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Interaction dependence of the Hall response for the Bose-Hubbard triangular ladder
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We explore the behavior of the Hall response of a Bose-Hubbard triangular ladder in a magnetic field as a
function of the repulsive on-site atomic interactions. We consider a wide range of interaction strengths, from the
weakly interacting limit to the hard-core regime. This is realized by computing the Hall polarization following
the quench of a weak linear potential, which induces the flow of a current through the system, using time-
dependent matrix product state numerical simulations. We complement our understanding in the regime of small
magnetic fields by analytical calculations of the equilibrium value of the Hall polarization for noninteracting
bosonic atoms and under a mean-field assumption. The Bose-Hubbard triangular flux ladder exhibits a rich
phase diagram, containing Meissner, vortex, and biased-chiral, superfluid phases. We show that the Hall response
can be employed to fingerprint the various chiral states, the frustration effects occurring in the limit of strong
interactions, and the phase boundaries of the equilibrium phase diagram.
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I. INTRODUCTION

Strongly correlated topological matter exhibits exotic prop-
erties like particles with fractional quantum numbers and
anyonic exchange statistics, which offer a promising avenue
for quantum computing applications [1,2]. One of the paradig-
matic examples of topological quantum states is the fractional
quantum Hall state [3–5], stemming from the interplay of
strong interactions and magnetic fields. The realization of
such topologically nontrivial states has been an important goal
for ultracold atom platforms. As in these systems the atoms
are neutral the magnetic fields are artificially realized, e.g.,
by coupling to laser light via Raman processes [6–8]. This
technique has led to the experimental realization of artificial
magnetic fields for atoms confined to quasi-one-dimensional
ladders, or two-dimensional geometries, for both bosonic
and fermionic atomic species [9–19]. Furthermore, recently
a Laughlin-type fractional quantum Hall state of two atoms
has been prepared [20].

One of the central questions in the field is related to the
design of experimentally relevant probes that can unravel
the nontrivial topological properties of the prepared quantum
states. In solid-state materials, the Hall effect, i.e., monitor-
ing the induced transverse current upon the application of a
force, has been a widely employed transport measurement.
More recently, the Hall response has become accessible for
ultracold atoms in optical lattices, and for weakly interacting
gases, has been measured from the center-of-mass drifts or
local currents [14,17,18]. Furthermore, theoretical proposals
relate the quantized Hall response to topological invariants
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for small interacting ensembles for identifying the fractional
states [21,22]. However, a complete understanding of the
behavior of the Hall response when strong interactions are
present is still lacking. Theoretical progress is being made in
the case of ladder systems [23–28], the minimal setups for
the study of the interplay of interactions and orbital effects,
or by making use of special geometries [29–32]. In particular,
the theoretical prediction of a universal Hall response occur-
ring for certain parameters for interacting fermionic ladders
[25] has been experimentally confirmed [19]. For ladders, a
universal relation between the Hall resistance and the charge
stiffness has also been proposed [27].

In this paper, we explore the Hall response for a Bose-
Hubbard triangular ladder under the action of a magnetic
field, focusing on the behavior of the Hall polarization for a
wide range of on-site atomic interactions. This is motivated
by recent studies, which showed that the Hall response can be
employed as a sensitive probe for the features of the underly-
ing phase diagram, either in the case of hard-core bosons in
the triangular geometry [28], or in the limit of small magnetic
fields for square ladders [27]. Furthermore, triangular flux lad-
ders have proven to exhibit rich phase diagrams [33–45], with
frustration-induced effects and phases without an equivalent
in the unfrustrated square geometry [41].

The plan of the paper is as follows: In Sec. II, we de-
scribe the model we investigate and the protocol employed for
the numerical calculation of the Hall polarization. We then
briefly present the main message of our results in Sec. III. In
Sec. IV, we briefly present the numerical method based on
matrix product states employed in this paper, while in Sec. V,
we perform analytical calculations in the noninteracting and
mean-field limits for computing the equilibrium Hall polar-
ization. The results are presented in Sec. VI, focusing first on
the behavior in the Meissner superfluid phase (Sec. VI B), fol-
lowed by an analysis around the phase transition boundaries
(Sec. VI C), in the biased-chiral superfluid phase (Sec. VI D),
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FIG. 1. Sketch of the triangular flux ladder model. The legs are
denoted by m = 1, 2, and the sites on each leg are numbered by j.
The bosonic atoms can tunnel along the rungs with amplitude J and
along the legs with amplitude J‖. We take into account repulsive
on-site interactions between the atoms of strength U , and a flux χ

pierces each triangular plaquette. Because of the presence of a linear
potential Vx , a current Jx passes through the ladder.

followed by a discussion of the commensurability effects oc-
curring in the vortex superfluid phase (Sec. VI E). We discuss
our results and conclude in Sec. VII.

II. MODEL AND PROTOCOL

We consider interacting bosonic atoms confined to a trian-
gular ladder under the action of a magnetic field, as sketched
in Fig. 1. The Hamiltonian of the Bose-Hubbard model in a
magnetic field is given by [41]

H = H‖ + H⊥ + Hint,

H‖ = − J‖
L−1∑
j=1

(e−iχ b†
j,1b j+1,1 + H.c.)

− J‖
L−1∑
j=1

(eiχb†
j,2b j+1,2 + H.c.),

H⊥ = − J
L∑

j=1

(b†
j,1b j,2 + H.c.)

− J
L−1∑
j=1

(b†
j+1,1b j,2 + H.c.),

Hint = U

2

L∑
j=1

2∑
m=1

n j,m(n j,m − 1). (1)

We denote by b j,m and b†
j,m the bosonic annihilation and

creation operators at position j and leg m = 1, 2. ρ = N/(2L)
represents the atomic filling, with the total number of particles
N = ∑L

j=1

∑2
m=1 n j,m and L the number of sites on each leg

of the ladder. H‖ gives the tunneling along the two legs of the
ladder, with amplitude J‖. The complex value of the tunneling
amplitude stems from the presence of a magnetic field, with
strength characterized by the flux χ [6,7]. The tunneling along
the rungs of the ladder is described by H⊥ with amplitude
J . The atoms interact repulsively if on the same lattice site,
with the interaction strength U > 0. We assume h̄ = 1 in the
following. This model has a rich phase diagram of chiral
quantum phases, as discussed in Refs. [28,41]. We give an

overview of the phase diagrams for the considered parameter
regimes in Sec. VI.

We are interested in the Hall response of the system and its
dependence on the on-site interaction strength for the different
phases present. To realize this, we monitor the dynamics of
the system following the quench of a linear potential in the x
direction,

Vx = μ

L∑
j=1

2∑
m=1

[
j + 1

2
(m − 1)

]
n j,m. (2)

This protocol has been investigated for square ladders in
Refs. [25,26], and was analyzed for the triangular ladder in the
limit of hard-core interactions in Ref. [28]. Furthermore, it has
been experimentally implemented for interacting fermionic
atoms on a square ladder in Ref. [19]. In order to compute the
Hall response, we begin with the system in its ground state
at time tJ = 0. Following the quench with the potential Vx

at t > 0 a total current Jx is present in the x direction and,
because of the presence of the magnetic flux, between the
two legs of the ladder a density imbalance Py develops. These
observables are defined for the triangular ladder as

Py =
∑

j

(n j,1 − n j,2),

Jx = − i
∑

j

[
J

2
(b†

j,1b j,2 + b†
j,2b j+1,1 − H.c.)

