-
titative characterization of material dynamics.

Accurately approximating transport properties such as
viscosity and diffusivity in warm dense matter has been a chal-
lenge, where different theoretical models often yield estimates
differing by several orders of magnitude [13-15]. XPCS is
a general and model-independent technique that provides the
capability to probe material dynamics [16—18], including the
direct measurement of transport properties such as diffusivity.
Using sequential x-ray pulses, conventional XPCS can capture
material dynamics across timescales from microseconds to
hours [19,20].

In high-energy-density (HED) conditions, probing ultrafast
dynamics is required since the characteristic timescales, such
as the transit time of shock compression (the time for net flow
to pass through the probe volume), are typically on the order
of nanoseconds or less [21,22]. With different x-ray pulse
structures [7,23] that allow access to ultrafast dynamics, x-ray
speckle visibility spectroscopy (XSVS) can be used to extract
dynamic information where the signal to noise ratio is not
typically adequate [24-26]. XSVS analyzes the contrast, i.e.,
variance in intensity, of a partially coherent speckle pattern
generated by a continuous beam (with the timescale given
by the exposure time) or by integrated scattering from one
or more short pulses (with the timescale of the pulse width,
or pulse separation time, respectively). With short pulses,
the timescale of diagnostic ranges from 100 femtoseconds

to nanoseconds [20]. XSVS is particularly useful for study-
ing ultrafast dynamics in high-energy-density systems or in
the physics of phase transitions, while also in cases that re-
quire a low dose of radiation, such as in biological materials
[27-29]. For single-pulse mode and two-bunch mode (or the
split-and-delay method), XSVS is typically used to analyze
the contrast of the generated single-pulse, or additive-pulse,
speckle patterns. Here, we use the terms single-pulse XSVS
and double-pulse XSVS to distinguish these two common
cases, the latter sometimes referred to as x-ray photon fluc-
tuation spectroscopy [30].

In HED conditions, shear flows are frequently induced in
shocked material from defects or inhomogeneous structures
[22,31-35]. Shear flows can influence diffusivity and viscosity
measurements using XPCS [36-39]. In shear flows, particle
motion can be attributed to two factors, shear and free diffu-
sion, which are only easily distinguishable if their respective
timescales differ significantly at a certain wave vector [40], so
that one dominates the intensity autocorrelation in XPCS anal-
ysis. Fast shocks can make shear flows significant compared
to free diffusion, but also result in comparable timescales
between shear and diffusion in small-angle scattering (see an
example of comparison between shear and diffusion timescale
in Sec. IIIC). Although wide-angle scattering can be con-
ducted by increasing the wavevector |q| (proportional to the
sine of the scattering angle), to highlight the diffusion dynam-
ics, the increase in the path length difference of the scattered
photons leads to variations in phase differences. This chal-
lenges the analyses by reducing contrast from the limited
coherence length of the x-ray beam, and the experimental
setup [41].

If the shear flow is unidirectional, the effect of shear on
XPCS analysis is extractable by inspecting the wave vector,
q, perpendicular to the shear direction [42]. However, this is
not possible when shear is not unidirectional, as is likely in
most HED applications. For example, in inertial confinement
fusion (ICF) experiments, multiscale shear flows commonly
arise from instabilities and turbulence [31,43,44]. Like in ICF,
there are many experiments using laser shock compression
to achieve HED conditions. We expect the outcome of this
work to be beneficial for the XPCS analysis in such cases
[45], as multiscale flows are likely to occur when a high-speed
shock passes through the target due to porosity or defects.
This work focuses on the XPCS theory in the presence of
isotropic multiscale shear, meaning many small-scale shear
flows are oriented randomly over the volume of interest. For
anisotropic shear that may emerge [46—48], further investi-
gation is required to modify the analytical equations [49].
Since the wavevector q is related to the flow direction, the
anisotropy limits the XPCS analysis to a constrained angle in
q space and requires high photon flux to compensate for the
loss in statistics. This emphasizes the advantage of working
with small-angle scattering at low |q| to obtain more photons
recorded by the detector.
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FIG. 1. Schematic of sequential-pulse XPCS. Coherent x-rays
are scattered at a wavevector q = k; — k;, for which the magnitude is
proportional to the sine of the scattering angle. The intensity distribu-
tion on each speckle pattern, /(q, t), is recorded by the detector with
a time separation t corresponding to the time separation between the
sequential pulses.

Previous works [36,37,39,50] have demonstrated that a
uniform shear with constant shear rate y can be characterized
as a single-scale shear, where velocity fluctuation occurs in
a single scale of the domain size. It leads to extra decay on
intensity autocorrelation beyond free diffusion, corresponding
to enhanced density fluctuations from the Siegert relation. In
this work, we extend the theoretical framework to account
for isotropic multiscale shear. We develop a methodology
to identify a timescale associated with multiscale shear by
Fourier decomposing multiscale flows. Thus, we distinguish
the contribution of multiscale shear and free diffusion in
sequential-pulse XPCS, single-pulse XSVS, and double-pulse
XSVS at q even where their timescales are comparable. We
use simulated XPCS that analyzes speckle patterns generated
by scattering simulations to replicate the full process of an
XPCS experiment. Through simulated XPCS, we measure the
diffusion coefficient and the characteristic shear velocity on
Brownian particles in isotropic multiscale flows to validate the
multiscale theory.

In Sec. II, we describe the method of conducting sim-
ulated XPCS. We introduce the theory of sequential-pulse
XPCS for free diffusion and uniform shear to validate the
simulated XPCS results. In Sec. III, we perform simulated
XPCS on passive particles with free diffusion advected by a
multiscale shear flow. We demonstrate the generalization of
single-scale theory to multiscales with the stretched exponen-
tial approximation, and propose a timescale for estimating the
diffusion coefficient. In Sec. IV, we extend the multiscale the-
ory to single-pulse exposure or double-pulse mode analyzed
by XSVS to estimate the diffusion coefficient and characteris-
tic shear velocity. We summarize the results in Sec. V.

II. SEQUENTIAL-PULSE XPCS

When a coherent x-ray beam is scattered by a sample, as
sketched in Fig. 1, the scattering intensity is captured over
a range of scattering wavevectors q simultaneously, where
q is the difference between the diffracted wavevector k; and
the incoming wavevector, k;, i.e., q = k; — Kk;. For complete
elastic scattering, the photon energy remains unchanged af-
ter scattering, which leads to identical magnitudes between
the incoming and scattered wavevector, |Kk;| = |Kk;| = 27 /A,

where A is the photon wavelength. We show the schematics of
sequential-pulse XPCS in Fig. 1, where the wavevector ( is
directly proportional to the sine of the scattering angle.

The second-order correlation function, g, is the normal-
ized intensity autocorrelation in time,

(I(q,0)I(q, 1 + 7))
(I(q. )7
where 7 is the time delay or separation between the sequen-
tial x-ray pulses, /(q, t) is the scattering intensity and (...),
denotes the time average over times ¢. The second-order cor-

relation function can also be expressed by the Siegert relation
[11,12],

8(q,7) = , ()

22(q, 7) = 1 4 Bo(q)|F(q, 7). 2)

The optical contrast, 8y(q), measures the degree of coherence
varying from O (incoherent illumination) to 1 (coherent illumi-
nation) relying on the beam coherence and the experimental
setup, which is defined by the normalized intensity variance,

(I(g,1)*) — (I(@,1)]
{I(q,1));

F(q, ) in Eq. (2) is the intermediate scattering function (ISF),

which is a first-order correlation function representing the

spatial Fourier transform of the spatial and temporal density

autocorrelation [51],

Bo(q) =

3

Flq.7) = / (p(ro, (0 + 101 + s dr. (@)
\%

The decorrelation of |F(q, 7)|* is directly related to the ma-
terial dynamics. We will focus on the trend of |F(q, 7)|?> to
retrieve transport properties assuming that the optical contrast
in our simulated XPCS is Bo(q) = 1 under a fully coherent
beam. This condition holds for perfectly monochromatic x-
rays, for an appropriate detector distance, and if the sample
volume is contained within the coherence volume [41,52].

