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Alpha helices are more evolutionarily robust to environmental perturbations than beta sheets:
Bayesian learning and statistical mechanics for protein evolution
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How typical elements that shape organisms, such as protein secondary structures, have evolved, or how
evolutionarily susceptible/resistant they are to environmental changes, are significant issues in evolutionary
biology, structural biology, and biophysics. According to Darwinian evolution, natural selection and genetic
mutations are the primary drivers of biological evolution. However, the concept of “robustness of the phenotype
to environmental perturbations across successive generations,” which seems crucial from the perspective of
natural selection, has not been formalized or analyzed. In this study, through Bayesian learning and statistical
mechanics we formalize the stability of the free energy in the space of amino acid sequences that can design
particular protein structure against perturbations of the chemical potential of water surrounding a protein as
such robustness. This evolutionary stability is defined as a decreasing function of a quantity analogous to the
susceptibility in the statistical mechanics of magnetic bodies specific to the amino acid sequence of a protein.
Consequently, in a two-dimensional square lattice protein model composed of 36 residues, we found that as we
increase the stability of the free energy against perturbations in environmental conditions, the structural space
shows a steep steplike reduction. Furthermore, lattice protein structures with higher stability against perturbations
in environmental conditions tend to have a higher proportion of α helices and a lower proportion of β sheets.
This result is qualitatively confirmed by comparing the histograms of the percentage of secondary structures
of evolutionarily robust proteins and randomly selected proteins through an empirical validation using a protein
database. The result shows that protein structures rich in α helices are more robust to environmental perturbations
through successive generations than those rich in β sheets.

DOI: 10.1103/PhysRevResearch.7.023115

I. INTRODUCTION

Understanding whether fundamental elements that shape
organisms are evolutionarily robust or prone to change
is crucial for addressing why the phenotypes of exist-
ing organisms are so limited compared to the physi-
cally possible patterns, or for resolving significant issues
such as predicting evolution. According to Darwinian
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evolution, the two key forces driving evolution are genetic
mutations and natural selection. Therefore, when address-
ing protein evolution, the crucial concepts linked to the
aforementioned problems, are the relationships between
mutational/environmental robustness and protein structure. In
particular, about environmental robustness, natural selection
is the phenomenon by which differences in environmental
fitness become apparent in subsequent generations. Hence,
it is important to consider whether a given protein structure
remains robust against environmental changes even in later
generations.

Many studies on protein evolution suggest that mutational
robustness may have driven the evolution of characteristic
protein structures [1–5]. It has been shown that there is a
correlation between mutational robustness and the geometric
symmetry of protein structures [6], that secondary structures
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are more robust to mutations than intrinsic disorder structures
[7], and that mutational robustness and the structural modu-
larity of proteins (i.e., the proportion of amino acid residues
forming secondary structures) contribute to the evolvability of
proteins [8,9]. Furthermore, the low algorithmic complexity
of gene sequences achieves symmetric protein structures [10].
It is also demonstrated that mutational robustness is well
compatible with the functional sensitivity of proteins [11],
and there is a correlation between the dynamics of protein
structures and their evolvability [12]. These various lines of
research strongly suggest that mutational robustness (and ad-
ditionally, the low algorithmic complexity of genes) drives the
formation of protein secondary structures and the evolvability
of proteins.

In addressing the evolution problem, a statistical mechan-
ics approach to abstract models has also produced significant
results. A study using the spin glass model has shown that,
in evolved organisms, plasticity due to environmental fluctu-
ations and plasticity due to mutations are strongly correlated,
leading to a dimensional reduction in the phenotypic space
[13]. Studies on gene regulatory network (GRN) models have
revealed that GRNs with high fitness exhibit high muta-
tional robustness. This tendency is stronger in GRNs obtained
through evolutionary simulations than those obtained through
efficient sampling methods for exploring high-fitness GRNs
[14,15]. It has also been found that both mutational robust-
ness and developmental robustness drive the evolution of
GRNs [16,17]. These studies suggest that biological evolution
possesses mechanisms different from typical optimization
processes, enabling the selection of GRNs (phenotypes) with
high mutational robustness and noise during development.
These findings imply the reduction of phenotypic space.

The above results have significantly advanced our under-
standing of the relationship between mutational robustness,
developmental robustness, and evolvability in proteins (or life
in general). However, these concepts of robustness pertain
solely to the stability of an individual (or phenotype) against
various perturbations over its lifetime. Since evolution in-
volves changes in genetic information and associated traits
over generations, considering the stability in terms of how
well a trait (phenotype) adapts to or is maladapted to its envi-
ronment, how this influences the genotype that produces the
phenotype, and how these influences alter traits in subsequent
generations, helps understand evolution.

In this study, we define the free energy of the space of
amino acid sequences (i.e., genetic information) that can de-
sign a particular protein structure, utilizing the framework of
Bayesian learning. We discuss the stability of this free energy
against perturbations in environmental conditions surrounding
the protein. The stability of the free energy is determined for
a randomly generated two-dimensional (2D) lattice protein
model, and we elucidate the relationship between the struc-
tural features of the protein and the stability of its free energy.

We use lattice proteins for model proteins [18]. Ran-
dom structural patterns that have not evolved do not
exist in protein structure databases such as the Protein
Data Bank (PDB) [19]. Therefore, artificial models such
as lattice proteins are more suitable for this study. We
show the definition of secondary structures in 2D lattice
proteins of this study in Sec. II D. In the analysis of secondary

structures of 2D lattice proteins, β sheets decrease as the
designability (the number of amino acid sequences that fold
into a given protein structure) increases [20]. Lattice proteins
are also effective for analyzing the free-energy landscape of
protein folding [21,22], the phenomenon of cold denaturation
where proteins denature at low temperatures [23], and the
impact of amino acid residue mutations on the native structure
of proteins [24,25]. Additionally, lattice models are used to
analyze the folding-energy landscape of RNA [26]. Therefore,
if one develops a valid theory for protein evolution, it could
be said that lattice proteins can reveal qualitatively accurate
behaviors in analyzing the environmental robustness of pro-
tein secondary structures across successive generations, our
objective in this study.

II. MODEL AND METHOD

A. Hamiltonian of lattice HP model
with the water chemical potential

The lattice HP model places amino acids at lattice points,
representing the protein structure as a self-avoiding walk on
the lattice. A self-avoiding walk is a path that does not pass
through the same point more than once on a lattice (or graph).
The naturally occurring 20 types of amino acids are sim-
plified into two types: hydrophobic (H), which repels water
molecules, and polar (P), which attracts water molecules.

The structure of a protein, denoted as R, is represented by
the set of coordinates ri for each amino acid. For a protein with
N amino acids, R = r1, r2, · · · , rN . The state of the i-th amino
acid is denoted by σi, with σi = 1 (for hydrophobic) and 0
(for polar). The lattice HP model typically considers only
the attractive interactions between hydrophobic amino acids.
However, since proteins also interact with water molecules
surrounding them, in this study, the Hamiltonian of a protein
with structure R and sequence σ is expressed as follows, with
μ representing the chemical potential of water near the protein
surface:

H (R, σ; μ) = −
∑
i< j

σiσ j�(ri − r j ) − μ

N∑
i=1

(1 − σi ), (1)

where �(ri − r j ) is a contact function that equals 1 when
the ith and jth amino acids are spatially nearest neighbors
but not consecutive in the sequence, and 0 otherwise. The
second term represents the interaction of polar amino acids
with surrounding water molecules.

This Hamiltonian, proposed in our previous study [27],
includes a hydration term, as shown in Eq. (1), which is crucial
for exploring the environmental robustness of protein struc-
tures [28]. Additionally, Eq. (1) can be seen as a simplified
version of the protein energy in water, excluding interactions
between water around the protein and bulk water, as shown
in studies such as Ref. [29]. It is important to note that μ is
not a parameter representing the overall environment within
an organism but rather the environment surrounding a specific
protein.

The chemical potential of water surrounding a protein,
μ, can be considered a parameter representing environmen-
tal conditions, as it depends on the state of bulk water
(such as pH and pressure) and temperature. The strength of
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hydrogen bonds between hydrophilic amino acid residues and
water molecules is generally influenced by temperature. Con-
sequently, μ can be regarded as an environmental condition
specific to the protein structure.

B. Bayesian learning framework

Bayesian learning is a framework for machine learning
based on Bayesian statistics, in which one updates the prior
probability (prior) of an event to a posterior probability (poste-
rior) in light of observed data. Statistical models derived from
Bayesian learning are often interpreted as probabilistic gener-
ative models of observational data. We utilize the properties
of Bayesian learning to construct a probabilistic generative
model for the phenotype of proteins, namely their native struc-
tures. The probabilistic generative model of protein structures
described below was devised in our previous work as a method
for protein design and has achieved a certain level of success
in the context of lattice protein models [27,30]. Protein design
problem is the inverse problem of protein structure prediction.
Protein design is thus determining the sequence of amino
acids that will fold into a given protein structure [31,32].