+ J‖(e−iχ b†
j,1b j+1,1 + eiχ b†

j,2b j+1,2 − H.c.)

]
, (3)

where in the current Jx we have contributions from the two
legs of the ladder and also from the rungs owing to the trian-
gular geometry. For its derivation see Refs. [28,46]. A current
flowing towards smaller values of the index j corresponds to
negative values of Jx.

The Hall response of the system is quantified by the Hall
polarization, defined as the ratio of the two observables de-
fined in Eq. (3) [25,26]

PH (t ) =
〈
Py

〉
(t )

〈Jx〉(t )/J
. (4)

In the numerator, we usually consider the imbalance differ-
ence with respect to the ground-state value, 〈Py〉(t ) − 〈Py〉(0),
as phases like the biased-chiral superfluid exhibit a finite value
of the imbalance in equilibrium.

The usefulness of employing the Hall polarization as a
measure of the response stems from the fact that even though
the magnitudes of the density imbalance and total current
grow under the action of the linear potential PH (t ) stabilizes
to a transient steady value at intermediate times [25,26,28].
We compute PH (t ) numerically using time-dependent matrix
product states methods as described in Sec. IV and its equi-
librium value analytically in the noninteracting or mean-field
limits in Sec. V. The steady value of the Hall polarization we
denote by 〈〈PH 〉〉, where we performed the average over PH (t )
for a time interval of at least 10/J . We work in a regime of
small values of the linear potential μ/J , such that the results
shown are independent of its value. However, if we decrease
the value of the potential, we have access to longer times in
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the dynamics before the finite-size effects become relevant.
We note that we have discussed the influence of μ/J in more
detail for the hard-core case in Ref. [28].

III. KEY RESULTS

Our paper aims to understanding the behavior of the Hall
response of the quantum chiral phases occurring for inter-
acting bosonic particles on a triangular ladder geometry. We
show that the Hall polarization, computed numerically follow-
ing the quench of a linear potential, is a reliable observable of
quantifying the Hall response for the triangular ladder for all
strengths of interactions considered. We focus our discussion
on the most striking features observed in the Hall polar-
ization, how they correlate with the underlying ground-state
phase diagram, and the behavior obtained by varying the local
interactions.

We show that the Hall response is extremely sensitive
to the phase boundaries, in particular, as we approach the
transition thresholds within the Meissner superfluid phase,
where a divergent-like behavior is observed. By comparing
the numerical results with analytical expressions obtained in
the noninteracting limit, we attribute the divergence to the
expected vanishing of the current at the phase transition owing
to changes in the structure of the lower energy band. While
one might expect a large negative Hall response even if weak
interactions are added, interestingly, we obtain large values
close to the transition threshold also in the strongly correlated
regimes.

We find several instances in which the Hall polarization
changes sign. In the Meissner phase, the sign can be changed
by varying the interaction strength for certain values of the
atomic filling, stemming from the presence of particle-hole
symmetry in the hard-core limit for half filling. In the vortex
phase, the sign of the Hall response may depend on both the
hopping amplitudes and the magnetic flux.

The presence of frustration induced vortex commensura-
bility effects in the vortex phase determines a large positive
Hall polarization. Previously, we discussed that in the hard-
core case, having a second commensurate vortex density in
the current pattern of the vortex state is correlated with a
strong Hall response [28]. Here, we extend these results by
showing that the competition between incommensurate and
commensurate vortices is present even for finite, but large,
values of the on-site interactions, and that the Hall polarization
is sensitive to these nontrivial effects.

IV. MATRIX PRODUCT STATES NUMERICAL METHODS

In the following, we briefly describe the numerical ap-
proaches used in this paper. To numerically obtain the ground
state of the Hamiltonian H , Eq. (1), we employed a finite-size
density matrix renormalization group (DMRG) algorithm in
the matrix product state (MPS) representation [47–51], im-
plemented using the ITensor library [52]. We consider ladders
with a number of sites on each leg of L = 60 and L = 90, and
with a maximal bond dimension up to 500, ensuring that the
truncation error is at most 10−10. Since we are considering a
bosonic model with finite interactions, the local Hilbert space
is large, thus a cutoff for its dimension is needed. We use a

maximal local dimension of at least four or five states per site,
depending on the value of the interactions.

The time evolution with the additional potential H + Vx,
Eq. (2), is performed using the time-dependent matrix product
state method (tMPS) based on the Trotter-Suzuki decomposi-
tion [49,53,54]. The convergence was ensured with a time step
of dtJ/h̄ = 0.01 and the measurements were performed every
tenth time step. We maintain the same bond dimension as for
the ground-state search, which ensures that, up to the times
considered in this paper, the truncation error is at most 10−9.

V. ANALYTICAL CALCULATION OF THE EQUILIBRIUM
HALL POLARIZATION

In Refs. [25,26] it was shown that the transient steady
value 〈〈PH 〉〉 agrees with the equilibrium Hall polarization
obtained for periodic boundary conditions upon the threading
of a flux through the system. In the following, we derive the
equilibrium value analytically for the noninteracting case for
small values of the flux χ and using a mean-field approach in
the Meissner phase.

The Hamiltonian of the system for periodic boundary con-
ditions in the x direction, upon the threading of a flux �̃

through the cylinder and under the action of a potential dif-
ference between the two legs of the ladder is given by

H̃ = − J‖
L∑

j=1

(e−iχ−i�̃/Lb†
j,1b j+1,1 + H.c.)

− J‖
L∑

j=1

(eiχ−i�̃/Lb†
j,2b j+1,2 + H.c.)

− J
L∑

j=1

(e−i�̃/2Lb†
j,1b j,2 + ei�̃/2Lb†

j+1,1b j,2 + H.c.)

+ U

2

L∑
j=1

2∑
m=1

n j,m(n j,m − 1)

+ Ey

L∑
j=1

(n j,1 − n j,2), (5)

where Ey is the energy difference between the two legs of
the ladder. The Hall polarization can be derived in terms of
the ground-state energy derivatives [23–25]. In this sense, fol-
lowing the notations of Ref. [25], we expand the ground-state
energy E0(�,χ, Ey) to the third order in �,χ, Ey around zero

E0(�̃, χ, Ey) = E0(0, 0, 0) + �̃2

2

∂2E0

∂�̃2
+ χ2

2

∂2E0

∂χ2

+ E2
y

2

∂2E0

∂E2
y

+ �̃χEy
∂3E0

∂�̃∂χ∂Ey
, (6)

where we considered only the terms that do not vanish owing
to symmetries. The current and density imbalance can be
computed as derivatives of the energy as

〈Jx〉eq = L
∂E0

∂�̃
, 〈Py〉eq = ∂E0

∂Ey
. (7)
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Around the expansion point we have