A. Scattering simulation

In simulated XPCS, we simulate x-ray scattering to gen-
erate speckle patterns for XPCS analysis. We reference the
direct computational approach by Mohanty et al. [53] for
generating simulated speckle patterns. At each time step, the
displacement of each scatterer is tracked to generate a speckle
pattern. In the simulation with diffusive and shear motion,
the probe particles act as passive tracers, which perform free
diffusion and are passively advected by the flow field. To
describe the particle density distribution, a density field is
defined as the sum of ith particle density at position r,

N

p(r, 1) =" pi(r, 1), ()
i=1

where p;(r,t) = 6(r — r;(t)) is a Dirac delta function cen-

tered at ith particle, and N is the number of particles. In the

remaining equations, the sum over particle indices is from 1

to N unless otherwise specified. The Fourier transform of the

density field is given by

pan= [ Yotne e =Y fi@e 0. ©
Vo i
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where fi(q) is the x-ray form factor representing the Fourier
transform of the ith particle’s electron density distribution, po,,
about its center of mass (r = r;),

filq) = / pe(E)e TR ™
1%

The scattering intensity can be expressed by the square of the
Fourier transformed density [53],

1(q, 1) = p(q, )p*(q. 1) = |p(q, 1)
— Zﬁ(q)e—iq-ri(f) ij(q)eiqu(f)’ ®)
i J

where * is the complex conjugate. The scattering intensity is
proportional to the Fourier transform of the electron density
autocorrelation in space, (o(ro,?)p(ro+r,1))y, (Wiener-
Khinchin theorem [54]).

Alternatively, /(q, t) can be written in a combined term,

Hq.0)=Y > fl@)f;(qe O, ©)

J

The f(q) and scattering intensity increase with the atomic
number, Z, as x-rays are scattered by the electron cloud of
the atom. In some experiments, high-Z nanoparticles (e.g.,
gold nanoparticles) are used to raise the scattering intensity
[55-57]. The f(q) for the same type or material of particle is
invariant for all particles at any fixed q. Under such condition,
the autocorrelation function is independent of particle type
as f(q) is eliminated through normalization in Eq. (1). For
simulated XPCS, we use Eqgs. (1), (3), and (9) to simulate the
squared ISF,

IF(q, T))4, = (2200, T) — 1)/Bo(q). (10)

B. Analytical solutions of squared ISF

To validate our simulated XPCS results, we compare the
simulated squared ISF to analytical solutions. The ISF in
Eq. (4) can be expressed using the Fourier transformed density
in Eq. (6),

1 )
— —iq-[r;(t)—r;(t+7)]
F(q,z’)_N< E E e j >
i J

The factor 1/N appears to yield a normalized function that
describes the dynamics in the system, regardless of the total
number of particles. Assume particles are noninteracting and
statistically independent, then we eliminate all cases in the
sum when i # j, and the ISF is given by [37,58],

1 .
F(q.7) = N< > e"q‘[rf<”—rf<’+”l> : (12)
t

J

Y

t

Furthermore, each particle displacement, r;(t + ) — r;(¢), is
attributed to displacements due to net flow through the probe
volume, particle diffusion, and shear flow. The ISF can be
separated into a product of transit, diffusion and shear com-
ponents,

IF(q, D)I* = |Fr(q, O IFp(q, O)PIFs(q, D> (13)

Separating the ISF into the product in Eq. (13) had been
justified in past studies under the assumption that timescales
of the three processes are well separated [58,59].

In high-speed shear flows and conditions with large dif-
fusivity, such as in HED, it is possible to observe similar
timescales for diffusion and shear. In our study, instead of
assuming that these timescales are separated, the product
in Eq. (13) is valid under the assumption that the three
processes (transit, diffusion, and shear) causing particle dis-
placements are uncorrelated [60], as we will now elaborate.
An ISF can be written as F(q, 7) = (e 92"} where the
(...) is an average over time ¢ and over particles j as in
Eq. (12). Ignoring transit by bulk advection for now, the total
displacement due to diffusion, Arp(7), and shear, Arg(7),
is a linear superposition, Arp(t) + Ars(t), giving the ISF,
F(q, 1) = (e74Ar(@e=iaArs(®)y  Knowing that for two un-
correlated events A and B, the expected value of their product
follows the relation E[AB] = E[A]E[B]. The ISF can be writ-
ten as the product F(q, 1) = (e /021y (¢=1q-Ars(T))

For each component in Eq. (13), the contribution to particle
displacement can be represented as vy T (transit), [r;-(t +1)—
r}(t)] (diffusion) and 6v;7 (shear), where vy is the transit
velocity and dv; is the difference between the flow velocity
of the particle j and the mean flow velocity. This gives the
product in the following form,

1 <Z e
2z o1 () (1+7)]
N J t

2

2
IF(q, 7)]* ="V T|* x

x (14)

Ilv zj: efiqﬁv‘,vr

Within this product, the shear flow is assumed to be quasis-
teady and the shear velocity is statistically invariant over the
time delay t. We will neglect the transit component in this
work with periodic boundary conditions for particle displace-
ment and flow velocity fields. We will denote the wave vector
magnitude |q| with g in the rest of this work if there is no risk
of ambiguity.

For particles undergoing free diffusion (i.e., particles’
mean-squared displacement, 1%/ Zi Ir;(t) — r;(0)|?, is propor-
tional to ¢), the analytical solution of squared ISF [1] is given
by,

|Fp(q, T)I* = exp(—2Dg’7), (15)

where D is the particle diffusion coefficient. The diffusion
timescale is tp = 1/Dg>.

In the case of uniform shear with unidirectional flow veloc-
ity, u,, along the x axis, difference in §v from Eq. (14) at any
two positions in the two-dimensional (2D) velocity field can
be expressed as §vi; = §v; — Svy = y(y; — ¥2), where y is in
the varying direction of velocity. Integrating the last term in
Eq. (14) with respect to y over the field size, previous studies
[50,58] have derived

sin®(voq T /2)
(voqT/2)?

where g is oriented in the wave vector space parallel to the
flow direction (x axis in our case, g = qy) and the char-

|Fsuniform(q’ 'L')|2 — , (16)
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FIG. 2. Visualization of a speckle pattern obtained from the sim-
ulated scattering with free diffusion (D = 1 x 1073 ¢cm?/s) and shear
(vo = 0.1 um/ns). The area encompassed in the red circles represents
¢ =0.014+5x 107*A~! and angle 6 is counterclockwise from the
positive g, axis in gq, plane.

acteristic shear velocity is vg = yL = (du,/dy) L, with the
field size L. Note that vy is characterized by shear flow
and is distinct from the particle velocity difference §v;. The
timescale for ISF decay due to shear is 75 = 1/vpq taking ts
at [Fymiom (g, )2 = sin’(1/2)/(1/2)2.

C. Simulated XPCS with uniform shear

Mohanty et al. [53] have used molecular dynamics to sim-
ulate free diffusion without the shear component in simulated
XPCS. Here, we simulate Brownian particles using a stochas-
tic equation to validate simulated XPCS with a predefined
diffusion coefficient. We verify simulated XPCS by compar-
ing the square of simulated ISF to analytical solutions in three
test cases: (i) free diffusion, (ii) uniform shear, and (iii) free
diffusion combined with uniform shear through linear super-
position of velocity. In all three cases, we initialize 10* point
particles with uniform random distribution in a 2D periodic
box of size 27 um. We use the stochastic equation [61] to
track the particle trajectory at each time step,

dx(t) = u(x, t)dt + 2D dW(t), 17)

where x(¢) is the particle position, u(x, ¢) is the flow velocity
field, D is the particle diffusion coefficient, and W(¢) denotes
the Wiener process (Brownian motion) that follows a Gaus-
sian random distribution with zero mean and unit variance.
The flow field (deterministic part) and the Wiener process
(stochastic part) are uncorrelated in Eq. (17).