In our model, we consider the native structure R as the
observed variable, the amino acid sequence σ as the latent
variable, and the chemical potential of the surrounding water
μ as the hyperparameter. In this context, Bayes’ theorem is
expressed as follows:

p(σ|R, μ) = p(R|σ, μ)p(σ|μ)∑
σ p(R|σ, μ)p(σ|μ)

. (2)

Let β the inverse temperature of the environment, the like-
lihood function p(R|σ), prior p(σ|μ), and posterior p(σ|R, μ)
are, respectively, given as

p(R|σ, μ) =e−βH (R,σ;μ)

Z (σ; β,μ)
, (3)

p(σ|μ) =Z (σ; βp, μp)

�(βp, μp)
, (4)

p(σ|R, μ) =e−βH (R,σ;μ)

Y (R; β,μ)
. (5)

The normalization constants of Eqs. (3)–(5) are as
follows:

Z (σ; β,μ) =
∑

R

e−βH (R,σ;μ), (6)

�(βp, μp) =
∑

σ

∑
R

e−βpH (R,σ;μp), (7)

Y (R; β,μ) =
∑

σ

e−βH (R,σ;μ). (8)

We refer to Eqs. (6)–(8) as the structural partition function,
grand partition function, and sequence partition function, re-
spectively. Additionally, the inverse temperature and chemical
potential in the prior Eq. (4) may differ from those of protein
folding and are thus denoted as βp and μp, respectively.

An important point is that the posterior Eq. (5) does not
include the structural partition function Z (σ; β,μ). This is
because Z (σ; β,μ) requires an exhaustive structural search

of the Boltzmann factor, which is infeasible considering the
infinite degrees of freedom of protein structures. The sum over
sequences

∑
σ is much more manageable than the sum over

structures
∑

R.
The likelihood function p(R|σ, μ) represents the probabil-

ity of a given structure R occurring for a given amino acid
sequence σ. This is the probability that σ folds into structure
R. More generally, it is the probability that a given genotype
results in a given phenotype. Eq. (3) asserts that the likelihood
function p(R|σ, μ) is the Boltzmann distribution of structure
R conditional on the amino acid sequence σ. This setting
of the likelihood functions p(R|σ, μ) is based on Anfinsen’s
dogma [33], which states that the state in which a protein
adopts its native structure is a thermodynamic equilibrium
determined by its amino acid sequence under physiological
conditions.

The prior in Eq. (4) is highly nontrivial. To briefly explain
the background of our setting of the prior in Eq. (4), it is based
on the free energy of a protein with amino acid sequence σ,

F (σ; βp, μp) = − 1

βp
log Z (σ; βp, μp), (9)

which is proportional to the structural partition function
Z (σ; βp, μp) included in it. Since low free energy implies a
large partition function, the prior in Eq. (4) can be interpreted
as the hypothesis that amino acid sequences with lower free
energy under specific temperature βp and chemical potential
μp have evolved. We call this the hypothesis of sequence
weights (HSW). HSW was first proposed in Ref. [27]. Amino
acid sequences with high free energy Eq. (9) tend to increase
the Hamiltonian Eq. (1) for many structures. The probability
that such amino acid sequences form specific compact three-
dimensional structures is extremely low. HSW is a hypothesis
that preemptively excludes such sequences.

HSW is still an unverified hypothesis, but our previous
studies [27,30] have shown that a protein design method as-
suming HSW exhibits high performance for the 2D lattice
HP model with N � 36, which we will analyze in this study.
Protein design problem is the inverse problem of protein struc-
ture prediction. Additionally, using the prior Eq. (4) based
on HSW allows us to cancel out the two partition functions
Z (σ; β,μ) and �(β,μ) required for deriving the posterior,
thereby avoiding the computational explosion associated with
structural searches.

If β = βp, μ = μp holds, the derivation of the posterior
p(σ|R, μ) is then,

p(σ|R, μ) = p(R|σ, μ)p(σ|μ)∑
σ p(R|σ, μ)p(σ|μ)

(10)

=
e−βH (R,σ;μ)

Z (σ;β,μ) · Z (σ;β,μ)
�(β,μ)∑

σ
e−βH (R,σ;μ)

Z (σ;β,μ) · Z (σ;βμ)
�(β,μ)

(11)

=
e−βH (R,σ;μ)

�(β,μ)∑
σ

e−βH (R,σ;μ)

�(β,μ)

(12)

= e−βH (R,σ;μ)∑
σ e−βH (R,σ;μ)

. (13)
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From Eqs. (12) and (13), we used that the grand partition
function �(β,μ) does not depend on the amino acid se-
quence σ, allowing it to be factored out of the sum

∑
σ . In

the posterior p(σ|R, μ), the sequence space considered can
be regarded, from an evolutionary perspective, as the set of
typical sequences that realize a given structure R.

Equation (9) represents the free energy of a protein with a
given amino acid sequence σ. Hence, it is natural to assume
that the inverse temperature and chemical potential in this
equation are equal to those in the likelihood function Eq. (3),
which represents the probability that the protein folds into a
given structure R.

C. A free energy depends on a protein structure
and its stability to the environmental perturbation

In this section, we define the free energy for a sequence
space dependent on a particular protein structure R, and derive
expressions demonstrating its stability. To facilitate this, we
present the expression for the marginal likelihood p(R|μ)
here. In Bayesian learning, the marginal likelihood represents
the probability of observing the data given a value for the
hyperparameter. For the lattice protein case under discussion,
the marginal likelihood is

p(R|μ) =
∑

σ

p(R|σ; μ)p(σ|μ)

=
∑

σ

e−βH (R,σ;μ)

Z (σ; β,μ)
· Z (σ; βp, μp)

�(βp, μp)

= Y (R; β,μ)∑
R Y (R; β,μ)

, (14)

where β = βp and μ = μp hold. From Eq. (14), the marginal
likelihood, i.e., the probability of observing a protein struc-
ture R given the environmental conditions represented by the
chemical potential of the surrounding water μ, is proportional
to the sequence partition function Y (R; β,μ). Furthermore,
the marginal likelihood expressed in Eq. (14) is identical to
the denominator of the posterior distribution p(σ|R, μ) when
�(β,μ) is not canceled out in the transition from Eq. (12) to
Eq. (13). Therefore, the marginal likelihood p(R|μ) serves as
the partition function for the posterior distribution p(σ|R, μ)
as described in Eq. (13). Consequently, we can consider the
corresponding free energy as follows:

�(R, μ) = − 1

β
log p(R|μ). (15)

Here, Fig. 1 schematically illustrates the various conditional
probabilities introduced thus far, their corresponding partition
functions as normalization constants, and the free energies
associated with these partition functions, along with their
respective computational interpretations.

When a specific structure R is determined at a given inverse
temperature β, the free energy �(R, μ) becomes a function
solely of the environmental conditions μ. When �(R, μ) is
minimized at a particular environmental condition μ = μEB—
a condition equivalent to maximizing the marginal likelihood,
which is referred to as empirical Bayes estimation in the
field of Bayesian learning—the stability of �(R, μ) around

FIG. 1. A diagram illustrating the conditional probabilities intro-
duced so far, their corresponding partition functions as normalization
constants, and the specific quantities computed by these partition
functions. The rows represent the degrees of freedom associated
with structure R while the columns represent the degrees of free-
dom associated with sequence σ. By summing the Boltzmann factor
e−βH (R,σ;μ) along the rows while keeping a column fixed, the struc-
tural partition function (6) is obtained (blue shade). Conversely,
summing over the columns while keeping a row fixed yields the
sequence partition function (8) (red shade). Summing over both
rows and columns results in the partition function for both structure
and sequence (7) (green shade). Each partition function is repre-
sented in the figure using free energy. The probability distributions
shown beneath each partition function correspond to the associated
conditional probability distributions, where each partition function
serves as the normalization constant for the respective probability
distribution.

μ = μEB requires

∂2

∂μ2
�(R, μ)|μ=μEB > 0. (16)

Before we manipulate Eq. (16), we define the two types of
expected values appearing in the transformation of Eq. (16).
These are the average taken over the posterior distribution
when β = βp and μ = μp hold, and the average taken over
the joint distribution, which is the product of the likelihood
function and the prior. The joint distribution is given as
follows:

p(R, σ|μ) = p(R|σ, μ)p(σ|μ)

= e−βH (R,σ;μ)∑
R

∑
σ e−βH (R,σ;μ)

. (17)

Thus, the joint distribution p(R, σ|μ) forms a Boltzmann
distribution where both the structure R and the sequence σ

serve as thermal variables. For any physical quantity X (R, σ )
that is a function of the structure R and the sequence σ, the
average taken over the posterior distribution p(σ|R, μ) and
the average taken over the joint distribution p(R, σ|μ) are
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given as

〈X (R, σ )〉|R :=
∑

σ

X (R, σ )p(σ|R, μ)

=
∑

σ X (R, σ )e−βH (R,σ;μ)∑
σ e−βH (R,σ;μ)

, (18)

〈X (R, σ )〉 :=
∑

R

∑
σ

X (R, σ )p(R, σ|μ)

=
∑

R

∑
σ X (R, σ )e−βH (R,σ;μ)∑
R

∑
σ e−βH (R,σ;μ)

. (19)

The notation used on the far left side of Eq. (18) explicitly
indicates that the quantity depends on a specific structure R.
It is important to note that this does not represent an average
over all possible R patterns.