〈Jx〉eq = L�̃
∂2E0

∂�̃2

∣∣∣∣
χ,φ̃,Ey=0

,

〈Py〉eq = Ey
∂2E0

∂E2
y

+ �̃χ
∂3E0

∂�̃∂χ∂Ey

∣∣∣∣
χ,φ̃,Ey=0

. (8)

As we do not require a finite value of Ey to compute the
Hall polarization we obtain the following expression for the
equilibrium value [25]:

Peq
H = χ

L

∂3E0

∂φ̃∂χ∂Ey

∂2E0

∂φ̃2

∣∣∣∣∣∣
χ,φ̃,Ey=0

. (9)

A. Noninteracting limit

In the noninteracting limit, U = 0, for the Hamiltonian in
Eq. (5) we can compute the dispersion relation of the bosonic
atoms

E±(k) = − 2J‖ cos(k + �̃/L) cos(χ )

± {2J2[1 + cos(k + �̃/L)]

+ [Ey + 2J‖ sin(k + �̃/L) sin(χ )]2}1/2. (10)

At small values of the flux χ , where Eq. (9) is valid, we are
in the Meissner phase and the minimum of the lower band of
the dispersion is at momentum k = 0 [41]. Thus, using E0 =
E−(k = 0) in Eq. (9) we obtain

Peq,U=0
H = −2(J‖/J )χ cos(χ )

1 + 4(J‖/J ) cos(χ ) − 4(J‖/J )2 sin(χ )2
. (11)

We note that even though this relation is derived only for small
χ , we kept in the ground-state energy the full dependence on
the flux χ . We compare this expression with numerical results
at small interaction strengths in Sec. VI B and we find a very
good agreement.

B. Mean-field approach in the Meissner phase

In the limit of large atomic fillings ρ in the Meiss-
ner phase we can approximate the bosonic operator b j,m =√

ρ + 1
2 (−1)mδρ eiφ . The values of δρ and φ can be com-

puted from the minimization of the energy. Furthermore, from
the approximate value of the ground-state energy we can
obtain the Hall polarization [25]. In this mean-field approx-
imation the Hamiltonian H̃ , Eq. (5), for Ey = 0 reads

H̃ = − 2J‖L

[
cos(χ + �̃/L)

(
ρ − 1

2
δρ

)

+ cos(χ + �̃/L)

(
ρ + 1

2
δρ

)]

− 4JL cos(�̃/2L)

(
ρ2 − δρ2

4

)1/2

+ UL

(
ρ2 − ρ + δρ2

4

)
. (12)

The energy is minimized for a local atomic imbalance of

δρ = 4J‖ρ sin(χ ) sin(�̃/L)

2J cos(�̃/L) + ρU
. (13)

By computing the total current as the derivative of the ground-
state energy, Eq. (7), and using that 〈Py〉eq = Lδρ, we obtain
the following mean-field value of the equilibrium Hall polar-
ization:

Peq,MF
H = −2(J‖/J ) sin(χ )

1 + ρU
2J + 4 J‖

J cos(χ )
(
1 + ρU

2J

) − 4
J2
‖

J2 sin(χ )2
.

(14)

We notice that in the limit of χ → 0 and ρ → 0 it agrees with
the noninteracting result Peq,U=0

H , Eq. (11).

VI. RESULTS

In the following, we present the results for the Hall po-
larization throughout the phase diagram of the Hamiltonian,
Eq. (1). We initially focus on the filling ρ = 0.25, considering
the dependence of 〈〈PH 〉〉 as a function of both the flux χ

and the tunneling amplitude J‖/J for different values of the
on-site interaction U/J . For this value of the filling, we obtain
the same quantum phases in the ground state of the model
for all values of the interaction considered, as discussed in
Sec. VI A for U/J = 1 and U/J = 10. This allows us to study
the dependence of the Hall response within the same phase as
a function of U/J .

In the rest of the Results section, we present the behavior of
the Hall response throughout the phase diagram, considering
the interaction dependence from the weakly to the strongly
interacting limits.

A. Overview of the ground-state phase diagram

For a filling of ρ = 0.25 in the phase diagram, we observe
three distinct quantum phases [41], as shown in Fig. 2. At
small values of the flux χ , or small values of the tunneling
J‖/J , we have the Meissner superfluid (M-SF). The Meissner
superfluid is characterized by vanishing values of currents on
the rungs and by chiral currents on the legs of the ladder,
and the presence of a single gapless mode. For larger values
of the flux χ , a phase that breaks the Z2 symmetry of the lad-
der is present, namely the biased-chiral superfluid (BC-SF),
which is characterized by a finite density imbalance and a
single gapless mode. The ground-state manifold is spanned
by two states exhibiting finite values of density imbalance
between the two legs of opposite signs. Increasing J‖/J we
enter the vortex superfluid (V-SF), characterized by finite
values of the currents both on the legs and the rungs of the
ladder, and two gapless modes. The current pattern determines
a vortex density incommensurate with the ladder geometry,
scaling linearly with the flux ρv = χ/π . Furthermore, at large
values of the interaction strength, for certain values of the
flux additional vortex periodicities arise, determined by the
following relation between the atomic filling and vortex den-
sity ρv = 1 − ρ [28,41]. In Sec. VI E, we further discuss the
presence of commensurability effects at large values of the
interaction strength.
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FIG. 2. Sketch of the phase diagram for ρ = 0.25 with (a) U/J =
1 and (b) U/J = 10. The phases present for these parameters are the
Meissner superfluid (M-SF), the vortex superfluid (V-SF), and the
biased chiral superfluid (BC-SF). The nature of the quantum phases
was identified based on DMRG numerical simulations analyzed sim-
ilarly as in Ref. [41] for a system size of L = 120 sites on each leg.
The symbols depicted correspond to the values of the flux χ/π at
which the phase transitions occur, determined numerically for a fixed
value of J‖/J . The main characteristics of the phases are described in
Sec. VI A.

By increasing the interaction strength from U/J = 1 in
Fig. 2(a) to U/J = 10 in Fig. 2(b), we see that the main
changes occurring to the phase boundaries are owing to the
sensitivity of the biased-chiral superfluid phase to interac-
tions. For U/J = 1, the BC-SF extends to smaller values of
the flux, χ < 0.5π , and we can trace it as a narrow interme-
diate phase between the M-SF and V-SF up to at least J‖/J ≈
1.3. However, when the interactions increase to U/J = 10, the
BC-SF only occurs for χ � 0.85π , and we do not find a direct
transition from the M-SF to the BC-SF, but only via the V-SF.