We use the method described in Sec. IT A to simulate the
squared ISF in Eq. (10) at ¢ = 0.01 £5 x 107* A~! for ¢ in
between the red circles in Fig. 2. In the free diffusion case, we
set the diffusion coefficient D = 1 x 103 cm?/s in Eq. (17)
and the displacement due to flow velocity term vanishes.
In the uniform shear case, the velocity of the unidirectional
flow varies linearly from 0-0.1 um/ns (i.e., characteristic

16 r ' —
X —|Fp?
X o |Fpl%
A\ T
o \ * |F5|sim if
oy t 2| puniform |2 | 4
o 0.6 x |F1)2| |Fs |
3 | ° |F]sim
& 047
0.2+
0
0

7 (ns)

FIG. 3. Validation of the simulated squared ISF in diffu-
sion, shear and combined cases (|Fpl%,, |Fs|%, and |F|%,
using Eq. (10)) by comparing to analytical equations (|Fp|?,
|[Faniform |2 and | Fp|?|Fgnifm|2) for free diffusion in uniform
shear at g =0.01+5 x 107*A~". |Fp|? is the diffusion com-
ponent, |Fp|? = e 2’77, and |Fgniferm (2§ the shear component,
|FS““if"""|2 = sin (voq7 /2)?/(voqT /2)?, of the |F (g, T)|?, where D =
1 x 1073 ¢m?/s and vy = 0.1 ym/ns.

shear velocity vy = 0.1 wm/ns), causing a deterministic so-
lution without the Brownian motion term in Eq. (17). In
the last case, both terms in Eq. (17) contribute to the parti-
cle displacement (D = 1 x 1073 ¢cm?/s and vy = 0.1 um/ns).
In Fig. 3, we show that the simulated squared ISFs in all
three cases follow the analytical solutions (|Fp|> = e2P7'7,
|FSunif0rm|2 — sin (U0q7/2)2/(l}0q1’/2)2, and |FD|2|FSuniform|2 —
e~2P7'T sin (voqt /2)?/(vogqT /2)?) with absolute errors within
5% for q along g. The decomposition of F'(g, 7) in Egs. (13)
and (14) is verified and the multiplication |Fp|?|Fgniform 2
leads to extra decay in ISF compared to the diffusion only and
shear only cases. This implies the |F (g, 7)|*> decay is deter-
mined by both the diffusion and shear terms with timescales
tp = lnsand 75 = 0.1 ns.

III. XPCS FOR MULTISCALE FLOWS

In practice, most flows are multiscale since energy tends to
transfer across different scales [62]. In other words, even with
a single-scale energy injection, single-scale flows can easily
develop into multiscale flows due to perturbations. Turbulence
and instabilities are two examples that represent multiscale
flows developed through energy transfer across scales [47,63—
66]. Multiscale flows are characterized by kinetic energy dis-
tribution over a broad range of length scales, implying that
shear flows exist at various length scales, which cannot be
directly described by XPCS for uniform shear. In this study,
we apply Fourier analysis to decompose multiscale flows into
single-scale flows. We generalize the XPCS theory of single-
scale flows to multiscale flows using the properties of Fourier
transform, kinetic energy conservation, and the orthogonality
of Fourier modes [67].

Here, we conduct simulated XPCS using fully developed
homogeneous turbulence from the Johns Hopkins Turbulence
Database (JHTDB) [68] with a domain size of L = 27 um, as
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well as a synthetically modified flow field that represents the
case of instability to demonstrate the universality of the mul-
tiscale theory. The forced isotropic turbulence from JHTDB
is simulated with the direct numerical simulation, which has
the original size of 1024 nodes and 5028 timesteps. The
statistical quality of the simulated XPCS is directly related
to the number of speckle patterns. From photon statistics
[11], the variance of g, is inversely proportional to the total
number of correlated pairs, which implies more frames of
intensity distribution to be averaged results in better statistics
and less error in Eq. (1). Thus, we conduct the simulated
XPCS with 5028 speckle patterns, each of which corresponds
to a timestep in the turbulence. We reduce the spatial reso-
lution to lower the computational cost. We choose 2D slices
of the xy plane at z = 0 where the 2D flow remains isotropic,
and we downsample the 2D slices to 256 x 256 grids. Each
point in the velocity field is averaged with surrounding points
before downsampling to avoid aliasing error, which leads to
erroneous shift of kinetic energy from small to large scales.

A. Fourier decomposed shear flows within a Fourier band

To employ the theory for uniform shear in multiscale sce-
narios, we apply Fourier analysis to simulated XPCS to obtain
ISF due to scale decomposed shear. For a given discrete veloc-
ity field, u(x;), the discrete Fourier transform is given by

m—1
k) =Y u(x)e ™, (18)
i=0

where m is the number of indices in the mesh grid, k = 27n/L
is the Fourier wave number with integer modes n and domain
size L. The Fourier band k is defined as the ceiling value of
the wave number magnitude |k| shown in Fig. 4. We apply
Fourier transform to decompose the turbulence scales into
Fourier bands at scales k to obtain G(k), and perform inverse
Fourier transform (IFT) to obtain a velocity field u®(x) =
IFT[d(k)] in physical space for each Fourier band. In the
remaining sections, the notation |Fs(k)|sim refers to the results
from simulated XPCS using the velocity field u®, while the
notation |Fs(k)| without the subscript sim refers to our derived
theoretical equation. The velocity field in a single Fourier
mode is sinusoidal, for which the obtained ISF is analogous
to the ISF for uniform shear [Eq. (16)] in decaying trend, as
described in Appendix A. Note that the two wave numbers k
and g represent two independent length scales, where 1/k is
the scale of velocity fluctuation and 1/¢ is the scale of particle
density fluctuation. The Fs(g, T) at a fixed g is subject to the
shear caused by the flow at all .

As shown in Fig. 5(a), the |Fs(k)(q, r)|§im in directions of
q axis (0 = nmr /2) oscillates like the squared sinc function in
Eq. (16) only at scale k = 1, whereas |Fs(k)(q, r)|§im of other
scales k [in Fig. 5(b) and 5(c)] mostly damp at a large time de-
lay. The angle 6 is counterclockwise from the positive g, axis
in the g.q, plane. We notice that the fundamental difference
between k = 1 and other scales is due to the composition of
different Fourier modes. With integer Fourier modes in k, and
ky, k = 1 is the only scale consisting of two pairs of complex
conjugates perpendicular to each other in Fourier space (i.e.,
k, = £1 and k, = £1 in Fig. 4). The two pairs of complex

Fourier band k

FIG. 4. Schematic of 2D Fourier space. The Fourier band k
is defined as the ceiling value of the wave number magnitude
k| =
magnitude encompassed in the brown annulus with unit width.
The blue points represent Fourier transformed velocity, @i(k, k,) =
Zf:o Zﬁ:o u(x, y) exp[—i(k.x + k,y)], where two points symmetric
about the origin in Fourier space are complex conjugates. For exam-
ple, the scale k = 1 contains only two pairs of complex conjugates
(orange points) atk = £1 (i.e., k, = 1 and k, = £1).

k2 +kZ. In other words, k represents the wave number

conjugates at k = 1 represent a flow superimposed by two
sinusoidal velocity gradients in perpendicular directions. The
velocity gradient in each direction contributes equally to the
ISF. Plus |F5(k)(q, t)|fim in the g axis direction (6 = nm /2) is
determined by only one component of the velocity due to the
dot product in Eq. (14), |Fs(k)(q, t)|§im at k = 1 along the ¢
axis is analogous to the uniform shear case discussed in Sec.
IcC.

To explain the sensitivity of |Fs(k)(q, T)|2, t0fatk=1in
Fig. 5(a), we derive an analytical solution for the superposi-
tion of two perpendicular uniform shear flows in Appendix B.
In Appendix B, we show that |Fs(q, 7)|? is nearly invariant in
any q direction, and the reduced oscillation for |Fs(q, 7)|* at
6 — nx /2 + 7 /4 is analogous to |F{"(q, 7)|3,, in Fig. 5(a)
atf =nm /2 + /4.