To manipulate inequality (16), we substitute Eq. (14) into
Eq. (15), and then transform Eq. (16) as

〈(
β

N∑
i=1

(1 − σi )

)2〉
|R

−
⎛
⎝β

〈
N∑

i=1

(1 − σi )

〉
|R

⎞
⎠

2

<

〈(
β

N∑
i=1

(1 − σi )

)2〉
−

(〈
β

N∑
i=1

(1 − σi )

〉)2

. (20)

Thus, Eq. (16) results in an inequality between the variance
of the number of hydrophilic amino acid residues calculated
from the posterior and the variance calculated from the joint
distribution. Furthermore, we obtain following expression of
Eq. (20):

β
∑
i, j

[〈σiσ j〉|R − 〈σi〉|R〈σ j〉|R] < β
∑
i, j

[〈σiσ j〉 − 〈σi〉〈σ j〉],

(21)

where we denote
∑

i, j = ∑N
i=1

∑N
j=1. The definition of the

magnetic susceptibility χ at the equilibrium state using the
spin correlation function is given by χ = β

∑
i, j[〈σiσ j〉 −

〈σi〉〈σ j〉], where σi denotes the ith spin variable, similar to
the current context. Thus, under the posterior Eq. (13), which
is the Boltzmann distribution of sequences conditioned on the
structure R, so to speak, the hydrophobic susceptibility can be
defined as χR := β

∑
i, j[〈σiσ j〉|R − 〈σi〉|R〈σ j〉|R]. For the joint

distribution, which is the Boltzmann distribution over both
spaces of R and σ, the hydrophobic susceptibility is denoted

as χ := β
∑

i, j [〈σiσ j〉 − 〈σi〉〈σ j〉]. Hence, Eq. (21) becomes
the inequality between those two hydrophobic susceptibilities:

χR < χ. (22)

We here consider the evolutionary meaning of χR. It repre-
sents the susceptibility of the hydrophobicity of the structure
R to perturbations in μ, within the posterior p(σ|R, μ). Given
that changes in the hydrophobic/hydrophilic composition (hy-
drophobicity) of amino acid residues can lead to alterations in
protein structures [34], χR reflects the structural plasticity of
protein R to environmental changes via macroscopic shifts in
the gene space that facilitates the formation of R. Therefore,
we propose to call χR the evolutionary structural plasticity of a
protein structure R. The term evolutionary structural plasticity

is used to distinguish it from phenotypic plasticity, which
refers to an individual’s capacity to adapt to environmental
changes.

This quantity, χR, represents the plasticity of a genotype
associated with a specific structure R to change for subsequent
generations. This concept can be understood by following the
simple dynamics of Darwinian evolution. Consider a pop-
ulation of organisms where proteins with the structure R
exist in a particular generation. In the subsequent generations,
assume that amino acid sequences with slight differences
in hydrophobic/hydrophilic composition, which incidentally
fold into the same structure R, existed either by chance or due
to mutations. Subsequently, perturbations in environmental
condition μ occur, leading to the evolution of amino acid
sequences that adapt to this new environment, consequently
inducing changes in the original structure R. If χR is high,
it indicates a higher such genotypic change; conversely, a
low χR suggests that changes are less likely. Therefore, χR

does not merely reflect the susceptibility of the structure R to
change within a single generation but rather its plasticity for
change in an evolutionary context.

While there exist proteins whose structures remain un-
changed despite variations in hydrophobicity, such proteins
are a minority among all proteins. Moreover, it can be
assumed that even these exceptional proteins would al-
ter their structures if there were significant differences in
hydrophobicity.

χ represents the susceptibility of sequences to change
under the joint distribution p(R, σ|μ); thus, χR is akin to
an average of overall structural patterns. Therefore, Eq. (22)
asserts that for the free energy �(R, μ) of a given structure R
to be stable against perturbations in μ, the χR of that structure
must be lower than the average χ across all structures.

Finally, for structures that satisfy Eq. (22), we define the
following quantity as the steepness of the function around the
minimum of the free energy �(R, μ), specifically the second
derivative with respect to μ: ∂2

∂μ2 F (R, μ)|μ=μEB = χ − χR,

κR = χ − χR. (23)

This quantity κR represents the stability against perturbations
in μ around the minimum state of the free energy �(R, μ),
independent of temperature.

The evolutionary significance of κR is not immediately
apparent. However, since χR represents the evolutionary
plasticity in response to environmental changes, κR, as a de-
creasing function of χR, indicates the robustness of R after
several generations under environmental perturbations.

It is important to note that even if hydrophobicity remains
constant, different amino acid sequences can lead to differ-
ent structures. Therefore, κR precisely measures the stability
against structural changes due to differences in hydropho-
bicity, which implies a tolerance for macroscopic structural
changes while permitting minor structural variations. The mi-
nor changes in protein structure that are considered here might
include slight alterations due to microscopic differences in the
contact network, for example.

For a given structure R, the computation of κR are per-
formed using belief propagation (BP) (theoretical details are
in Appendix A). BP is an algorithm that efficiently computes
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FIG. 2. Examples of secondary structures in lattice proteins used
in this study. Both α helices and β sheets consist of at least six
residues, excluding the antiparallel sheet structure of four residues
within a six-residue β turn. (a) Example of a ten-residue α helix
extending in the y-axis direction. Structures extending in the y-axis
direction are counted separately from their mirror images, while
structures extending in the x-axis direction are counted separately
from their 90-degree rotated versions. (b) Example of a ten-residue
β sheet. Parallel and antiparallel configurations are counted sepa-
rately, as are structures rotated by 90 degrees in the x-axis direction.
(c) Example of a six-residue β turn. The four-residue antiparallel
sheet structure within the turn [the bottom half of (c)] is counted
as a four-residue β sheet. Mirror images and rotations are counted
separately.

the marginal probability of an element in a graph with com-
plex interactions for the entire probability distribution of the
graph. The BP algorithm is derived using an extended method
of mean-field approximation called the cavity method. It has
been shown that the solutions produced by BP are equivalent
to the Bethe approximation [35], and if the graph is a tree,
the solution is exact. BP also provides good approximate
solutions when the graph is close to a tree. Since the contact
network of a 2D lattice protein is often a tree graph, BP is
suitable for 2D lattice protein models. Indeed, our previous
research has shown that the design accuracy of 2D lattice
proteins is nearly the same when using BP and Markov chain
Monte Carlo (MCMC) methods [30].

D. Definition of the secondary structure
of the 2D lattice proteins

Here we define the secondary structures in 2D lattice pro-
teins, namely α helices and β sheets. An α helix is defined
as a structure where amino acid residues form a U-shaped
structure connected in alternating orientations and a β sheet is
defined as a structure where amino acid residues are aligned in
parallel or antiparallel configurations (Fig. 2). The detection
of these secondary structures was performed from contact
maps, using the identical method proposed in the previous
study [36].

Both α helices and β sheets must have at least six residues.
This requirement is due to the overrepresentation of single
U-shaped structures (four residues) and paired residues in 2D
lattice proteins, which would otherwise not qualify as sec-
ondary structures. However, a specific case of a four-residue
β sheet within a six-residue β turn [Fig. 2(c)] is included. We

count α helices and β sheets according to these rules, treating
all other regions as random coils.

In lattice proteins, α helices and β sheets may share one
or two amino acid residues. This study prioritizes β sheets
when two residues are shared and α helices when one residue
is shared. If two residues are shared, the α helix is resized
by removing the shared residues, and if the resized helix has
four residues, it is classified as a random coil. If one residue is
shared, the β sheet is resized by removing the shared residue
and its paired residue, and if the resized sheet has four residues
(unless it is part of a six-residue β turn), it is classified as
a random coil. Prioritizing β sheets for two shared residues
and α helices for one shared residue helps balance the two
structures.

We do not use 3D lattice proteins because the α helix in
three dimensions requires six residues per turn, unlike the
real protein case of 3.6 residues per turn [37]. In two di-
mensions, as shown in Fig. 2(a), four residues per turn are
closer to realistic proteins. This distinction is crucial as we
define the proportion of secondary structures in terms of the
number of residues forming these structures within a given
protein.

In this study, we use maximally compact structures of
N = 6 × 6 residues. The total number of structural patterns
is 28732, excluding structures symmetric under 90◦ rotation,
mirror images along horizontal and vertical axes, diagonal
reflections, and head-tail symmetries of the self-avoiding
walk.