In Fig. 3, we show the behavior of the ground-state ob-
servables employed to determine the phase boundaries shown
in Fig. 2. We computed the ground-state value of the density
imbalance Py, Eq. (3) [see Fig. 3(a)], which identifies the
BC-SF phase, as well as the values of the average rung Jr and
chiral currents Jc, defined as

Jc = 1

2(L − 1)

∑
j

〈 j‖j,1 − j‖j,2〉, with

j‖j,m = −iJ‖[eiχ (−1)m
b†

j,mbj+1,m − H.c.]. (15)

FIG. 3. Ground-state observables employed for the determina-
tion of the phase diagram shown in Fig. 2, corresponding to the
Hamiltonian given in Eq. (1), for (a)(b) U/J = 1 and J‖/J = 0.5,
and (c)(d) U/J = 10 and J‖/J = 1.5. We plot in (a) the ground-state
value of the density imbalance Py, Eq. (3), in (b) and (d) the average
rung current Jr and the chiral current Jc, defined in Eqs. (15) and (16),
and in (c) the central charge, Eq. (17). For the ground-state simula-
tions, we considered a system of L = 120 sites on each leg and a
bond dimension m = 750. Based on the behavior of the observables,
we identified for U/J = 1 and J‖/J = 0.5 a phase transition between
M-SF and BC-SF at χ ≈ 0.59π , and U/J = 10 and J‖/J = 1.5 a
phase transition between M-SF and V-SF at χ ≈ 0.34π and between
V-SF and BC-SF at χ ≈ 0.97π .

Jr = 1

2L − 1

∑
j

|〈 j⊥j 〉|, with

j⊥2 j−1 = −iJ (b†
j,1b j,2 − H.c.),

j⊥2 j = −iJ (b†
j+1,1b j,2 − H.c.). (16)

The behavior of the currents [see Figs. 3(b) and 3(d)] can
be used to distinguish the Meissner and vortex phases. Fur-
thermore, we determine the number of gapless modes by
calculating the central charge c [see Fig. 3(c)], extracted from
the scaling of the von Neumann entanglement entropy SvN (l )
of a subsystem of length l embedded in the chain of length
L. The entanglement entropy for the ground state of gapless
phases with open boundary conditions is [55–57]

SvN = c

6
log

(
L

π
sin

π l

L

)
+ s1, (17)

where s1 is a nonuniversal constant.

B. The Hall response of the Meissner phase

We begin by analyzing the behavior of the Hall polarization
in the Meissner superfluid phase. In Fig. 4, we show the
dependence of the steady value of the Hall polarization 〈〈PH 〉〉
as a function of the flux for small values of J‖/J � 0.2 and
different values of the interaction, from almost noninteracting
atoms U/J = 0.1, to the hard-core limit U/J = ∞, within
the Meissner superfluid phase. For J‖/J = 0.05, Fig. 4(a), the
dependence on the flux is almost symmetric with a maximum
around the value χ/π = 0.5. However, we observe that by
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FIG. 4. Time-averaged Hall polarization 〈〈PH 〉〉 in the Meissner
superfluid phase as a function of χ for (a) J‖/J = 0.05, (b) J‖/J =
0.1, and (c) J‖/J = 0.2, for different values of the interaction strength
U . The system size is L = 60, filling ρ = 0.25, and the strength of
the linear potential μ/J = 0.01. The black curve at small values of
the flux corresponds to the analytical value Peq,U=0

H , Eq. (11).

increasing J‖/J the maximum of 〈〈PH 〉〉 increases in mag-
nitude and moves to higher values of χ . As discussed in
Sec. VI C, this is because of the proximity of the phase tran-
sitions to the vortex phase or to the biased chiral superfluid,
an effect, which is more prominent at lower values of the in-
teraction strength. At low values of the flux, χ/π � 0.15, we
have a very good agreement with the equilibrium value of the
Hall polarization computed for noninteracting bosons Peq,U=0

H .
This is also because of the fact that the on-site interaction does
not seem to play an important role in this regime, as seen in
Fig. 5(a) for J‖/J = 0.2 and χ/π = 0.1, where for U/J = 2
and the hard-core limit, 〈〈PH 〉〉 is mostly independent of the
value of the interaction. However, for larger values of the mag-
netic flux, e.g., in Fig. 5(b) for J‖/J = 0.2 and χ/π = 0.7, the
value of U/J is much more important, with the magnitude of
〈〈PH 〉〉 decreasing as the interaction strength increases.

FIG. 5. Time-averaged Hall polarization 〈〈PH 〉〉 in the Meissner
superfluid phase as a function of J/U for (a) χ = 0.1π , J‖/J = 0.2,
(b) χ = 0.7π , J‖/J = 0.2, (c) χ = 0.1π , J‖/J = 0.5, and (d) χ =
0.1π , J‖/J = 2.5. The system size is L = 90, filling ρ = 0.25, and
the strength of the linear potential is μ/J = 0.001.

The good agreement between the analytical expression of
Peq,U=0

H , Eq. (11), and the numerically determined 〈〈PH 〉〉 for
small values of the interaction, U/J = 0.1 and U/J = 0.2,
can be very well seen in Fig. 6, where we depict 〈〈PH 〉〉 as a
function of J‖/J for small values of χ . The weak dependence
on the interaction is confined to small J‖/J , while for larger

FIG. 6. Time-averaged Hall polarization 〈〈PH 〉〉 in the Meissner
superfluid phase as a function of J‖/J for (a) χ = 0.05π , (b) χ =
0.1π , for different values of the interaction strength U . The system
size is (a) L = 60, (b) L = 90, filling ρ = 0.25 and the strength of
the linear potential is (a) μ/J = 0.01, (b) μ/J = 0.001. The black
curve at small values of the flux corresponds to the analytical value
Peq,U=0

H , Eq. (11).
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FIG. 7. Time evolution of the Hall polarization PH (t ) in the
Meissner superfluid phase for (a) χ = 0.1π , J‖/J = 0.2, (b) χ =
0.7π , J‖/J = 0.2, and (c) χ = 0.1π , J‖/J = 2, for different values
of the interaction strength U . The system size is (a)(c) L = 90 and
(b) L = 60, and the strength of the linear potential is (a)(c) μ/J =
0.001 and (b) μ/J = 0.01.

values, we have a much stronger influence of the interaction,
as seen in Fig. 5(c) for J‖/J = 0.5 compared to Fig. 5(d) for
J‖/J = 2.5. Furthermore, we observe in Fig. 6 that the value
of U/J is crucial for the dependence of 〈〈PH 〉〉 as a function of
J‖/J at larger values of J‖/J . While for hard-core bosons the
Hall polarization decreases with J‖/J , for U/J � 10 〈〈PH 〉〉
increases with J‖/J for the interval shown. We associate this
with the fact that a phase transition to the vortex superfluid
phase may occur for larger values of J‖/J even for the values
of χ shown in Fig. 6; e.g., for the noninteracting case, the
phase transition occurs for J‖/J ≈ 10 for χ/π = 0.1, see
Sec. VI C for more details on the behavior approaching the
phase transition.

We depict the dynamics of PH (t ) in the Meissner superfluid
phase in Fig. 7 for different values of the interaction strength,

FIG. 8. Time evolution in the Meissner superfluid phase of the
(a) Hall polarization PH , (b) density imbalance Py, (c) current Jx/J ,
(d) chiral current Jc/J , and (e) bond dimension, for χ = 0.1π ,
U/J = 2.5, for different values of the tunneling amplitude J‖/J ,
ranging from J‖/J = 0.1 to J‖/J = 5. The system size is L = 90,
and the strength of the linear potential is μ/J = 0.001.

and in Fig. 8(a) varying the strength of J‖/J . Throughout
the Meissner phase, we observe a similar dynamical behav-
ior, with a fast increase of the magnitude of PH followed
by damped oscillations towards the transient steady value.
This steady behavior at long times justifies the study of the
time-averaged Hall polarization 〈〈PH 〉〉. In Fig. 7, we observe,
for all parameters depicted, that the oscillations are more
prominent for small values of the interaction strength, with
the damping increasing with the value of U/J , which also has
a slight impact on the frequency of the oscillations.