For scales of k > 1, the Fourier annulus carries more com-
plex conjugate pairs than £ = 1. In Fig. 5(b) and 5(c), the
oscillation of the [F{¥(q, 7)|%,, damps due to the composi-
tion of Fourier modes in the Fourier annulus, which leads
to superposition of sinusoidal velocity gradients in various
orientations in physical space. We seek to approximate the ISF
in an annulus at scale k > 1 with a function in the form

IF(q. D)l = exp[ = (v q7)"], (19)

where v(()k) is the characteristic shear velocity at scale k, and
« is a constant representing the decay rate. This function is in
the form of the Kohlrausch-Williams-Watts (KWW) function,
which is a stretched exponential that has been extensively
used to approximate the ISF decay due to nonstandard free
diffusion such as under phase transition or with heteroge-
neous dynamics [69-72]. Here the shear component due to
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FIG. 5. Comparison of the simulated squared ISF, |F{*|2_, for
shear at scale k to the analytical equation in Eq. (19), |FS(")|2 =
e 205 4’ approximated using stretched exponential at ¢ = 0.025 +
5x 107* A~ The oscillation in [FX2 at 6 =nx/2 in the top
panel (a) is reduced to approach the analytical equation by changing
the orientation of q (change 6 to approach nw /2 + 7 /4). In (b) and
(c), |Fs(k)|§im at any 6 follows the analytical equation by incorporat-
ing more Fourier modes as k increases. For a multiscale flow, the
discrepancy between |F{|% and |[F®|? at scale k = 1 is negligible
through averaging over 6 in ¢ space and collect ISFs at all scales.

multiscale flow is a factor that contributes to the effective
diffusion of the particles. With the approximation of the
KWW function, the diffusion and shear ISFs [|Fp(q, 7)| and
|Fs(g, T)|] are both in exponential form. Taking the inte-
ger decay rate o = 2, one can explicitly derive a timescale
at |Fgeneral| = €xp(—1). We fit square of Eq. (19) to the
IFS(k)(q, r)|§im and observe good alignment in Fig. 5 except
k = 1 due to fewer Fourier modes. Even at k = 1, the discrep-
ancy between |F*(q, 7)|2,, and |F(q, 7)I? [see Fig. 5(a)]
is negligible, as we eventually need to average over 0 in g
space and collect all scales k for multiscale flow.

B. Generalization to multiscale flows

We perform simulated XPCS to Brownian particles in

Fourier decomposed flows at each scale k, then v(()k) is es-

timated by fitting Eq. (19) to |F(q, 0)13,. The v is
analogous to the diffusion coefficient D in Eq. (15) that
characterizes the rate of particle displacements but due to

shear. In isotropic turbulence, the velocity difference §v in

Eq. (14) resulting from shear remains statistically isotropic
at each scale [73]. Thus the characteristic shear v(()k) should
remain invariant, which is demonstrated with the invariant
|Fs(k)(q, T)|52'im at different 6 for k > 1 [see Fig. 5(b) and 5(c)].
Here we show that the multiscale ISF can be written as
a product of the ISFs in Eq. (19) for all k. Knowing that
the u®(x) is the inverse Fourier transform (IFT) of i(k),
and Fourier transform is a linear transformation. The original
velocity field can be written as the sum of u®(x) for all k,

u(x) = IFT(Zﬁ(k)) = Y IFT@k) = Y u® ).
k k k

(20)
The u®(x) and u®)(x) are uncorrelated if k # k' due
to the orthogonality of Fourier modes, implying that
P Eu*)(x)) = @®(x)) (w*)(x)). Replacing u® with
sv® following the term in Eq. (14) and substituting the sum
into the ISF gives,

. 1
FSmultlscale(q’ 7) = ]V Z exp i_iq . |:Z 5V§k)(x):| T }
j k

20
Given the condition of uncorrelated velocity fields, the ISF
can be written as a product of ISFs for all k. Alternatively, if
the shear velocity varies significantly at different length scales
(with a steep velocity spectrum), the product also holds true
[591,

. 1
FSmuluscale(q’ ‘L') — 1_[ ]V Z exp [—iq . 8V;,k)(x)‘[] . (22)
k J

Applying the theory for single Fourier band from Eq. (19), it
gives a product,

FSmultiscale(q’ r)| _ 1—[ {exp [_(qv(()k)T)a“

k

=[] @ )| (23)
k

With the product, we start deriving an equation with a
stretched exponential for the multiscale ISF using the kinetic
energy conservation of Fourier modes. For each scale k, we
seek to find the relation between v(()k) and a root-mean-square
(rms) velocity,

*) _ (k)2 ()2
s = V{(67)" + (7)), (24)

rms

where «®) and u") are, respectively, x and y components of

Fourier decomposed velocity u®). In uniform shear, the ratio
between vy and rms velocity un,s is strictly constant. For such
a flow field with the velocity profile u(x) = yx from 0 to
L, the ratio is vo/uyms = V3 by having vy = yL and uyps =
(1/+/3)yL. The u®) is a typical velocity that represents the
square root of the kinetic energy at each scale k. With the
orthogonality of Fourier modes [67], the total kinetic energy
of the turbulence is the summation of the squared u*). in all
scales,

1 1 2
KE = Eufms == Xk: ()" (25)

023202-7



HAO YIN et al.

PHYSICAL REVIEW RESEARCH 7, 023202 (2025)

107!

velocity (pum/ns)

107 |1 lz
10° 10 10

ke (um™"
(k)

FIG. 6. The characteristic shear velocity, v, ', obtained by fitting

(k) 192 .
IFF? = e 2% 97 to |[FM|2, for the Fourier decomposed shear at
scale k. The v’ scales likewise to the u®). = \/(ju®|?), where u®),

is the square root of the E“(k) in Fig. 20 following the power law
k=378,

ms
power law of k—/¢, which is consistent with the scaling of the
square root of the turbulence velocity spectrum, k=3 [67,74].
Since it is known that the kinetic energy conservation of
(k)

Fourier modes applies to ug‘n)s, to apply a similar relation to v

for later derivation, we demonstrate the linear proportionality
between v’ and u®). by plotting the ratio ¢® = v /ul®)
and observe a nearly constant value with fluctuation <5% for
k < 16um~" in Fig. 7. However, the ratio decreases beyond
the keyofe (green vertical line in Fig. 7) due to numerical errors

of particle velocity interpolation while the scale approaches

We show that v(()k) scales likewise to uX) in Fig. 6 with a

037 —o— k) — v(()m/ugf%s |
_kcutoff
0.2 : :
10° 10! 10°

-1
k (pm™")

FIG. 7. The ratio ¢® = v\ /u®) is close to a constant for k <
kewott = 16 um ™" for the multiscale turbulence, implying that the
kinetic energy conversation equation in Eq. (25) applies to v((]k). The
average value of ¢® for k < 16 um~! is 0.492 approximately equal

to the ratio obtained for multiscale flow ¢™iscale — ().490.
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FIG. 8. Validation of analytical equations by comparing

|F(q, 7)I%, for (i) free diffusion to |Fp(g,7)|* in Eq. (15),
(i1) multiscale shear to |Fsm“]tisca'°(q, )] in Eq. (27), (iii)
composition of free diffusion and multiscale shear |Fyeneral(q, )?
in BEq. (30) with D=1 x 1073 cm?/s and vy = 0.042 um/ns at
g=0.025+5x%x107*A".

the grid size. The decay of the ratio mitigates by increasing
the mesh resolution where the constant ¢*) extends to a larger
k seen in Fig. 21 in Appendix D.

Since the |F{™!ise4 (¢ 7)| is the product of the |F{* (¢, 7)]
from Eq. (23), it can also be written as,

|FSmu1tiscale(q7 ‘C)| = exp |:_ Z (U(()k)qt)a] (26)

k

For a constant ratio ¢*), we expect vék) to follow the energy
conservation in Eq. (25), hence, vj = Zk(v(()k))z. Then the
sum in Eq. (26) collapses to a Gaussian function with o = 2
analogous to the single-scale theory,

|FSmultisca1e(q’ ‘L')| — CXp[—(vho)z]’ (27)

where the multiscale ISF is validated by fitting it to the sim-
ulated ISF for multiscale shear showing good agreement in
Fig. 8. In summary, the multiscale ISF is well fitted by the
stretched exponential in Eq. (27) if the following conditions
are satisfied: Fig. 8(a), multiscale ISF can be presented as a
product of ISFs derived for single-scale flows; Fig. 8(b), fitted
exponential for single-scale flows with an exponent of o = 2;
Fig. 8(c), the energy conservation of Fourier modes. From
Egs. (26) and (27), the shear timescale follows relation

st =Y (1/70) (28)

k

k . k
where TS( ) can be obtained at |FS( )| = exp(—1).