III. RESULTS

A. Changes in the number of lattice protein structures
according to evolutionary stability

First, we examine how the number of lattice protein
structures decreases as the stability κR increases, essentially
observing how the dimension of the phenotypic space reduces
with changes in κR. Specifically, we increment κR from 0 in
small steps and record the number of structures that have a
κR larger than the value at each step, denoting this number as
N str (κR). We show the results for the quantity κR divided by
β. This measure is taken to cancel out the β in the coefficients
of χR and χ , which are common across all structures. We then
calculate its proportion out of the total number of structures,
which is 28732. The results, showing the reduction in the
number of structures with increasing κR/β within the range
0 � κR/β � 10, are displayed in Fig. 3. In Fig. 3, N tot rep-
resents the total number of maximally compact structures for
an amino acid residue number N = 6 × 6, equaling 28,732.
We set at β = 10. From Fig. 3, it is evident that N str (κR/β )
decreases in a stepwise manner as κR/β increases. It is also
observed that there are two points where the rate of de-
crease in N str (κR/β ) is particularly significant. Furthermore,
approximately 80% of the structures are found within the
range 0 � κR/β � 0.5, indicating that most structures have a
gentle slope around the minimum of the free energy �(R, μ).
The proportion of structures with κR/β < 0, which are outside
the range of Fig. 3, is approximately 4% and low. Addition-
ally, there are no structures with κR/β � 9.5, as the maximum
value of κR/β is 9.3971.
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FIG. 3. We plot a bar graph to visualize the changes in the
proportion of structures with stability κR/β greater than or equal to
each value of κR/β. Each bar represents the proportion of structures
that have a κR/β greater than or equal to the corresponding value
on the horizontal axis, incrementing κR/β from 0–10 in steps of 0.5.
The total number of maximally compact structures for an amino acid
residue count N = 6 × 6 is N tot = 28732. The inverse temperature is
set at β = 10. The proportion of structures with κR/β < 0 is approxi-
mately 4%, indicating a low number of such structures. Additionally,
the number of structures with κR/β � 9.5 is zero, as the maximum
value of κR/β recorded is 9.3971. Readers should note that each bar
in the graph represents the proportion of all structures with a κR/β

greater than or equal to the value at the left end of that bar’s range,
not just within the range itself.

B. Changes in the secondary structures proportions
according to environmental robustness

Next, we illustrate the changes in the proportion of sec-
ondary structures, the ratio of the number of amino acid

residues in each secondary structure to the total number of
residues, N within groups of lattice protein structures as the
stability κR increases incrementally. We also show the results
for the quantity κR divided by β.

For each increment in κR/β, we plot the average values
of α-helix proportion, β-sheet proportion, and random-coil
proportion within the set of structures that have a κR/β

greater than the current κR/β value. Figure 4 shows its dis-
tributions of secondary structures. We also set the inverse
temperature at β = 10. Looking at Fig. 4, as κR/β in-
creases, α-helix proportion increases while β-sheet proportion
decreases. Random-coil proportion remains neutral to κR/β

changes. This result indicates that structures with a higher
α-helix proportion tend to have higher κR/β values and those
with a higher β-sheet proportion tend to have lower κR/β

values. Therefore, it can be concluded that proteins with a
higher α-helix proportion are more robust over generations
in response to perturbations in environmental conditions.

C. Empirical validation using real protein structure database

We tested our the theoretical prediction shown in Sec. III B
using publicly available protein databases. The validation
method involved defining a group of proteins that, according
to our research, exhibit high structural robustness against envi-
ronmental perturbations across multiple generations. We then
compared the secondary structure content of these proteins to
that of a randomly selected group of proteins.

Although this validation method is relatively straight-
forward, determining which proteins should be categorized
as possessing high evolutionary robustness remains a chal-
lenging issue. Ideally, such criteria would be quantitatively
specified; however, this is extremely difficult in practice. In
our study, we define a set of proteins generally regarded as

FIG. 4. The changes in α-helix proportion, β-sheet proportion, and random-coil proportion in sets of lattice protein structures with κR/β

values greater than specified thresholds for a 6 × 6 lattice protein. Each bar graph represents the average value of each secondary structure
proportion for all structures exceeding the given κR/β threshold, with error bars represent the standard error of the mean for each region.
The plot shows the secondary structure proportions across all 6 × 6 structure patterns, with subsequent values shown for κR/β thresholds
incrementally changed to 0.01, 0.1, 0.4, 0.5, 1, and 5. The sample sizes for each group (i.e., the number of lattice protein structures satisfying
each inequality) are, in order of increasing lower bound of κR/β—that is, from the second graph from the left in Fig. 4—18767, 10460, 5492,
4080, 4048, and 460. Each bar graph uses blue for α-helix proportion, yellow for β-sheet proportion, and green for random-coil proportion.
Since any non-α helices and non-β sheets structures are categorized as random coils, the sum of the three colored bar graphs totals 1.
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evolutionarily robust. We select such proteins based on the
following conditions: (i) they are found in all three domains of
life (archaea, bacteria, and eukaryotes) and (ii) they perform
a fundamental biological function. Proteins that meet these
conditions have likely maintained their function since the very
early stages of life. Given the strong correlation between pro-
tein structure and function, it is reasonable to hypothesize that
such proteins possess high structural robustness over numer-
ous generations in response to environmental perturbations.
In this study, we selected the following eight protein types as
examples of the robust proteins: (i) ribosomal proteins, (ii)
DNA polymerases, (iii) DNA helicases, (iv) ribonucleotide
reductases, (v) RNA polymerases, (vi) transcription factors,
(vii) aminoacyl-tRNA synthetases, and (viii) ATP synthases.
These eight proteins are present in all three domains of life and
are involved in the replication, preservation, transcription, and
translation of genetic information or in fundamental metabolic
processes. Hereafter, we call these eight proteins as robust
proteins. As a control group, we randomly select proteins from
the PDB. We call these proteins random proteins.

We here briefly explain how the PDB files for robust pro-
teins and random proteins were selected (for more detailed
information, see Appendix B). For robust proteins, each pro-
tein name was used as a keyword in a PDB text search. From
the list of hits, the top 10000 entries were taken. Out of these
10000 entries, only those whose titles contained the protein
name were selected. For random proteins, the procedure was
as follows. First, we carried out the PDB text search with the
keyword “proteins,” and the PDB IDs of all resulting entries
were downloaded. When searching for proteins, nucleic acid
and peptides are excluded, meaning only protein molecules
are returned. Due to computational constraints in the sub-
sequent secondary-structure analyses, we randomly selected
20000 PDB IDs from all downloaded PDB IDs. In both the
robust proteins and random proteins selections, this method
inevitably leaves a bias reflecting how many structures of
each protein type are registered in the PDB. However, we
ignore such a bias because that bias is the same for both
sets.

Furthermore, we apply a redundancy reduction process to
both robust and random proteins. Redundancy reduction was
performed by clustering based on sequence similarity and
selecting only the representative structures from each cluster.
We used for the clustering CD-HIT (Cluster Database at High
Identity with Tolerance) [38]. CD-HIT is a tool widely used in
protein science and the life sciences that clusters highly sim-
ilar sequences and extracts representative sequences, thereby
reducing redundancy in the data set. For the robust proteins,
we carried out such redundancy reduction via CD-HIT for
the PDB data set of each protein type after selection by title.
We carried out the redundancy reduction for the randomly
selected 20000 PDB data for the random proteins.

We then identified the secondary structures formed by
individual amino acids using the DSSP (Dictionary of Sec-
ondary Structure in Proteins) algorithm [39,40], which assigns
secondary structure to the amino acids using the backbone
hydrogen bonds. DSSP classifies amino acids into eight sec-
ondary structure types, each represented by a single-letter
code [40]. Our analysis considered only “H” as an α helix,
only “E” as a β sheet, and all other characters as a random

TABLE I. The mean and standard deviation (STD) values of the
α-helix, β-sheet, and random-coil proportions for both the robust
proteins and the random proteins.

Secondary structure robust or random mean (%) STD

α helix Robust 39.18 ±17.35
Random 33.16 ±19.59

β sheet Robust 16.79 ±12.17
Random 20.98 ±14.22

Random coil Robust 44.03 ±10.73
Random 45.86 ±10.82

coil. This is because conservative choice like this is more
appropriate when considering the correspondence with lattice
proteins (see Appendix B for a detailed discussion). Structures
with missing residue coordinate information in the PDB could
not be processed by DSSP and were thus excluded. Further-
more, we exclude the structures that DSSP reported 0% for
both α-helix and β-sheet proportions. The main reason for this
step is that the present theory focuses its analysis on compact
proteins that possess secondary structures such as α helices
and β sheets. After these processing steps, the final number
of proteins used for computing the comparative distribution
of secondary structure proportions was 557 for the robust
proteins and 4987 for the random proteins. Details on data
selection from the PDB, preprocessing procedures, and DSSP
analysis are summarized in Appendix B.

We draw the results in Fig. 5. Figure 5 shows overlaid
histograms of secondary structure proportions for robust and
random proteins. As shown in Fig. 5, there are no substan-
tial differences between the robust proteins and the random
proteins with respect to the overall proportions of α helix, β

sheet, and random coil. However, there are slight differences
in all three distributions. Specifically, the distribution of α-
helix proportion for the robust proteins is shifted slightly to
the right, whereas the distribution of β-sheet proportion is
correspondingly shifted slightly to the left. These observations
support our theoretical prediction (Fig. 4). Table I provides the
mean and standard deviation (STD) of the secondary structure
proportions for each group. Table I qualitatively supports our
theoretical prediction in Sec. III B.