In Fig. 8, we monitor the state of the system following
the quench of the linear potential for χ = 0.1π , U/J = 2.5
and a wide range of the tunneling 0.1 � J‖/J � 5, for times
up to tJ = 25. We observe a well-defined plateau in the Hall
polarization [Fig. 8(a)] for times considered, with the value of
〈〈PH 〉〉 increasing with J‖/J for these parameters. Following
the quench of the linear potential, the magnitude of both the
density imbalance 〈Py〉 and the current 〈Jx〉 exhibit a mostly
linear increase. For larger values of J‖/J , we see a deviation
from the linear trend for times tJ � 20, stemming from the
finite size of the ladder considered here. For larger system
sizes, or smaller values of the linear potential μ/J , the de-
viation from the linear evolution would occur at later times.
Interestingly, for the parameters and times considered, we see
that the plateau value of PH is not affected.

In order to analyze the nature of the state during the evolu-
tion, we compute the dynamics of the chiral current, defined
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FIG. 9. Time-averaged Hall polarization 〈〈PH 〉〉 in the Meissner
superfluid phase as a function of χ for (a) J‖/J = 0.2, U/J = 2.5,
(b) J‖/J = 0.2, U/J = ∞, for different values of the filling ρ, and
(c) as a function of ρ for J‖/J = 0.2, U/J = 2.5. The system size is
(a)(c) L = 60 and (b) L = 90, and the strength of the linear poten-
tial is (a)(c) μ/J = 0.01 and (b) μ/J = 0.001. The black curve at
small values of the flux corresponds to the analytical value Peq,U=0

H ,
Eq. (11), and the gray curve corresponds to the analytical value
Peq,MF

H (ρ = 1), Eq. (14). We note that in (b) the values shown for
ρ = 0.25, U/J = ∞ are taken from Ref. [28].

in Eq. (15). We see that Jc(t ) remains constant in time and
equal to its ground-state value, Fig. 8(d). This implies that
the system maintains its Meissner superfluid character also
after the quench during the time interval in which we extract
its Hall response. Furthermore, in Fig. 8(e), we show the
evolution of the bond dimension used to represent the state
of the system as a MPS, which roughly quantifies the amount
of entanglement present [49]. We observe that by keeping the
truncation error fixed to 10−12 the bond dimension decreases
abruptly at short times and remains almost constant during
the time interval characterized by a linear evolution of Py and
Jx. We associate the increase at late times with the growing
importance of boundary effects, thus offering a further handle
to the estimation of the influence of finite size.

In the final part of the section regarding the Hall response
in the Meissner superfluid phase, we analyze the role of the
atomic filling ρ with the results presented in Figs. 9 and 10.
For a finite interaction strength of U/J = 2.5 increasing the
atomic filling decreases the magnitude of the Hall polariza-
tion, as seen in Fig. 9(a) as a function of χ for J‖/J = 0.2
and in Fig. 10(a) as a function of J‖/J for χ = 0.1π . In the
case of small values of ρ we compare our numerical results
with the analytical result Peq,U=0

H , Eq. (11), [black curves in
Figs. 9(a) and 10(a)], as the noninteracting Hall polarization
also corresponds to the single particle limit. We obtain a good
agreement with 〈〈PH 〉〉 for ρ = 0.125 for a magnetic flux up
to χ � 0.15π [Fig. 9(a)] and for ρ = 0.1 and χ = 0.1π for
the dependence on J‖/J [Fig. 10(a)]. The second comparison
we perform is for larger values of the atomic filling, where
we expect the mean-field approach presented in Sec. V B to

FIG. 10. Time-averaged Hall polarization 〈〈PH 〉〉 in the Meissner
superfluid phase as a function of J‖/J for χ = 0.1π and (a) U/J =
2.5, (b) U/J = ∞, for different values of the filling ρ. The sys-
tem size used is L = 90, and the strength of the linear potential
is μ/J = 0.001. In (a), the black curve at small values of the flux
corresponds to the analytical value Peq,U=0

H , Eq. (11), and the gray
curve corresponds to the analytical value Peq,MF

H (ρ = 1), Eq. (14).

hold. For ρ = 1, Peq,MF
H (ρ = 1), Eq. (14), agrees well with

the numerical results for χ � 0.4π and the dependence on
J‖/J , see gray curves in Figs. 9(a) and 10(a). Furthermore, in
Fig. 9(c) we see that the agreement with the mean-field result
becomes better as we increase ρ.

As for hard-core bosons a particle-hole symmetry is
present in the system for ρ = 0.5, it is interesting to investi-
gate the dependence on the filling also in this case. We expect
that from small fillings the magnitude of the Hall response
will decrease with ρ until it vanishes for ρ = 0.5 and changes
signs for larger fillings, with the same magnitude and opposite
signs for ρ and 1 − ρ. We observe this behavior in Figs. 9(b)
and 10(b), in particular we obtain the same value |〈〈PH 〉〉| for
ρ = 0.25 and ρ = 0.75, but 〈〈PH 〉〉 has opposite sign for the
two values of the filling. The change in sign of the Hall polar-
ization offers us an interesting opportunity when ρ > 0.5, as
in weak interactions 〈〈PH 〉〉 is negative in the Meissner phase,
while for hard-core bosons 〈〈PH 〉〉 is positive. This implies
that by varying the on-site interaction strength from weakly
to strongly interacting regimes we can change the sign of
the Hall polarization and have a value of U/J for which the
Hall response vanishes. For example, we depict this behavior
in Fig. 11 for ρ = 0.75 for two sets of parameters in the
Meissner superfluid phase. It is an interesting open question if
a symmetry emerges at the particular value of U/J for which
the Hall response vanishes.
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FIG. 11. Time-averaged Hall polarization 〈〈PH 〉〉 in the Meissner
superfluid phase as a function of J/U for (a) χ = 0.1π , J‖/J = 0.2,
(b) χ = 0.7π , J‖/J = 0.2. The system size is L = 90, filling ρ =
0.75 and the strength of the linear potential is μ/J = 0.001.

C. Hall response across phase transitions

In the following section, we analyze the behavior of the
Hall polarization as we vary the parameters of the model to
cross from the Meissner superfluid to the biased-chiral super-
fluid and the vortex superfluid. In Fig. 12, we show 〈〈PH 〉〉 as a
function of J‖/J for χ ∈ {0.3π, 0.5π, 0.8π, 0.9π} for several
values of the interaction, where the system crosses at least
one phase boundary. We observe a very rich behavior, with
large values of the Hall response, either negative or positive,
implying the change of sign of the Hall polarization, and a
strong dependence on the value of U/J .