By analyzing the simulated XPCS for a multiscale flow
without any Fourier scale decomposition, we can obtain a
ratio cmliseale — 40 /3 o The ¢™ultiscdle jg expected to be close
tO Cavg, an average of c® for k < ketost, illustrated as fol-
lows. For that ¢*) is nearly invariant for Fourier decomposed
flows, the distributive property provides Y, (c®ul))? ~
Covg 2 (R )?. Following Eq. (25), a ratio ¢™e s
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FIG. 9. The characteristic shear velocity, v(()k), obtained by fit-
ting |FV)? = e 200007 g |F2,, for the synthetically modified
multiscale flow after Fourier scale decomposition. The modified mul-
tiscale flow represents application of instabilities with an increasing

velocity spectrum and more energy distributed at small scales near

2 .
(lw®)%) where u'®). is

Keuot- The v scales likewise to the u/®) =

the square root of the E* (k) in Fig. 22 in Appendix D following the
power law k%/3.

required to complete

multiscale\2.,2  ~_ .2 (k) 2
(c ) Urms ™ Cavg Z (urms) ’ 29
k

where c,y, is an average of ¢® for k < keyofr and, as expected,
the cmuliscale — () 490 obtained from the original multiscale
turbulence is approximately equal to c,yg = 0.492.

When more energy is distributed for k > kcyoft, the accu-
racy of the fit in Eq. (27) to simulated multiscale ISF becomes
slightly lower due to the decrease in the proportionality value
¢®. This is because more energetic scales (with larger v(()k))
contribute more to the multiscale ISF. To quantify the impact
of the decreasing ratio ¢*), we synthetically modify the turbu-
lence flow field to create an increasing velocity spectrum (see
Fig. 22 in Appendix D). Instability growth is manifested in the
wave number power spectrum through an increasing spectrum
at early times when the flow is perturbed at small scales
(or energy is injected at small scales due to potential energy
release) [75-77]. Small-scale perturbations such as porosity
or defects can trigger instability when the target is accelerated,
such as due to the passage of a shock. We show that decreasing
ratios ¢® due to numerical errors have limited impact on the
validity of Eq. (29). The turbulence flow field in Fourier space,
@', is modified by multiplying a coefficient, &’ = k°1@, where
¢ =23/2 for k <16pum~"' and ¢ =3/2 —0.03(k — 16) for
k > 16 um™~". The ¢ values ensure the peak of the spectrum to
be at keyofr to split roughly equal amount of energy less than
and greater than k.yofr in Fig. 9. The velocity spectrum follows
a power law of k=3/3+¢" = k%3 for k < 16um™". Since that
the spectral scaling varies between k! and k? at scales larger
than that of the peak in isotropic homogeneous turbulence
[78], the k*/3 scaling is a reasonable choice as the scaling
depends on the initial conditions of the instability. The ratio of

v(()k) to u’fﬁl)s is almost equivalent to a constant c® at k < keytoft
shown in Fig. 23 in Appendix D. The 54% kinetic energy
content beyond the k.ot brings an absolute error of 4.4%
between c™tiscdle — () 461 and Cavg = 0.482, which imposes
limited impact on [Fultiscale (g 7)),

C. Timescale in multiscale flows

From Eq. (15) and Eq. (27), the diffusion and shear
timescales are tp = 1/Dg” and 75 = 1/vyq, respectively. We
can measure the two timescales separately only when they
differ by orders of magnitude, since the intensity autocorrela-
tion in Eq. (1) only provides the combination of Fpp(q, T) and
Fs(g, ) in experiments. While tp and 7y are in the same order
of magnitude, it is challenging to extract the diffusion coeffi-
cient. This situation is possible in HED conditions with large
diffusion coefficient, e.g., D = 1 x 1073 cm?/s employed in
this case. At ¢ = 0.01 A~!, we get the same timescale 7 =
g = 1 ns with a characteristic shear velocity of 0.01 um/ns,
which is minuscule compared to typical shock velocities in
HED experiments [21,79,80].

The product of Eq. (15) and Eq. (27) gives the general ISF,

| Faeneral (g, T)| = expl—Dg*t — (voq7)*], (30)

where we can derive an explicit timescale at |Fyeperal (¢, T)| =
exp(—1) thanks to the exponential form in both Eq. (15) and

Eq. (27),
—Dg* + /D*q* + 4v2g?

20242

Tgeneral = ’ (31)
where the timescale is a new contribution but following the
properties of the original timescales that the diffusion dom-
inates when Dg? > voq, and shear dominates when Dg> <
vog [37]. This is demonstrated by observing t ~ 1/¢° at
g>10"A" and t ~1/g at ¢ < 1072A"! in Fig. 10. To
analyze free diffusion and multiscale shear components, we
use Eq. (30) and apply least-squares regression to simulated
ISF at various g (equal to or greater than two ¢ values) to fit
for D as well as vy. Alternatively, for a quick but less accurate
estimation of D, we can use only two g values to derive an
explicit equation,

_ 11/gq —1/7iq
T2 n-1g

where 7; and 7, are the timescales obtained at g; and ¢
for |Fgenml|2 = exp(—1). We show the approximation of D
using the least-squares regression method in Fig. 11. There
is a maximum of approximately +2% timescale error at
|Fgenml|2 = exp(—1) between the fitted ISF and the true ISF
due to the deviation from the sinc function especially at small
k. In Fig. 11, the approximation of D is more accurate in the
diffusion dominance range or in the range where Dg* and vog
are comparable, while D is sensitive to the timescale change
at small ¢ dominated by shear. As opposed to the diffusion
coefficient, the characteristic shear velocity vy displays more
errors at large g due to diffusion dominance in Fig. 12.

The sources of errors in XPCS experiments include photon
shot noise, detector noise, partial coherence effect, etc. Un-
der good experimental conditions, the comprehensive impact

(32)
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FIG. 10. The timescale for the composition of free diffusion
and multiscale shear, Tgepera, Obtained from the multiscale turbu-
lence through the theoretical equation Eq. (30) at |Fgcnml|2 =e .
The timescale follows ¢! at shear dominance (g < 1072 A~! for
vo = 0.042 um/ns) as expected, for that 5 = 1/(ﬁv0q) in the
shear only case. The timescale follows ¢~ at diffusion dominance
(g > 107" A" for D =1 x 1073 cm?/s) as expected, for that 7, =
1/(2D?q) in the diffusion only case.
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FIG. 11. The diffusion coefficient, D, obtained from the sim-
ulated sequential-pulse XPCS using least-squares regression (red
dots) compared to the predefined diffusion coefficient (black line)
in simulated XPCS. (a) represents the results using the original
turbulence and a theoretical D = 10~ cm?/s. (b) represents an HED
scenario where the turbulence velocity is raised by two orders of
magnitude to a few um/ns and theoretical D = 10~ cm?/s. The
shaded area is the error of diffusion coefficient with +2% variation
of timescale. The errors in diffusion coefficient estimation is more
sensitive to timescale fluctuation at small ¢ (¢ < 1072A~!) due to
shear dominance.

0.046
(a) [ ] V0
~ 0.044 | + 2% timescale error |
\G O (]
g 0.042¢ . . ° . ]
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FIG. 12. The characteristic shear velocity, vy, obtained from the
simulated sequential-pulse XPCS using least squares regression. (a)
represents the results using the original turbulence and a theoretical
D = 1073 cm?/s. (b) represents an HED scenario where the turbu-
lence velocity is raised by two orders of magnitude to a few um/ns
and theoretical D = 102 cm?/s. We show that v, are consistent by
varying g, where the values of v, are insignificant for the purpose
of this work. The shaded area is the error of characteristic shear
velocity with 2% variation for the timescale, which implies the
shear velocity estimation is more sensitive to timescale fluctuation
at large g as opposed to the D estimation in Fig. 11.

leads to errors of less than 10% in g, or the speckle con-
trast [81]. In single-pulse mode experiments, more errors are
expected due to a lower signal to noise ratio. In two-bunch
mode (or split-and-delay) experiments, additional errors can
arise from characterizing the pulse intensity ratio and spa-
tial overlap between the pulses. In these cases where XSVS
is used, errors are typically between 10%—-20% [56,82]. We
show an error analysis for Eq. (30) by incorporating typical
experimental errors and the +2% timescale error with fixed
average values of D and vy in Fig. 13.