However, the information presented above alone is insuf-
ficient to determine whether there are statistically significant
differences in the densities of each secondary structure. There-
fore, we turn to statistical hypothesis testing. As shown in
Fig. 5, the α-helix proportion and β-sheet proportion data
do not follow any clear parametric distribution. Consequently,
we employed a hypothesis test based on the bootstrap method
[41] (hereafter referred to as the bootstrap test).

The bootstrap test is a statistical approach rooted in
bootstrapping, in which multiple samples are generated by
resampling (with replacement) from a single original data
set to estimate the sampling distribution. This non-parametric
method allows testing even when the functional form of the
population distribution is unknown. In the bootstrap test, the
null hypothesis H0 posits that there is no difference between
the mean values of the two groups. To evaluate H0, we begin
by merging the data sets for robust and random proteins into
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FIG. 5. The histograms compare the α-helix proportion, β-sheet proportion, and random-coil proportion between the robust proteins (teal)
and the Random proteins (pink). The vertical axes of the three histograms represent the relative frequency of each secondary structure
proportions of proteins of both robust and random group. In all figures, the bin width is set to 5%. The sample sizes for each secondary
structure category are 557 for the robust proteins and 4,987 for the Random proteins. At first glance, there appear to be no major differences
between the two protein groups across all three secondary structures. However, for α-helix proportion and β-sheet proportion, the histograms
for the robust proteins are systematically shifted to the right and left, respectively. This observation supports our theoretical predictions. In the
case of random-coil proportion, the difference is smaller than that observed for α-helix proportion and β-sheet proportion, but the histogram
for the robust proteins is slightly shifted to the left. Furthermore, for all three secondary structures, the overall shapes of the histograms for the
robust proteins and the random proteins are similar. Notably, both data sets exhibit approximately Gaussian-shaped histograms in the case of
random-coil proportion.

a single data set, regarding it as a surrogate for the popula-
tion distribution under H0. We then draw bootstrap samples
by resampling with replacement from this merged data set,
selecting the same number of samples as in the original two
data sets. This process simulates data acquisition under H0

and is repeated many times (100 000 in our case) to generate
a histogram of the mean differences. If the mean difference
observed in the original two groups lies within a tail of this
histogram whose frequency is below the significance level, we
reject H0. This constitutes the procedure for our hypothesis
test.

Details of the methodology and results of the bootstrap test
can be found in Appendix C. For the random-coil proportion
data, we applied the t-test since its shape of histogram closely
resembled a Gaussian distribution. The significance level was
set to 0.01 for the statistical hypothesis tests in all cases
of α-helix proportion, β-sheet proportion, and random-coil
proportion.

The p values evaluated by the statistical tests were 0.0, 0.0,
and 0.0002 for α-helix, β-sheet, and random-coil proportions,
respectively. Thus, the results indicate, with significance level
0.01, that there are differences in mean values in all the three
cases. These results support our theoretical predictions for the
α-helix proportion and β-sheet proportion data. As for the
random-coil proportion, the theoretical prediction shown in
Fig. 4 suggests a slightly decreasing trend in the range of
1 < κR/β, which is consistent by the empirical data. However,
in the region where 5 < κR/β—represented by the rightmost
bar in Fig. 4—the random-coil proportion increases, which
contradicts the empirical results. This discrepancy is likely
due to structural differences between random coils in lattice

proteins and those defined in real proteins in this study. DSSP
classifies each amino acid residue into eight structural types.
In our analysis, we categorized certain structural elements
as random coil while excluding isolated β bridges (residues
forming one-to-one hydrogen bonds with adjacent residues
but not contributing to a sufficiently extended β sheet) and
hydrogen-bond-mediated turn structures from the β-sheet cat-
egory. In contrast, 2D lattice proteins lack the resolution to
accurately define or represent such structures. Additionally,
2D lattice proteins generally contain more α-helix-like and
β-sheet-like structures than real proteins. This tendency may
have led to overestimating the contribution of α-helix and
β-sheet content to the free-energy change �(R, μ). Therefore,
the discrepancy in random-coil results should not necessarily
be interpreted as a fundamental flaw in our proposed evolu-
tionary theory.

IV. DISCUSSION

First, we note some overall considerations regarding our
statistical mechanics theory framed within Bayesian learning
for evolution. Our proposed evolutionary theory does not op-
timize phenotypes to given environmental conditions. That is
because the stability analysis around the minimum of the free
energy �(R, μ) pertains to the stability around the minimum
for environmental conditions μ given a structure (phenotype)
R and not the reverse. According to the neutral theory of
molecular evolution [42], the evolution of organisms (molec-
ular evolution) is not necessarily a product of optimization
under given environmental conditions. Our theory does not
contradict these important evolutionary concepts.
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The evolutionary significance of κR is, directly, the sta-
bility to change in the amino acid sequence σ (genotype)
that forms the structure (phenotype) R over subsequent gen-
erations. Thus, it cannot necessarily be said to explain the
robustness to change of a structure over many generations.
Furthermore, κR pertains explicitly to the stability against
perturbations in environmental conditions μ, and does not
directly inform about the stability against significant changes
in μ. Therefore, while κR may be better suited to explaining
incremental microevolution, it may not be as applicable to
macroevolution. However, it is not uncommon for macroevo-
lution in organisms to be understood as an accumulation of
microevolutions; our theory and analysis of κR could still
play a significant role in understanding large evolutionary
changes.

κR can also be interpreted as part of a broader concept of
robustness that includes environmental robustness, especially
considering the functionality of gene regulatory networks.
In this sense, proposing κR in an evolutionary context is
meaningful. However, it should be noted, as emphasized in
Sec. II, that all the measures proposed in this study, such as χR

and κR, averages over the amino acid sequences σ. Thus, the
effects of mutational robustness across successive generations
on the structure R remain unclear. This study exclusively an-
alyzed the effects of environmental fluctuations on evolution
without integrating comprehensive evolutionary theories that
include mutations, natural selection, or genetic drift, which
are changes in genes unrelated to natural selection. To in-
clude theories that account for mutations and genetic drift,
the former would require discussing the stability of quantities
that retain amino acid sequence pattern dependencies without
integrating over amino acid sequences for proteins. For the
latter, it would be necessary to consider quantities or models
where hydrophobicity fluctuates solely due to random effects
while being constant to changes in the environmental condi-
tion μ. Constructing such theories remains a task for future
research.

The result of Fig. 3 indicates that increasing of κR leads to a
very rapid reduction in the phenotypic space. It is unclear what
proportion of the total structural space, including evolutionary
nonviable protein structure patterns, is occupied by actual pro-
tein structures, so whether the results from Fig. 3 accurately
explain the dimensional reduction of phenotypes from the
perspective of natural selection remains uncertain. However,
the fact that evolved phenotypes constitute only a portion of
the entire possible phenotypic space can indeed be explained
by our proposed metric of robustness to change in phenotypes
over subsequent generations in response to perturbations in
environmental conditions μ.

Similarly, Fig. 4 lacks direct biological evidence. How-
ever, a conventional study elucidated that α helices exhibit
higher mutational robustness than β sheets [43]. Of course,
the relationship between mutational robustness and our results
is unclear. However, the fact that α helices and β sheets
behave differently regarding structural mutational robust-
ness, which is evolutionarily significant, is likely essential.
Given the observed variation in the proportions of α he-
lices and β sheets among proteins, it is plausible to suggest
that these differences may be associated with differences in
protein function. Considering that protein function closely

relates to evolvability, the differing dependencies on the
proportions of α helices and β sheets suggest that our
proposed stability measure, κR, is likely to be evolutionarily
meaningful.

The empirical validation discussed in Sec. III C shows
that, while statistical hypothesis testing indicates that the
α-helix proportion and β-sheet proportion distributions of
robust proteins and random proteins are significantly dif-
ferent, the observed differences are not particularly large
at first glance. This may suggest that existing proteins,
having endured long evolutionary histories, are inherently
structurally robust. In other words, as inferred from Fig. 3,
the structures of evolved proteins occupy an exponentially
small subset of the physically possible structural space.
Under this assumption, selecting proteins that are presum-
ably evolutionarily robust from biological databases such
as the PDB, as done in this study, may inherently make
it difficult to identify a clear distinction from random
samples.