We focus first on the divergence-like feature observed as
we approach the phase transition to the vortex or biased phases
from the Meissner phase, as we increase J‖/J , e.g., around
J‖/J ≈ 0.7 − 1.5 in Fig. 12(a), or around J‖/J ≈ 0.2 − 1.4 in
Fig. 12(c). In Fig. 13, we show 〈〈PH 〉〉 as a function of J‖/J
for U/J = 1 for the same values of the flux as in Fig. 12,
and the phase transition thresholds are marked with vertical
lines. We observe that the large increase of the Hall response
in the M-SF corresponds to the presence of a phase transition
(also seen in Figs. 14 and 15 as a function of the flux χ ).
We understand this behavior in the noninteracting limit, as
in the following. For U/J = 0, the dispersion relation of the
Hamiltonian is given by the expression in Eq. (10) for �̃ = 0,
the lower band exhibits either a single or a double mini-
mum structure depending on the chosen parameters [41]. The
Meissner phase is characterized by a single minimum, while
the vortex and biased-chiral phase have two minima, with the
transition threshold being defined by the parameters for which
the lower band has a quartic minimum and satisfy the con-
dition 1 + 4(J‖/J ) cos(χ ) − 4(J‖/J )2 sin(χ )2 = 0. However,
for the parameters satisfying this condition, the current 〈Jx〉eq

vanishes, which implies that Peq,U=0
H diverges as we approach

the phase boundary from the Meissner phase, owing to the
change in the structure of the dispersion relation. In Fig. 14,
we see the good agreement as we approach the divergence of
Peq,U=0

H (black curves) as a function of χ , with the numerical
result for weak interactions of U/J = 0.1 (purple points).

In the numerical results at finite interaction strengths, we
do not expect that the current will vanish at the phase tran-
sition and result in a divergence. However, for our protocol,
in which we quench a linear potential, presented in Sec. II,
even if the arising current is nonzero, it can have values
comparable to the amplitude of the oscillations present at short
times. Thus, for weak interactions close to the phase boundary
between M-SF and V-SF, or BC-SF, the short-time oscillations

FIG. 12. Time-averaged Hall polarization 〈〈PH 〉〉 across phase
transitions as a function of J‖/J for (a) χ = 0.3π , (b) χ = 0.5π ,
(c) χ = 0.8π , and (d) χ = 0.9π , for different values of the interac-
tion strength U . The system size is L = 90, filling ρ = 0.25 and the
strength of the linear potential is μ/J = 0.001. Dashed lines denote
the region where we could not define the value of 〈〈PH 〉〉 because the
current crosses zero during the time evolution.

of current can determine a zero value of the current at certain
points in time, which can prevent a well-defined Hall polariza-
tion, Eq. (4). For example, in Fig. 16(a) for U/J = 1, we have
a nicely behaved PH (t ) for 0.8 � J‖/J � 1.1, but for larger
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FIG. 13. Time-averaged Hall polarization 〈〈PH 〉〉 across phase
transitions as a function of J‖/J for (a) χ = 0.3π , (b) χ = 0.5π ,
(c) χ = 0.8π , and (d) χ = 0.9π , for U/J = 1. The system size is
L = 90, filling ρ = 0.25 and the strength of the linear potential is
μ/J = 0.001. The vertical lines denote the phase transition thresh-
old values as marked in the ground-state phase diagrams in Fig. 2.
Dashed lines denote the region where we could not define the value
of 〈〈PH 〉〉 because the current crosses zero during the time evolution.

values of the tunneling, 1.2 � J‖/J � 1.5, the current crosses
zero at several points in time, as seen in Fig. 16(c). This is the
reason why in Figs. 12 and 13 for small values of the interac-
tions, U/J � 2, we have points missing for certain values of
the tunneling amplitude J‖/J , where we could not properly
define a time-averaged 〈〈PH 〉〉 (regions marked by dashed
lines). Roughly, for values larger than U/J = 2.5, we do not
see the current crossing zero in its time evolution for the pa-
rameters considered. For U/J = 10, results shown in Fig. 17,
we observe oscillations in both the current and the density im-
balance [Figs. 17(b) and 17(c)], but since the magnitude of the
current is large enough, we can extract a meaningful Hall po-
larization up to the phase boundary. Even if for strong on-site
interactions we do not have a divergence of the Hall polariza-
tion, we still see an influence of this single particle effect.

Thus, we observe in Figs. 13 and 15 for U/J = 1 that,
by approaching the phase boundary marking the end of the
Meissner phase, 〈〈PH 〉〉 increases rapidly, with its maximum
close to the critical point and, in most cases, followed by
an abrupt decrease in its magnitude in the subsequent phase.
A strong Hall response is seen for larger values of the in-
teractions (Figs. 12 and 14) close to the phase transition
threshold, even in the absence of a divergence. Interestingly,
in Fig. 12(b), where the flux is χ = 0.5π , for U/J � 10 we
observe that the maximum of 〈〈PH 〉〉 as a function of J‖/J
does not correspond to the phase transition threshold, but
rather occurs in the Meissner phase. However, even for these
parameters, after the phase transition, we see a discontinuous
jump in the value of 〈〈PH 〉〉.

D. The Hall response of the biased-chiral superfluid phase

In this section, we investigate the behavior of the Hall po-
larization in the biased-chiral superfluid, phase characteristic
of the triangular ladder, having its origin in the frustrated

FIG. 14. Time-averaged Hall polarization 〈〈PH 〉〉 as a function of
χ for (a) J‖/J = 0.8, (b) J‖/J = 1, and (c) J‖/J = 1.2, for different
values of the interaction strength U . The system size is L = 90,
filling ρ = 0.25 and the strength of the linear potential is μ/J =
0.001. The black curve at small values of the flux corresponds to
the analytical value Peq,U=0

H , Eq. (11). We note that in (a) the values
shown for hard-core bosons, U/J = ∞, are taken from Ref. [28].
Dashed lines denote the region where we could not define the value
of 〈〈PH 〉〉 because the current crosses zero during the time evolution.

nature of the system at larger values of the flux [41]. We
focus on the parameter regime where the BC-SF phase has
a larger extent, e.g., for χ = 0.8π in Fig. 13(c) for U/J = 1,
we are in the BC-SF for 0.36 � J‖/J � 0.66, or for χ = 0.9π

in Fig. 13(d) for U/J = 1, we are in the BC-SF for 0.35 �
J‖/J � 1.14 and for U/J = 10, we are in the BC-SF for
0.46 � J‖/J � 0.78 (see also the phase diagrams in Fig. 2).
〈〈PH 〉〉 in these regimes has a smooth behavior and relatively
small values, in contrast to the behavior close to the transition
thresholds, or in the vortex phase (see Sec. VI E). Interest-
ingly, we observe a change of sign of the Hall polarization
as we increase the tunneling amplitude J‖/J . For this sign
change we did not find an explanation similar to the one in
Sec. VI B based on the change in the nature of carriers in
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FIG. 15. Time-averaged Hall polarization 〈〈PH 〉〉 as a function of
χ for (a) J‖/J = 0.8, (b) J‖/J = 1, and (c) J‖/J = 1.2, for U/J = 1.
The system size is L = 90, filling ρ = 0.25 and the strength of the
linear potential μ/J = 0.001. The vertical lines denote the phase
transition threshold values marked in the ground-state phase dia-
grams in Fig. 2. Dashed lines denote the region where we could not
define the value of 〈〈PH 〉〉 because the current crosses zero during the
time evolution.

the hard-core regime. At the phase transition between V-SF
and BC-SF (marked by the vertical line in Fig. 15 present for
χ > 0.8π ), we observe a small discontinuity in 〈〈PH 〉〉 as a
function of the flux. Furthermore, we obtain the same value
of the Hall polarization for both symmetry-broken states that
span the ground-state manifold of the BC-SF, regardless of the
sign of the ground-state density imbalance.