Through deriving the general ISF and timescale, our
method allows for estimation of diffusion coefficient in the
presence of complex multiscale flows, and the maeterial
dynamics can be better understood by identifying the individ-
ual contribution from free diffusion and isotropic multiscale
flows. Our theoretical framework rests on a few important
conditions that determine the domain of validity within which
we expect it to hold. (i) Isotropy is a weak constraint, as
the multiscale ISF requires minor modification for anisotropic
shear based on different shear directions. (ii) The theory that
separates diffusion and shear is based on different scaling of
their timescales. This framework is not applicable if there is
any mechanism coupled to diffusion or shear dynamics that
changes the scaling of timescale. For example, phase tran-
sition can lead to subdiffusion (or superdiffusion) that does
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FIG. 13. An error analysis for Eq. (30) by incorporating both
typical experimental errors and the +2% timescale error with fixed
average values of D = 1 x 1072 c¢m? /s and vy = 4.2 um/ns. For the
experimental errors, we add either (a) £10% or (b) £20% variation
on IFgenerallz-

not follow a standard mean-squared-displacement theory. (iii)
In the ISF in Eq. (14), it is assumed that the shear velocity
is quasisteady over the temporal resolution of the diagnostic,
7. The framework could break down if the diagnostic has a
relatively coarse temporal resolution that cannot resolve rapid
changes in shear. As for example applications, our framework
works for two-fluid mixing, and microdroplet formation as
long as droplets remain much smaller than the probe volume.
However, it may break down for reactive systems, where
altered timescale scaling can invalidate the theory.

Finding diffusion coefficient D is relevant to explore mate-
rial viscosity 1 through the Stokes-Einstein relationship [83],
D = kgT /6mna, where a is the particle radius. A typical
diameter of nanoparticles used in experiments is around a
hundred nanometers [84]. This relationship holds true with
the assumption of Stokes law at low Reynolds number. In our
study, the Reynolds number remains low near the length scale
of particle diameter, whereas high Reynolds number exists
globally with the presence of multiscale flow and turbulence.
However, further investigation is required to accurately ap-
proximate 7 in future studies.

IV. PROBING ULTRAFAST DYNAMICS USING XSVS
A. Single-pulse XSVS

To explore the diffusivity and viscosity in warm dense
matter under shock compression, it is required to access ma-
terial dynamics below nanosecond timescale. This is hardly
accessible with sequential x-ray pulses, while the frame rate of
state-of-the-art detectors is limited for XPCS to probe down to
submicrosecond timescale [85]. One method of accessing fast
dynamics is through single-pulse mode [23] (with timescale

(@) ]T[

Scattering
Single pulse K,
Aq
(b) Ef ¥ 3
Two pulses

Partially coherent speckle
pattern, /,(q, ) or 1,(q, T)

Random scatterers

FIG. 14. Schematics of (a) single-pulse scattering where the in-
tensity distribution, /x(q, 7), is the scattering intensity integrated
over the x-ray pulse duration 7, and (b) double-pulse scattering
where the intensity distribution, ,(q, 7), is the sum of the scattering
intensity from the two pulses separated by 7. The scattering intensity
generated by both methods are typically analyzed using XSVS.

of 100-femtosecond regime), where single-pulse XSVS is
used to analyze the contrast as a function of the exposure
time over the x-ray pulse duration [24-26] shown in Fig. 14.
Single-pulse XSVS is conducted by varying the x-ray pulse
duration instead of the separation time between pulses, since
the acquisition time of current detectors is much larger than
the x-ray pulse time in tens of femtoseconds.

For single-pulse scattering, we can model a single incoher-
ent speckle pattern by superimposing the scattering intensities
from M statistically independent coherent speckle patterns.
The probability distribution of the normalized intensity fol-
lows the Erlang distribution,

MKMfl

PM(K) = m exp(—KM), (33)

where M = 1/6(gq) and k(q) = 1(q)/{I(g)). For M = 1, the
probability distribution follows an exponential form implying
the pattern mostly consists of grainy speckles. For M > 1, the
incoherent speckle pattern leads to decreased contrast, hence
the peak of the probability distribution Py, (k) shifts toward a
diffused speckle pattern, x (¢) = 1, as shown in Fig. 15. In our
simulated scattering, coherent illumination is assumed with
M=1.

In single-pulse scattering, the intensity, Ia(q, 7), records
the integrated signal over the pulse duration t,

IA(q,r)=/0 I(g,t)dt. (34)

The speckle visibility is specified by the contrast of single-
pulse XSVS, Ba, which has the same definition as in Eq. (3)
by replacing I(g,t) with Ix(g, 7). In simulated single-pulse
scattering, the integrated intensity is obtained by superimpos-
ing all speckle patterns generated within the time duration 7.

From the Siegert relation in Eq. (2), the contrast can be
written as an integration of the squared ISF over the x-ray
pulse time [53,86],

Ba(q, v) = Bo(q) /0 2(1 —t/T)|F (g, *dt/t*,  (35)
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FIG. 15. (a) A coherent speckle pattern with (c) the probability distribution of the normalized intensity, x (¢) = Ia(q)/{Ia(q)), in the shape
of an exponential decay. (b) A partially coherent speckle pattern by superimposing five independent speckle patterns (no correlation with
sufficiently large time delay), which results in diffused intensity distribution and (d) the peak of the probability distribution shifts toward the

averaged intensity, k = 1.

where B(q) is obtained for the normalized intensity variation
with minimal pulse duration, represented by a single speckle
pattern without superposition in simulated single-pulse scat-
tering.

Substituting Eq. (30) and taking the definite integral, the
contrast decay gives

WrtGy [T s
Balq.T) =/30(q){<;—:2_>/0 e V26t gy

N e—2Vt2—2G‘E -1
2V 2 ’

where G = Dg” and V = (vpq)>. We validate this theoretical
equation through simulating single-pulse scattering by inte-
grating the intensity on discrete speckle patterns over the pulse
time, where the theoretical contrasts agree with the simulated
contrasts from single-pulse XSVS in Fig. 16. Note that the
equation contains a definite integral that can be calculated
numerically, since a complete analytical solution contains
error functions leading to extra numerical errors shown in
Appendix C. Estimation of D and v, can be obtained through
least-squares regression with the input arguments g, By, t,
and Ba. In Figs. 25 and 26 in Appendix D, the approximated
D and vy resemble the ones with sequential-pulse XPCS as
described in Sec. IIIC. The errors in the estimation of D

(36)

and vy are relatively large compared to the sequential-pulse
XPCS for that more numerical errors are introduced by inte-
grating discrete intensity distribution over the pulse time. It
is difficult to define an identical timescale to the sequential-
pulse XPCS since the exponential function is embedded in the
definite integral. However, we can characterize the contrast
decay time as a timescale for T at So = exp(—1) that still
follows the scaling of diffusion and shear in g space shown in
Fig. 17.

B. Double-pulse XSVS

Double-pulse XSVS is a method for analyzing the con-
trast as a function of the time separation between two short
x-ray pulses. To capture ultrafast dynamics, the time sepa-
ration between pulses requires to be short, so the detector
only records the sum of the scattering patterns with lim-
ited integration time. For single-pulse experiments, the pulse
time is limited up to the order of several hundreds of fem-
toseconds to avoid perturbing the system with excessive
radiation. Due to the nature of the double-pulse structure,
XSVS can be used to analyze dynamics with a broader
timescale operated between picoseconds using the split-and-
delay method by splitting an individual pulse into two through
optical approaches [56,87] and nanoseconds using two-bunch
mode [88,89].
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FIG. 16. Validation of theoretical contrast by comparing simu-
lated optical contrast, (84 )sim(g, T), in single-pulse XSVS for (i) free
diffusion to Bap(g, ) in Eq. (C1), (ii) multiscale shear to Bas(q, T)
in Eq. (C2), (iii) composition of free diffusion and multiscale shear to
Ba(g, T)inEq. (36) with D = 1 x 1073 cm?/s and vy = 0.042 um/ns
atg =0.025+5 x 1074 A1,

In double-pulse scattering, the scattering pattern records
the summed scattering intensity, (g, 7) = I(q,t) + (g, t +
7) with a time separation t between the two pulses. With two
x-ray pulses of identical intensity, the contrast is derived [90]
from the Siegert relation,

B2(q. T) = 1Bo(q)(1 + |F (g, D). (37

The simulated double-pulse scattering is performed through
superimposing every two scattering patterns separated by 7,

\ —e—timescale
100 ¢ —q ]
_ 2
q
»n
g
=
10721 ]
p
1073 1072 107!