V. CONCLUSION

Here, we give the conclusion of our study. We proposed
an evolutionary generation model for protein structures by
statistical mechanics based on Bayesian learning framework.
We considered the chemical potential surrounding proteins
as an environmental condition. We discussed the stability of
the free energy as a function of protein structure and envi-
ronmental conditions, as defined in Eq. (15). This stability
refers to the robustness to change in hydrophobicity (the
proportion of hydrophobic amino acids, analogous to magne-
tization in magnetic materials), determined by the amino acid
sequences that design (fold into) a specific protein structure
with high probability. Since changes in hydrophobicity can
lead to structural changes, this stability can be considered as
the stability of a given protein structure against environmental
perturbations over subsequent generations. Consequently, in a
2D square lattice protein model composed of 36 residues, we
found that structures with a certain level of stability in their
free energy are very rare in the entire structural space, with
a higher proportion of α helices and a lower proportion of β

sheets. Furthermore, comparing secondary structure densities
between the robust proteins (proteins that are likely to be
evolutionarily robust from a biological perspective.) and the
random proteins (randomly selected structures from PDB)
based on empirical data qualitatively supports the theoretical
predictions for α-helix and β-sheet structures.
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APPENDIX A: CALCULATIONS OF HYDROPHOBICITY
AND SUSCEPTIBILITY USING BELIEF PROPAGATION

1. Calculations of 〈σi〉R and 〈σi〉
In order to calculate the hydrophobicity of single structure,

one needs to obtain the posterior average of single residue
〈σi〉R given by

〈σi〉R =
∑

σ

σi p(σ|R, μ). (A1)

If the posterior p(σ|R, μ) is decoupled to each residue ex-
pressed as follows by using the set of residues without σi, σ\i:

pi(σi|R, μ) =
∑
σ\i

p(σ|R, μ), (A2)

then, one can rewrite Eq. (A1) very simple form as follows:

〈σi〉R =
∑

σi=0,1

σi pi(σi|R, μ) (A3)

= pi(σi = 1|R, μ). (A4)

Belief propagation (BP) can obtain the marginal distribu-
tion pi(σi|R, μ) by using following update rules,

ν̃
(t )
a→i(σi ) = 1

Za→i

∑
σ j(i)

eβσiσ j(i)ν
(t )
j(i)→a(σ j(i) ), (A5)

ν
(t+1)
i→a (σi ) = 1

Zi→a
eβμ(1−σi )

∏
b∈∂i\a

ν̃
(t )
b→i(σi ). (A6)

In Eqs. (A5) and (A6), the beliefs or messages ν̃
(t )
a→i(σi ) and

ν
(t+1)
i→a (σi ) are the probability from the ath contact to the ith

residue and the probability from the ith residue to the ath
contact, respectively. The subscripts a, b, · · · are indices on
contacts, and the upper right subscript is the number of steps
in the BP algorithm. The symbol ∂i denotes the index set of
contacts related to residue σi. The constants Za→i and Zi→a

are the normalizing constants of each distribution function.
The residue index j(i) denotes the index that contacts with ith
residue. In the lattice HP model, all residue-residue interac-
tions are two body. Thus, this index j(i) is unique to i.

The derivation of the BP update rules (A5) and (A6) are
somewhat technical, so they are not presented here. Please re-
fer to the Appendix in our previous work [30] for information
of the derivation of the above BP update rules.

If one properly defines ν
(t=0)
i→a (σi ) as the initial condition (in

this study, we use 0.5.) and computes Eqs. (A5) and (A6) at
each step for all combinations (i, a), after sufficient iterations
tmax, the following belief:

νi(σi ) = 1

Zi

∏
a∈∂i

ν̃
(tmax )
a→i (σi ), (A7)

converges to the marginal distribution pi(σi|R, μ). In Eq. (A7)
where Zi is the normalization constant.

In order to obtain another hydrophobicity h, one needs to
calculate the joint average of σi. It is expressed as follows:

〈σi〉 =
∑

R

∑
σ

σi p(R, σ|μ) (A8)

=
∑

R

∑
σ

σi p(R|μ)p(σ|R, μ) (A9)

=
∑

R

∑
σ

σi p(σ|R, μ)p(R|μ) (A10)

=
∑

R

〈σi〉R p(R|μ) (A11)

=
∑

R 〈σi〉RY (R; β,μ)∑
R Y (R; β,μ)

. (A12)

In Eqs. (A11) and (A12), we used Eq. (14). Therefore, one
has to calculate the sequence partition function Y (R; β,μ) =∑

σ e−βH (R,σ;μ) and the posterior average of each residue 〈σi〉R

for all lattice structure patterns. We have the all patterns of the
self-avoiding walks on 2D N = 6 × 6 square. Thus, in this
study, we can obtain the exact value of 〈σi〉.

For more large size of lattice proteins, one has to carry
out the efficient multicanonical Monte Carlo methods suitable
for exploring lattice protein structures [44,45]. For the real-
istic protein structures, such a structural search is extremely
difficult even with the use of the database [19], because the
structural search space has to involve the random structural
patterns including structures that have not evolved.

By using BP, The sequence partition function Y (R; β,μ) =∑
σ e−βH (R,σ;μ) is obtained from the Bethe free entropy

FB(ν̃∗) = logY (R; β,μ) where ν̃∗ is the set of the contact to
residue messages [Eq. (A5)] after sufficient time steps. Free
entropy is −β times free energy.

The Bethe free entropy FB(ν̃∗) is the free entropy under
the Bethe approximation. In the lattice HP model using the
Hamiltonian (1), FB(ν̃∗) is given by

FB(ν̃∗) =
M∑

a=1

log Za +
N∑

i=1

log Zi −
∑

ia

log Zia, (A13)

Za :=
∑
σiσ j(i)

eβσiσ j(i)
∏
i∈∂a

ν∗
i→a(σi ), (A14)

Zi :=
∑
σi

eβμ(1−σi )
∏
b∈∂i

ν̃∗
b→i(σi ), (A15)

Zia :=
∑
σi

ν̃∗
a→i(σi )ν

∗
i→a(σi), (A16)

where ia denotes index of elements of the set in which all
combinations of residues and contacts, and the symbol ∂a de-
notes the index set of residues related to contact a. The symbol
M denotes the number of contacts. The messages ν∗

i→a(σi)
and ν∗

a→i(σi ) are the converged ith residue to a-th contact
message and the converged ath contact to ith residue message,
respectively. The derivation of Eqs. (A13)–(A16) for general
cases involves a technical and lengthy explanation, which is
beyond the scope of this paper. For further details, please refer
to the representative texts [46,47]. Then, we obtain

Y (R; β,μ) =
(∏

a Za
)(∏

i Zi
)

∏
ia Zia

. (A17)

In order to obtain μEB for each structure, we derive the
minimization condition of free energy of a structure �(R, μ)
defined by Eq. (15). The minimization condition with respect
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to μ : (∂/∂μ)�(R, μ) = 0 becomes as follows:〈
N∑

i=1

σi

〉
R

=
〈

N∑
i=1

σi

〉
. (A18)

The minimization parameter μEB satisfies Eq. (A18). Thus,
one can get μEB by computing

∑
i〈σi〉R and

∑
i〈σi〉 through

the method explained above for each structure. We used the
bisection method to compute left-hand side and right-hand
side of Eq. (A18).

2. Calculations of χR and χ

In order to obtain the susceptibility χR, one has to calculate
the residue correlation function 〈σiσ j〉R given by

〈σiσ j〉R =
∑

σ

σiσ j p(σ|R, μ). (A19)

If σi and σ j are not statistically independent, i.e., when there
is at least one path connecting σi and σ j on the contact graph,
one has to think the joint probability

pi, j (σi, σ j |R, μ) = pi| j (σi|σ j, R, μ)p j (σ j |R, μ), (A20)

where the conditional probability, pi| j (σi|σ j, R, μ) is given by

pi| j (σi|σ j, R, μ) = pi, j (σi, σ j |R, μ)

p j (σ j |R, μ)
. (A21)

If the following marginalization can be carried out:

pi| j (σi|σ j, R, μ) =
∑
σ\i

p(σ|σ j, R, μ), (A22)

one can then obtain 〈σiσi〉R following quite simple form

〈σiσi〉R =
∑
σi

∑
σ j

σiσ j pi| j (σi|σ j, R, μ)p j (σ j |R, μ) (A23)

= pi| j (σi = 1|σ j = 1, R, μ)p j (σ j = 1|R, μ).

(A24)

BP is also able to calculate the conditional marginal
pi| j (σi|σ j, R, μ). The procedure is as follows: one uses the
conditional messages ν̃

(t )
a→i| j (σi|σ j = σ ) and ν

(t+1)
i| j→a(σi|σ j =

σ ) instead of normal BP messages Eqs. (A5) and (A6), where
σ is the realization of σ j . Thus, in the current case σ = 1, the
normal BP messages change to following conditional forms

ν̃
(t )
a→i| j (σi|σ j = 1) = 1

Za→i| j

∑
σk(i)

eβσiσk(i)ν
(t )
k(i)| j→a(σk(i)|σ j = 1),

(A25)

ν
(t+1)
i| j→a(σi|σ j = 1) = 1

Zi| j→a
eβμ(1−σi )

∏
b∈∂i\a

ν̃
(t )
b| j→i(σi|σ j = 1).

(A26)

In Eq. (A25), we use k(i) as the index of residue that contact
with σi to avoid confusion with j of current context. The
symbol Za→i| j and Zi| j→a are the normalization constants for
the corresponding messages. As with the normal BP described

earlier, the following belief:

νi| j (σi|σ j = 1) = 1

Zi| j

∏
a∈∂i

ν̃
(tmax )
a→i| j (σi|σ j = 1), (A27)

converges to the conditional marginal pi| j (σi|σ j = 1, R, μ).
The symbol Zi| j in Eq. (A27) denotes the normalization con-
stant of this message.

One can calculate χ by using following formula:

〈σiσ j〉 =
∑

R〈σiσ j〉RY (R; β,μ)∑
R Y (R; β,μ)

. (A28)

Equation (A28) is obtained by the same manner as the deriva-
tion process of Eq. (A12).