The dynamics of PH in the BC-SF is shown in Fig. 18 for
U/J = 1 and in Fig. 19 for U/J = 10, together with the time

FIG. 16. Time evolution in the Meissner superfluid phase to-
wards the phase transition threshold of the (a) Hall polarization PH ,
(b) density imbalance Py, (c) current Jx/J , for χ = 0.3π , U/J = 1,
for different values of the tunneling amplitude J‖/J , ranging from
J‖/J = 0.8 to J‖/J = 1.1 for PH and up to J‖/J = 1.5 for Py and
Jx/J . The system size is L = 90, and the strength of the linear
potential is μ/J = 0.001.

FIG. 17. Time evolution in the Meissner superfluid phase to-
wards the phase transition threshold of the (a) Hall polarization PH ,
(b) density imbalance Py, and (c) current Jx/J , for χ = 0.3π , U/J =
10, for different values of the tunneling amplitude J‖/J , ranging
from J‖/J = 0.8 to J‖/J = 1.5. The system size is L = 90, and the
strength of the linear potential is μ/J = 0.001.

dependence of the density imbalance Py and current Jx/J .
We observe that for both weak and strong interactions, the
dynamical behavior in the biased phase is different compared
to what we saw in the previous section for the Meissner
phase, giving further motivation to investigate the dynamics
of the Hall polarization and not only its steady value. In the
case of U/J = 1, Fig. 18(a), close to the phase boundary for
J‖/J = 0.36, the Hall polarization reaches a steady value only
for times tJ � 20, while for larger values J‖/J , deeper in

FIG. 18. Time evolution in the biased-chiral superfluid phase of
the (a) Hall polarization PH , (b) density imbalance Py, (c) current
Jx/J , for χ = 0.9π , U/J = 1, for different values of the tunneling
amplitude J‖/J , ranging from J‖/J = 0.36 to J‖/J = 1. The system
size is L = 90, and the strength of the linear potential is μ/J =
0.001.
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FIG. 19. Time evolution in the biased-chiral superfluid phase of
the (a) Hall polarization PH , (b) density imbalance Py, (c) current
Jx/J , for χ = 0.9π , U/J = 10, for different values of the tunnel-
ing amplitude J‖/J , ranging from J‖/J = 0.48 to J‖/J = 0.76. The
system size is L = 90, and the strength of the linear potential is
μ/J = 0.001.

the BC-SF, we reach the transient steady value faster. Near
the parameters where 〈〈PH 〉〉 changes sign, the fast initial
oscillations are replaced with a slower oscillatory behavior.
The main features of the dynamics, and the change of sign,
are caused by the time dependence of the density imbalance
Py, as seen in Fig. 18(b), while the current has a mostly linear
time evolution, Fig. 18(c). Similarly, for stronger interactions,
U/J = 10, shown in Fig. 19, it seems that the oscillatory
features of PH (t ) stem from the dynamics of Py. In this regime,
we observe that the sign of PH is not necessarily determined at
short times, as we can have an initial increase to positive val-
ues, after which a relaxation to either positive (J‖/J = 0.76)
or negative (J‖/J � 0.72) values occurs, see Fig. 19(a).

E. Emergence of commensurability effects at large interaction

In this section, we analyze the Hall polarization in the
vortex superfluid phase, with a particular focus on commen-
surability effects, which cause the strong positive response
observed in Figs. 12 and 14. We focus on understanding on
how the strong positive Hall response emerges as we increase
the strength of the interactions. For example, in Figs. 14(a)
and 15(a) for J‖/J = 1, we observe that for weak interac-
tions in the vortex superfluid phase (0.37π � χ � 0.87π for
U/J = 1), the stationary value of the Hall polarization has a
smooth behavior with a rather small magnitudes as a function
of the flux. In the case of U/J = 1, the values remain of 〈〈PH 〉〉
remain negative, but by increasing the interactions to U/J =
2.5, the magnitude of 〈〈PH 〉〉 is still relatively small, but it
exhibits a change of sign. Increasing the interactions to even
larger values, we observe a large positive response developing,
with a peak around χ ≈ 0.8π for U/J � 10. We can also see
this behavior in the time dependence of the Hall polarization,
by contrasting the results for U/J = 1 shown in Fig. 20 with
the ones for U/J = 10 shown in Fig. 21. In Fig. 20(a), the

FIG. 20. Time evolution in the vortex superfluid phase of the
(a) Hall polarization PH , (b) density imbalance Py, (c) current Jx/J ,
for J‖/J = 1, U/J = 1, for different values of the flux χ , ranging
from χ = 0.45π to χ = 0.85π . The system size is L = 90, and the
strength of the linear potential is μ/J = 0.001.

dynamics of PH resembles that in the Meissner phase, e.g.,
Fig. 8(a), with oscillations at short times that are damped to
steady values, even though for χ � 0.7π , as we approach the
transition to the BC-SF, the period of the oscillations is larger
and they persist to longer times. This dynamical behavior is in
contrast to what we observe in Fig. 21(a) for large values of
the on-site interactions. Here, after the sign change of the late
time value around χ ≈ 0.7π , the dynamics is quite different.
At very short times, PH is negative, but afterwards, PH starts
increasing and becomes positive, owing to a sign change of

FIG. 21. Time evolution in the vortex superfluid phase of the
(a) Hall polarization PH , (b) density imbalance Py, (c) current Jx/J ,
for J‖/J = 1, U/J = 10, for different values of the flux χ , ranging
from χ = 0.6π to χ = 0.9π . The inset in (a) shows the dynamics of
PH for χ = 0.8π up to longer times. The system size is L = 90, and
the strength of the linear potential is μ/J = 0.001.
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FIG. 22. Time evolution in the vortex superfluid phase of the
(a) Hall polarization PH , (b) density imbalance Py, and (c) current
Jx/J , for J‖/J = 0.76, χ = 0.8π , for different values of the interac-
tion strength U , ranging from U/J = 2 to U/J = 38. The system size
is L = 90, and the strength of the linear potential is μ/J = 0.001.

the polarization Py for these values of the flux, Fig. 21(b). At
even longer times, we see a much slower dynamics towards
a steady value compared to the other phases investigated so
far. In particular, for the largest value of 〈〈PH 〉〉 occurring at
χ = 0.8π , a stationary behavior can be identified only for
times larger than tJ � 60 [see inset of Fig. 21(a)].