g (A

FIG. 17. The timescale for single-pulse XSVS with the compo-
sition of free diffusion and multiscale shear, Tyeneral, Obtained through
the multiscale turbulence using theoretical equation, Eq. (36), at
Ba = e~ !. The timescale still follows g~! at shear dominance (g <
1072A-") and ¢~ at diffusion dominance (g > 10~' A~") even
though the timescale with the integration of |F (g, t)?| is different
from that of in Fig. 10.
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FIG. 18. Validation of theoretical contrast by comparing simu-
lated optical contrast, (8,)sm(q, T), in double-pulse XSVS for (i)
free diffusion to B,p(g, T) using Egs. (37) and (15), (ii) multiscale
shear to B5(g, 7) using Egs. (37) and (27), (iii) composition of free
diffusion and multiscale shear to B,(g, v) using Eqgs. (37) and (30)
withD =1 x 1073 cm?/s and vy = 0.042 um/ns at g = 0.025 £ 5 x
1074 A"

in which f is the contrast for a speckle pattern at T =0
assumed to be completely coherent. Note that the contrast
in double-pulse XSVS has an asymptotic limit of fy/2 for
T — oo instead of zero in sequential-pulse XPCS [Eq. (30)]
and single-pulse XSVS [Eq. (36)]. With the asymptotic limit,
B is more sensitive to contrast fluctuation, which might lead
to extra errors while estimating D and vy. The comparison
in Fig. 18 shows good agreement between the theoretical
contrasts and the simulated contrasts from the double-pulse
XSVS. Since Eq. (37) directly incorporates the Siegert rela-
tion, the timescales remain identical to the sequential-pulse
XPCS in Eq. (31) (see Fig. 10). We can apply either Eq. (32)
or least-squares regression to approximate D and vy, which
resembles the estimation in sequential-pulse XPCS in Figs. 27
and 28 in Appendix D.

Although the pulse structures from single-pulse mode and
two-bunch mode (or split-and-delay method) offer the capa-
bility for measurements below nanosecond timescale, g-range
limit imposes difficulties on reaching the minimum timescale
possible to neglect shear effects on ISF by having diffusion
dominance. At high g range, the photon flux is significantly
reduced, meanwhile, decreased contrast and low photons
per pixel lead to a low signal-to-noise ratio [91,92]. Thus
more repetitions are required to improve the results to fol-
low the photon statistics at high ¢g. Additionally, scattering
of plasma at high ¢ imposes risks on shifting photon energy
and broadening energy bandwidth due to inelastic scattering
by transferring more momentum to free electrons. For these
reasons, developing such a methodology for diffusion charac-
terization at an working range of intermediate g range, where
the ISF is determined by both free diffusion and multiscale
shear, is essential for future experiments in warm dense matter
with fast dynamics.
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V. CONCLUDING REMARKS

In this study, we have developed a comprehensive theo-
retical framework for XPCS, deriving the ISF for samples
undergoing isotropic multiscale shear flows. Our approach
leverages Fourier analysis to decompose multiscale flows
into components within Fourier bands, allowing characteri-
zation of the interplay between shear and free diffusion in
simulated XPCS based on single-scale theory. By extend-
ing the theory of a uniform shear flow to multiscales, we
have introduced a general timescale that accounts for the
complex dynamics through conserved energy in Fourier de-
composition and a stretched exponential approximation to
the ISF.

We demonstrate that the combination of multiscale shear
and free diffusion can be effectively analyzed in sequential-
pulse XPCS, single-pulse XSVS, and double-pulse XSVS
techniques. These experimental techniques support the ver-
satility of our theoretical framework over timescales ranging
from picoseconds to hours. Our simulated results validated
the theoretical models, showing that the diffusion coefficient
and characteristic shear velocity can be measured, even with
comparable associated timescales.

Our analysis highlights the significance of understanding
the dependence of different physical processes on ¢ using a
general timescale. For measurement of diffusion coefficient
and multiscale shear velocity, it is no longer crucial to dis-
tinguish the individual contribution of shear and diffusion
using two separate timescales. This relaxes the limitation
to high ¢ range to maintain diffusion dominance in fu-
ture experiments, where the photon flux and contrast are
considerably reduced. This is important for advancing the
application of XPCS in studying material properties incur-
ring fast dynamics when shear flows are prominent, such as
in high-energy-density shock-induced multiscale flows. We
hope the methodologies presented here can help relax the
restriction to a particular g range that avoids shear effects in
designing more sophisticated experiments and in developing
new analytical tools for probing the dynamics in multiscale
flows.
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APPENDIX A: ISF FOR SINGLE-SCALE
SINUSOIDAL FLOW

In Sec. IIB, we discuss the analytical solution of ISF
for uniform shear, whereas the flow profiles obtained from
Fourier analysis are sinusoids. To demonstrate the resem-
blance between these two cases, we find |Fs(g, 7)|* for a
sinusoidal velocity difference, dv(y) = ug[sin(y,) — sin(y;)],
with constant velocity uy. Substituting the velocity difference
into the last term of Eq. (14) and integrate over the field size,

1 L L
|FS(CI,T)|2=[7 / / expliquo[sin(x2) — sin(x)]7]
0 0

X dxld)Q. (Al)

We are not aware of a closed form solution for this integral,
but we can approximate the solution using an asymptotic
expansion. The function exp [igug sin(x)t] can be expanded
involving Bessel functions of the first kind according to the
Jacobi-Anger expansion,

o]

eiqrug sin(x) _ Z J, (CITMO )einx ]

n=—0o0

(A2)

Substituting this series into one of the integrals we derive,

oo

L
/ eiqrug sin(x)dx — Z

0 n=—00

L
|:Jn(qtuo) f ein"dxi|. (A3)
0
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y

u=Cxj

R

FIG. 19. Schematic of superimposing two perpendicular uniform shear flows, u = Cyi and u = Cxj, where C is a constant rate of shear.

The integral fOL é™dx =L for n=0, and fOL ey =
[exp(inL) — 1]/in for n # 0. Taking the domain size L = 2,
the integral vanishes for n # 0, hence, the asymptotic expan-
sion of |Fs(g, T)|> becomes

2 1 2 2
|Fs(q, )l :EJO(qu)L = Jy(qTuo), (A4)
which displays similar trend of decay as compared to
sin?(g7vg)/(gTvy)?. It approaches the stretched exponential

approximation with reduced oscillation using the superposi-
tion method discussed in Appendix B.

APPENDIX B: SUPERPOSITION OF SHEAR
IN PERPENDICULAR DIRECTIONS

In Sec. II B, we discuss the analytical solution of ISF for
uniform shear with the flow velocity in the direction of the x
axis. Here we superimpose a shear flow field of the same mag-
nitude but with velocity oriented in the y axis (see Fig. 19) to
demonstrate the nearly invariance of |Fs(q, 7)|* as a function
of q proportional to the angle 6.

From Eq. (14), the ISF for shear is written as

1 —iq-év;t
Fs(@, 1) = Xj:e v, (B1)
where we can decompose the vectors q = q, + q, and §v; =

8V;y + &vj, in 2D Cartesian coordinate, and the squared ISF
is given by,

1
|Fs(q, 7)]> = el

gii[‘b (6 U_/xféle)“F%‘(sv_zyfsvly))lr
§ E )
j !

(B2)

then the velocity difference due to shear can be represented by
Svx = yx(y1 — ¥2) and dv, = y,(x; — x2). Replacing the sum
with an integral over the field size,

oLz
IFs(q, )I> = — f f expligyyx(y2 — yDtldyidy,
L>J rpJorp

L/2 pLj2

expligyyy(x2 — x1)tldx1dx;

1
X JE—
L2 ) 1) 1

_1 [expaquxym]m [exp(—imyn)T”

L Gy YxT —L)2 —igx Vi T —L)2
y [GXP(iqyJ'/szr)T/z [exr)(—iqyi/yxlf)]”z
iqyyyT —L/2 —igyyyT —L2

(B3)

Applying the Euler formula after integration and define the
characteristic shear velocity vy = yxL = y,L for the same
magnitude of uniform shear but in perpendicular directions,

sin®(voq,/2) sin®(vogqyT/2)
(V0gxT/2)?  (voqyT/2)*

where g, = gcos6 and g, = g sin 6. This equation manifests
similar values at any 6 as expected for a nearly invariant
|Fs(q, 7)|*> at a fixed ¢, and approaches Eq. (16) for 6 —
nm /2. The oscillation in |Fg(q, 7)|? is reduced and approaches
a Gaussian shape for 6 — nm/2 + /4. Note that the ISF

|Fs(q, 7)I* = (B4)

102
NUJ
MS 1074 :
g
=
— EY(k)
T 100F |- - :
3
) K2
_kcutoff
_8 | |
10
10° 10! 10°

k (upm™t)

FIG. 20. Spectra of velocity, E“(k), for the multiscale flow
follwoing the Kolmogorov’s k= power law. Here E"(k)=

thl dl<05 %lﬁ(k)|2, where (k) is the Fourier coefficient. The

numerical errors in multiscale theory due to particle velocity inter-
polation near mesh grid size is negligible for k < keyoff = 16 um™=".
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FIG. 21. The ratio ¢® = v\ /u®) for three mesh resolutions.
Higher resolution extends the constant ratio to a smaller length scale.
The decreasing ratio has limited impact on the multiscale theory even
with more energy weighted at small scales.

only tracks the particle velocity difference, therefore the ori-
entation of the perpendicular flows does not affect the result.
That said, the rotation only velocity field (solid body rota-
tion), u = C(— yl + x]) and the strain-only velocity field u =
C(yl + x_]) with a constant C, lead to identical |Fs(q, 7)|>.