APPENDIX B: DETAILS OF THE EMPIRICAL
VALIDATION USING PDB

Here, we summarize the details of the empirical data anal-
ysis presented in Sec. III C. First, we describe the selection
process of PDB data for all proteins used in the analysis.
For robust proteins, we obtained structural data to generate
the histograms in Fig. 5 and Table I following these steps for
each of the eight protein categories: (i) ribosomal proteins, (ii)
DNA polymerases, (iii) DNA helicases, (iv) ribonucleotide
reductase, (v) RNA polymerases, (vi) transcription factors,
(vii) aminoacyl-tRNA synthetases, and (viii) ATP synthases.
The procedure was as follows:

(1) Perform a text search in the PDB.
(2) Retrieve the top 10000 entries based on the search

results.
(3) Select entries containing the specific protein name

from the remaining data set.
(4) Perform clustering based on sequence similarity with a

threshold of 50% and extract only the representative structures
from each cluster.

In Step (ii), Ribosomal proteins and aminoacyl-tRNA syn-
thetases were not strictly excluded from the data set based on
the exact order of words in the PDB entry titles. Specifically,
for ribosomal proteins, entries containing phrases such as ri-
bosomal subunit (e.g., large ribosomal subunit) were included
in the data set for subsequent analysis. For aminoacyl-
tRNA synthetases, these proteins are typically registered in
the format “specific amino acid + -tRNA synthetase” (e.g.,
glutamyl-tRNA synthetase, cysteinyl-tRNA synthetase, and
valyl-tRNA synthetase). Therefore, any entries containing the
phrase “any word+ -tRNA synthetase” were included in the
data set for further analysis.

Additionally, during DSSP secondary structure analysis,
some structures were excluded following these steps:

(1) Remove ligands and perform DSSP analysis on the
representative structures.

(2) Exclude structures where both α-helix density and β-
sheet density were 0%.

Structures with missing residue coordinate information in
the PDB could not be processed by DSSP and were thus ex-
cluded. Furthermore, we implemented the final exclusion step
since this study focuses on proteins containing α-helix and
β-sheet structures. Upon manually inspecting PDB entries
where DSSP reported 0% for both α-helix and β-sheet pro-
portions, we found cases where helix or sheet structures were
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Start

Search on PDB by text. (eg: “ribosomal protein”)

Get the titles of the top 10,000 hits.

Contains the search keyword?

Clustering by 50% sequence similarity using CD-HIT

Representative protein from each cluster?

Secondary structure calculation by DSSP

Success DSSP analysis?

At least one of the α-helix proportion or β-sheet proportion is non-zero.

End

Eliminate

Eliminate

Eliminate

Eliminate

yes

yes

yes

yes

no

no

no

no

FIG. 6. The selection flow of the PDB entries of the robust proteins that we used for the empirical validation. From the sequence-similarity-
based clustering onward, the same procedure also applies to the random proteins.
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TABLE II. Number of structures for each protein category in the
robust proteins data set.

Protein category Number of structures

Ribosomal protein 88
DNA polymerase 70
DNA helicase 9
Ribonucleotide reductase 22
RNA polymerase 77
Transcription factor 104
Aminoacyl-tRNA synthetase 156
ATP synthase 31

Total 557

present. These instances were considered potential DSSP er-
rors and were, therefore, not included in the final data set.
This selection process is summarized in the flowchart shown
in Fig. 6. The final number of structures for each protein
category is shown in Table II.

The selection process for PDB IDs in the random proteins
group was as follows:

(1) Perform a text search in the PDB using the keyword
“proteins” (to exclude nucleic acids and peptides).

(2) Randomly select 20000 structures from the retrieved
entries.

(3) Perform clustering based on sequence similarity with a
threshold of 50% and extract only the representative structures
from each cluster.

From the DSSP secondary structure analysis onward, the
procedure was identical to that of the robust proteins group.
The final number of structures obtained was 4987.

Finally, regarding DSSP analysis, DSSP classifies amino
acids into the following eight secondary structure types, each
represented by a single-letter code [40]:

(1) H: 413 helix (the common α helix)
(2) B: isolated β bridge
(3) E: Extended β strand (residues in parallel or antiparal-

lel β sheet)
(4) G: 310 helix
(5) I: π helix (516 helix)
(6) T: Hydrogen-bonded turn
(7) S: Bend
(8) < space > (often shown as a blank or “.”): Loop or

irregular/disordered structure not classified into any of the
above categories

A detailed explanation of each classification can be
found in Ref. [40]. The two helical structures other than the
standard α helix differ in the number of amino acids per
turn (i.e., the number of residues required for one complete
helical turn). The isolated β bridge is a single pairwise
β-sheet-like interaction. The bend is a pronounced change
in the polypeptide backbone direction, defined by specific
geometric criteria (e.g., a significant shift in the chain’s
trajectory). Unlike helices or sheets, it does not necessarily
involve hydrogen bonding. Our analysis considered only H
as an α helix and only E as a β sheet. While a discussion
could be made about including other classifications, our
primary objective was to validate predictions from lattice

protein models qualitatively. Given this purpose, we focus
exclusively on the most definitive structures, H and E, to
ensure clarity and reliability in our comparison.

APPENDIX C: BOOTSTRAP TEST

Bootstrapping is a numerical procedure for evaluating the
sampling distribution of a summary statistic (such as the
sample mean, sample variance, or sample median) based on
a single data set [41]. This method relies on the idea that
repeatedly resampling from the original data set and com-
puting the statistic each time provides a good estimate of
the sampling distribution. When performing statistical tests,
we use this approach to construct the sampling distribution
under the null hypothesis and then evaluate the p value of
the actually observed summary statistic. This allows us to
determine whether the null hypothesis should be accepted
or rejected at a predetermined significance level. A major
advantage of this method is that it enables evaluation of the
sampling distribution even when the underlying population
distribution is unknown.

In this study, using the α-helix proportion data and β-sheet
proportion data shown in Fig. 5, we aim to demonstrate—at
a given significance level—that the mean value for robust
proteins is higher in the former and lower in the latter. In
both data sets, the null hypothesis H0 states that there is no
difference in the mean values of robust and random proteins,
while the alternative hypothesis H1 posits that the mean value
of robust proteins is greater for α helix and smaller for β

sheet. The sampling distribution under H0 can be constructed
by bootstrapping as follows:

(1) Merge the two data sets into a single data set.
(2) Perform resampling with replacement from the merged

data set, drawing the same number of samples as in the
original Robust proteins and random proteins data sets,
respectively. These bootstrap samples simulate the data ac-
quisition process under the assumption that both robust and
random proteins come from the same population distribution.
Record the difference in mean values between these two boot-
strap samples.

(3) Repeat Step (ii) a total of 100 000 times to generate the
distribution of the mean difference.

(4) Define the p value as the frequency with which the
absolute mean difference exceeds the actually observed value.
If this p value is smaller than the chosen significance level,
accept H1 Otherwise, accept H0

We set the significance level to 0.01. For α-helix propor-
tion, the difference in mean values between the robust and
random proteins in the original data is 39.18–33.16 = 6.02
(see Table 1). Therefore, we accept H1 if this observed dif-
ference falls within the upper 1% tail of the bootstrap-based
sampling distribution. For β-sheet proportion, the correspond-
ing difference is 16.79–20.98 = −4.19; similarly, we accept
H1 if this value lies in the lower 1% tail of the bootstrap
distribution. In both cases, the observed mean differences
indeed fell within the respective 1% critical regions, leading
to the acceptance of H1. More precisely, the p value was zero
in both analyses—no single value from the resampled mean
differences exceeded (or fell below, in the case of the negative
difference) the actually observed mean difference.

023115-14



ALPHA HELICES ARE MORE EVOLUTIONARILY … PHYSICAL REVIEW RESEARCH 7, 023115 (2025)

[1] T. Sikosek and H. S. Chan, Biophysics of protein evolution
and evolutionary protein biophysics, J. R. Soc. Interface 11,
20140419 (2014).

[2] Y. Xia and M. Levitt, Roles of mutation and recombination in
the evolution of protein thermodynamics, Proc. Natl. Acad. Sci.
USA 99, 10382 (2002).

[3] J. D. Bloom, Z. Lu, D. Chen, A. Raval, O. S. Venturelli, and
F. H. Arnold, Evolution favors protein mutational robustness in
sufficiently large populations, BMC Biol. 5, 29 (2007).

[4] V. Jayaraman, S. Toledo-Patiño, L. Noda-García, and P.
Laurino, Mechanisms of protein evolution, Protein Sci. 31,
e4362 (2022).

[5] J. A. Vila, Analysis of proteins in the light of mutations, Eur.
Biophys. J. 53, 255, (2024).

[6] J. Hartling and J. Kim, Mutational robustness and geometrical
form in protein structures, J. Exp. Zool. B 310B, 216 (2008).

[7] C. Schaefer, A. Schlessinger, and B. Rost, Protein secondary
structure appears to be robust under in silico evolution while
protein disorder appears not to be, Bioinformatics 26, 625
(2010).