APPENDIX C: ANALYTICAL CONTRAST FOR
SINGLE-PULSE XSVS

Analytical solution of contrast for single-pulse XSVS dif-
fers from sequential-pulse XPCS and double-pulse XSVS as
an integral over the x-ray pulse delay is required to incorporate

10_5 /—/__—_/\/‘/—‘ |

E“(k)
— o 7.4/3
1 0-15 L . i
— cutoff
10° 10! 10

k (upm™t)

FIG. 22. Spectra of velocity, E* (k) = Z\lk\—k|<0.5 %|ﬁ’(k)|2, for
the modified multiscale flow. Here &' = k%@, where ¢ = 3/2 for
k<16um™" and ¢ =3/2—0.03(k — 16) for k > 16 um~'. This
represents the case like instabilities with more kinetic energy at small
scales to verify the limited impact of small-scale energy on the mul-
tiscale theory. The spectrum follows a power law of k¥/3 = k=5/3+¢
fork < 16um~".

P o = T, ’
— kcutoff
0.2 :
10° 10! 102

k (um™)

FIG. 23. The ratio ¢® = v\ /u/®) is approximately a constant
for k < 16um™" = keyoft for the synthetically modified multiscale

flow, implying a nearly linear scaling between vy and u/%).

|F(q, 7))? in the contrast function in Eq. (35). The contrast for
free diffusion has been used extensively [25,53] by substitut-
ing Eq. (15) into Eq. (39),

exp(—2Dgq’t) — 1 + 2Dg*t
2(Dg*t)?

Ban(g, T) = ﬂo(q)[ } (CH

Similarly, we substitute the |Fsm”1‘isc"‘le(q, 7)|? for multiscale
shear in Eq. (27) into Eq. (35) with the stretched exponential

-3
1.5 210 |
141} e diffusion coefficient
134 + 2% timescale error
’ —D=1x102cm?%s
1.2+ _
211} . ) |
: <
Q0.9 j
0.8 | i
0.7 i
0.6 | i
0. 5 . !
5x10° 102 5 x 102

g (A

FIG. 24. The diffusion coefficient, D, obtained from the simu-
lated XPCS using explicit formula in Eq. (32) (red dots) compared to
the predefined diffusion coefficient (black line). The shaded area is
the error of diffusion coefficient with +2% variation for the timescale
implying the diffusion coefficient estimation is more sensitive to
timescale fluctuation at small g. The explicit equation is a convenient
way to estimate D using two g values, however, it introduces more
errors compared to that of the least-squares regression method in
Fig. 11(a).
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FIG. 25. The diffusion coefficient, D, obtained from the simu-
lated single-pulse XSVS using least-squares regression (red dots)
compared to the predefined diffusion coefficient (black line).
The shaded errors are larger than that of sequential-pulse XPCS
[Fig. 11(a)] and double-pulse XSVS (Fig. 27) due to integration over
discrete speckle patterns in time.

approximation, to derive the contrast function,

Bas(q, T)
e 2000 1 4 /277 (voq derf(v/200q7)
= ﬂo(Q)[ 2 }
2(vogqT)

(C2)

We describe the contrast that consists of both free diffusion
and multiscale shear by substituting Eq. (30) into Eq. (35) in
Sec. IV A. One can further simplify the numerical integral in

0.048
0.046 i
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FIG. 26. The characteristic shear velocity, vy, obtained from
the simulated single-pulse XSVS using least-squares regression.
The shaded errors are larger than that of sequential-pulse XPCS
[Fig. 12(a)] and double-pulse XSVS (Fig. 28) due to integration over
discrete speckle patterns in time.
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FIG. 27. The diffusion coefficient, D, obtained from the simu-
lated double-pulse XSVS using least-squares regression (red dots)
compared to the predefined diffusion coefficient (black line). The
shaded errors are comparable to that of sequential-pulse XPCS
[Fig. 11(a)] by having direct proportionality between contrast and
IF(q, D

Eq. (36) to achieve an analytical solution with the erf function,

IBA(q’ 7:)
% WT+G\ _ G
o JTQVT + Qe [erf(25C) — ert ()]
(2‘/)3/21—2
e—ZVrz—ZGr -1
+ T} )
0.048
e V
0
0.046 + + 2% timescale error | |
. 0.044 + 1
&
é [ ]
= 0.042'; i . . G 1Y
(e
= 0.04} )
0.038 t )
0.036 -— : '
5% 10-3 102 5x 1072
-1
g (A7)

FIG. 28. The characteristic shear velocity, vy, obtained from the
simulated double-pulse XSVS using least-squares regression. The
shaded errors are comparable to that of sequential-pulse XPCS
[Fig. 12(a)] by having direct proportionality between contrast and
IF(q, )
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where G = Dg? and V = (voq)*. This equation works well at
small g, however, considerable numerical errors occur at large
q is one caveat. The numerical errors are due to the product
of an exponential approaching infinity as g increases and the
difference of erf function with the limit of zero. Using the
numerical integral in Eq. (36) is preferred as it behaves like the
erf function with a positive asymptotic limit. The estimation of
the diffusion coefficient in all these equations can be obtained
through least-squares regression with the input arguments of
the measured contrast function versus pulse time t at different
q values.

APPENDIX D: SUPPLEMENTARY FIGURES

Figure 20 shows the velocity spectrum of the turbulence
field used in simulated XPCS. The spectrum follows Kol-
mogorov’s k—>/3 power law for 3D homogeneous isotropic
turbulence and is the square of the rms velocity, u{k), in Fig. 6.

Figure 21 shows the ratio of characteristic velocity to flow
rms velocity for different mesh resolutions. The ratio variance
is due to numerical errors of particle velocity interpolation
while approaching the grid size. The decreasing ratio has lim-
ited impact on the multiscale theory even with an increasing
spectrum (more kinetic energy at small scales) discussed in
Sec. III B.

Figure 22 provides the velocity spectrum of the syntheti-
cally modified field used in simulated XPCS. With a power

law of k*/3 at large scales, the kinetic energy content is shifted
to smaller scales. The theory of multiscale flow is validated
using this flow field even though the peak of kinetic energy is
close to keuiofr- The scaling of the spectrum is the square of the
rms velocity, «'*) | in Fig. 9.

Figure 23 shows almost equivalent scaling between v,
and u/®) for the synthetically modified multiscale flow. The
average value of ¢® for k < 16 um~! is 0.482 still close to the
ratio obtained for the synthetically modified multiscale flow
cmultiscale — () 461, while the discrepancy is larger compared to
the original multiscale flow by having more energy weighted
in the decreasing ¢® region.

Figure 24 is an estimation of D using the explicit formula
in Eq. (32), which provides a fast way to examine D. How-
ever, it introduces poorer statistics with the timescale variance
compared to the least-squares regression method in Fig. 11(a)
since only two ¢ values are considered.

Figures 25 and 26 are D and v, obtained from single-pulse
XSVS, where more errors are introduced as compared to that
of sequential-pulse XPCS [Figs. 11(a) and 12] and double-
pulse XSVS (Figs. 27 and 28). The numerical errors are due
to the integral over intensity distribution from discrete rather
than continuous speckle patterns in time.

Figures 27 and 28 are D and v, obtained from double-
pulse XSVS, where the errors are comparable to those of
sequential-pulse XPCS [Figs. 11(a) and 12], since the contrast
is determined by the same |F (¢, T)|? in double-pulse XSVS.
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