[8] M. M. Rorick and G. P. Wagner, Structural robustness confers
are evolvavility in proteins, Papers from the 2010 AAAI Fall
Symposium (The AAAI Press, Menlo Park, California, 2010).

[9] M. M. Rorick and G. P. Wagner, Protein structural modularity
and robustness are associated with evolvability, Genome Biol.
Evol. 3, 456 (2011).

[10] I. G. Johnston, K. Dingle, S. F. Greenbury, C. Q. Camargo,
J. P. K. Doye, S. E. Ahnert, and A. A. Louis, Symmetry and
simplicity spontaneously emerge from the algorithmic nature
of evolution, Proc. Natl. Acad. Sci. USA 119, e2113883119
(2022).

[11] Q.-Y. Tang, T. S. Hatakeyama, and K. Kaneko, Functional sen-
sitivity and mutational robustness of proteins, Phys. Rev. Res.
2, 033452 (2020).

[12] Q.-Y. Tang and K. Kaneko, Dynamics-evolution correspon-
dence in protein structures, Phys. Rev. Lett. 127, 098103
(2021).

[13] A. Sakata and K. Kaneko, Dimensional reduction in evolv-
ing spin-glass model: Correlation of phenotypic responses to
environmental and mutational changes, Phys. Rev. Lett. 124,
218101 (2020).

[14] S. Nagata and M. Kikuchi, Emergence of cooperative bistability
and robustness of gene regulatory networks, PLoS Comput.
Biol. 16, e1007969 (2020).

[15] T. Kaneko and M. Kikuchi, Evolution enhances mutational
robustness and suppresses the emergence of a new phenotype:
A new computational approach for studying evolution, PLoS
Comput. Biol. 18, e1009796 (2022).

[16] K. Kaneko, Evolution of robustness to noise and mutation in
gene expression dynamics, PLoS ONE 2, e434 (2007).

[17] S. Ciliberti, O. C. Martin, and, A. Wagner, Robustness can
evolve gradually in complex regulatory gene networks with
varying topology, PLoS Comput. Biol. 3, e15 (2007).

[18] K. F. Lau and K. A. Dill, A lattice statistical mechanics
model of the conformational and sequence spaces of proteins,
Macromolecules 22, 3986 (1989).

[19] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat,
H. Weissig, I. N. Shindyalov, and P. E. Bourne, The protein data
bank, Nucleic Acids Res. 28, 235 (2000).

[20] H. Chen, X. Zhou, and Z.-C. Ou-Yang, Secondary-structure-
favored hydrophobic-polar lattice model of protein folding,
Phys. Rev. E 64, 041905 (2001).

[21] M. Cieplak and J. R. Banavar, Energy landscape and dynamics
of proteins: An exact analysis of a simplified lattice model,
Phys. Rev. E 88, 040702(R) (2013).

[22] G. Shi, T. Wüst, and D. P. Landau, Characterizing folding fun-
nels with replica exchange Wang-Landau simulation of lattice
proteins, Phys. Rev. E 94, 050402(R) (2016).

[23] E. van Dijk, P. Varilly, T. P. J. Knowles, D. Frenkel, and S.
Abeln, Consistent treatment of hydrophobicity in protein lattice
models accounts for cold denaturation, Phys. Rev. Lett. 116,
078101 (2016).

[24] C. Holzgräfe, A. Irbäck, and C. Troein, Mutation-induced fold
switching among lattice proteins, J. Chem. Phys. 135, 195101
(2011).

[25] G. Shi, T. Vogel, T. Wüst, Y. W. Li, and D. P. Landau, Effect
of single-site mutations on hydrophobic-polar lattice proteins,
Phys. Rev. E 90, 033307 (2014).

[26] S.-J. Chen and K. A. Dill, RNA folding energy landscapes,
Proc. Natl. Acad. Sci. USA 97, 646 (2000).

[27] T. Takahashi, G. Chikenji, and K. Tokita, Lattice protein
design using Bayesian learning, Phys. Rev. E 104, 014404
(2021).

[28] V. Bianco, G. Franzese, C. Dellago, and I. Coluzza, Role
of water in the selection of stable proteins at ambient and
extreme thermodynamic conditions, Phys. Rev. X 7, 021047
(2017).

[29] T. Lazaridis and M. Karplus, Effective energy function for
proteins in solution, Proteins: Struct. Funct. Bioinf. 35, 133
(1999).

[30] T. Takahashi, G. Chikenji, and K. Tokita, The cavity method to
protein design problem, J. Stat. Mech. (2022) 103403.

[31] I. Coluzza, Computational protein design: a review, J. Phys.:
Condens. Matter 29, 143001 (2017).

[32] S. Cocco, C. Feinauer, M. Figliuzzi, R. Monasson, and M.
Weigt, Inverse statistical physics of protein sequences: a key
issues review, Rep. Prog. Phys. 81, 032601 (2018).

[33] C. B. Anfinsen, Principles that govern the folding of protein
chains, Science 181, 223 (1973).

[34] C. C. Bigelow, On the average hydrophobicity of proteins and
the relation between it and protein structure, J. Theor. Biol. 16,
187 (1967).

[35] Y. Kabashima and D. Saad, Belief propagation vs. TAP
for decoding corrupted messages, Europhys. Lett. 44, 668
(1998).

[36] H. S. Chan and K. A. Dill, Compact polymers, Macromolecules
22, 4559 (1989).

[37] K. T. Nguyen, S. V. Le Clair, S. Ye, and Z. Chen, Orientation
determination of protein helical secondary structures using lin-
ear and nonlinear vibrational spectroscopy, J. Phys. Chem. B
113, 12169 (2009).

[38] W. Li and A. Godzik, Cd-hit: a fast program for clustering
and comparing large sets of protein or nucleotide sequences,
Bioinformatics 22, 1658 (2006).

[39] W. G. Touw, C. Baakman, J. Black, T. A. H. Te Beek, E.
Krieger, R. P. Joosten, and G. Vriend, A series of PDB-related
databanks for everyday needs, Nucleic Acids Res. 43, D364
(2015).

023115-15

https://doi.org/10.1098/rsif.2014.0419
https://doi.org/10.1073/pnas.162097799
https://doi.org/10.1186/1741-7007-5-29
https://doi.org/10.1002/pro.4362
https://doi.org/10.1007/s00249-024-01714-y
https://doi.org/10.1002/jez.b.21203
https://doi.org/10.1093/bioinformatics/btq012
https://doi.org/10.1093/gbe/evr046
https://doi.org/10.1073/pnas.2113883119
https://doi.org/10.1103/PhysRevResearch.2.033452
https://doi.org/10.1103/PhysRevLett.127.098103
https://doi.org/10.1103/PhysRevLett.124.218101
https://doi.org/10.1371/journal.pcbi.1007969
https://doi.org/10.1371/journal.pcbi.1009796
https://doi.org/10.1371/journal.pone.0000434
https://doi.org/10.1371/journal.pcbi.0030015
https://doi.org/10.1021/ma00200a030
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1103/PhysRevE.64.041905
https://doi.org/10.1103/PhysRevE.88.040702
https://doi.org/10.1103/PhysRevE.94.050402
https://doi.org/10.1103/PhysRevLett.116.078101
https://doi.org/10.1063/1.3660691
https://doi.org/10.1103/PhysRevE.90.033307
https://doi.org/10.1073/pnas.97.2.646
https://doi.org/10.1103/PhysRevE.104.014404
https://doi.org/10.1103/PhysRevX.7.021047
https://doi.org/10.1002/(SICI)1097-0134(19990501)35:2<133::AID-PROT1>3.0.CO;2-N
https://doi.org/10.1088/1742-5468/ac9465
https://doi.org/10.1088/1361-648X/aa5c76
https://doi.org/10.1088/1361-6633/aa9965
https://doi.org/10.1126/science.181.4096.223
https://doi.org/10.1016/0022-5193(67)90004-5
https://doi.org/10.1209/epl/i1998-00524-7
https://doi.org/10.1021/ma00202a031
https://doi.org/10.1021/jp904153z
https://doi.org/10.1093/bioinformatics/btl158
https://doi.org/10.1093/nar/gku1028


TOMOEI TAKAHASHI et al. PHYSICAL REVIEW RESEARCH 7, 023115 (2025)

[40] W. Kabsch and C. Sander, Dictionary of protein secondary
structure: pattern recognition of hydrogen-bonded and geomet-
rical features, Biopolymers 22, 2577 (1983).

[41] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap
(Chapman and Hall/CRC, Boca Raton, 1994).

[42] M. Kimura et al., Evolutionary rate at the molecular level,
Nature (London) 217, 624 (1968).

[43] G. Abrusán and J. A. Marsh, Alpha helices are more robust to
mutations than beta strands, PLoS Comput. Biol. 12, e1005242
(2016).

[44] G. Chikenji, M. Kikuchi, and Y. Iba, Multi-self-overlap
ensemble for protein folding: Ground state search and thermo-
dynamics, Phys. Rev. Lett. 83, 1886 (1999).

[45] N. C. Shirai and M. Kikuchi, Multicanonical simulation of the
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