In Ref. [28], we identified a similar behavior of saturation
to large positive values after a slow dynamics in the case
of hard-core bosons, which we attributed to the presence of
a vortex density commensurately fixed to the value of the
atomic filling. We found that the peak of the positive re-
sponse strongly correlates with the parameters for which the
commensurate vortex density dominates the expected incom-
mensurate value of V-SF, for a wide range of parameters and
atomic fillings. As this is similar to what we observe at strong
finite interaction values, i.e., the strong positive Hall response
appears as we increase the on-site interactions alongside the
commensurate vortex density, we briefly sketch the origin of
the second vortex density value [28]. One approach to deal
with the Hamiltonian given in Eq. (1) for the case of hard-
core, U → ∞, interactions is to employ a Jordan-Wigner
transformation to fermionic operators c j , b j = ∏ j−1

l=1 eiπc†
l cl c j .

For a chain geometry, without other interactions, this trans-
formation maps the hard-core bosons to free fermions. In
contrast, for our triangular geometry, we obtain an interacting
fermionic model as the Jordan-Wigner string does not cancel,
and we have in the Hamiltonian a term with four fermionic
operators. In Ref. [28] we showed that by varying this term,
we interpolate between a free fermions equivalent of Eq. (1)
and the hard-core bosons model, and for intermediate values
of the fermionic interaction, we obtain a vortex lattice super-
fluid with the vortex density ρv = 1 − ρ determined by the
atomic filling. Interestingly, even if we have a phase transi-
tion to the incommensurate vortex superfluid as we approach
the hard-core bosons model, we can still identify a peak

FIG. 23. The Fourier transform of the ground-state local rung
currents j⊥j as a function of (a) the on-site interactions U/J ,
(b)–(d) the flux χ for J‖/J = 0.76, ρ = 0.25 and (a) χ = 0.8π ,
(b) U/J = 1, (c) U/J = 10, (d) U/J = 25. The vertical axis has
been scaled in terms of the vortex density ρv . The orange-dashed
lines correspond to the expectation of the vortex superfluid phase
of ρv = χ/π , the red-dashed lines corresponds to the value ρv =
1 − ρ = 0.75. The vertical-blue lines mark in (a) the interactions
strengths used in (b)–(d), and in (b)–(d) the values of the flux used
in (a). The system size is (a) L = 90, (b)–(d) L = 120. We normalize
the Fourier transform such that its maximum is equal to one for each
column.

corresponding to ρv = 1 − ρ in the Fourier transform of the
rung currents, which correlates with a large positive value of
the Hall polarization.

In Fig. 22(a), we show the time dependence of PH for
a wide range of the interactions, 2 � U/J � 38 up to long
times, tJ � 80, for parameters where in the strongly interact-
ing limit, we observe a strong positive response, for J‖/J =
0.76 and χ = 0.8π . For U/J = 2, we obtain a small negative
stationary value; however, we can only follow the dynamics
up to times tJ ≈ 50 before the finite-size effects become im-
portant, as seen in the change of the monotony of the current
in Fig. 22(c). Similarly, for the next two interaction strength
values, U/J = 6 and U/J = 10, the finite-size effects become
relevant before we can identify a stationary Hall polarization.
However, at even larger values, U/J > 10, we can reliably
compute the Hall polarization up to long times of tJ ≈ 80 and
identify a plateau for tJ � 60 where PH stabilizes after a slow
increase and an intermediate maximum. Next, we correlate
the behavior of the Hall polarization with the ground-state
vortex density. We define the vortex density of the V-SF as
the values where we have a well-defined peak in the Fourier
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FIG. 24. Time evolution in the vortex superfluid phase of the
(a) Hall polarization PH , (b) density imbalance Py, and (c) current
Jx/J , for J‖/J = 2, χ = 0.3π , for different values of the interaction
strength U , ranging from U/J = 2 to U/J = 38. The system size is
L = 90, and the strength of the linear potential is μ/J = 0.001.

transform of the ground-state local rung currents, as shown
in Fig. 23. In Fig. 23(a), we show the Fourier transform of
the rung currents as a function of U/J . We see that for weak
interaction, we have a single vortex density, ρv ≈ 0.7, while
around U/J ≈ 10, multiple peaks appear in the Fourier trans-
form, leading to the identification of multiple vortex densities.
This corresponds exactly to the parameter regime of the large
positive values of the Hall polarization. To better understand
the vortex densities values present in the Fourier transform,
we plot the dependence on the flux for different U/J in
Figs. 23(b)–23(d). For U/J = 1, Fig. 23(b), we have a single
vortex density varying linearly with the flux, corresponding to
the expected incommensurate value of the vortex superfluid.
We note the relation ρv = χ/π is only valid for large values of
J‖/J [41], but in Fig. 23, we consider J‖/J = 0.76, explaining
why, even if ρv has a linear dependence, it does not exactly
agree with the value χ/π . If we increase the interactions to
U/J = 10 and U/J = 25 in Figs. 23(c) and 23(d), we ob-
serve an additional peak in the Fourier transform from which
we can identify a vortex density, ρv = 0.75 = 1 − ρ, where
the value is related to the atomic filling [28]. In particular, we
see that this commensurate vortex density dominates around
0.8π � χ � 0.85π , but without changing the two-mode gap-
less nature of the vortex phase [41]. For these values, the
incommensurate vortex density show a behavior similar to
an avoided crossing, which explains why in Fig. 23(a) we
see three peaks in the Fourier transform at χ = 0.8π . We
observe the same phenomenology for the other parameters
where we see a large positive value of 〈〈PH 〉〉 [see Figs. 12(c),
12(d), and 14(a)–14(c)], with a similar correspondence to the
appearance of a dominant peak in the Fourier transform of the
rung currents at ρv = 1 − ρ.

In the last part of this section, we discuss the behavior
of the Hall polarization for χ = 0.3π as we enter the vor-
tex superfluid phase, shown in Fig. 12(a). Compared to our

FIG. 25. The Fourier transform of the ground-state local rung
currents, j⊥j , as a function of (a) the on-site interactions U/J ,
(b)–(d) the flux χ for J‖/J = 2, ρ = 0.25 and (a) χ = 0.3π ,
(b) U/J = 1, (c) U/J = 10, (d) U/J = 25. The vertical axis has
been scaled in terms of the vortex density ρv . The orange -dashed
lines correspond to the expectation of the vortex superfluid phase of
ρv = χ/π , and the red-dashed lines correspond to the value ρv =
1 − ρ = 0.75. The vertical-blue lines mark in (a) the interactions
strengths in (b)–(d), and in (b)–(d) the values of the flux used in
(a). The system size is (a) L = 90, (b)–(d) L = 120. We normalize
the Fourier transform such that its maximum is equal to one for each
column.

previous discussion (see Sec. VI C), we see an unusual behav-
ior for U/J = 10 where 〈〈PH 〉〉 does not exhibit a drop in its
magnitude after crossing the phase boundary at J‖/J ≈ 1.65,
as observed for the other parameters. One explanation for this
could be that for U/J = 10 and χ = 0.3π by plotting 〈〈PH 〉〉
as a function of J‖/J , we are very close to the phase boundary
for J‖/J � 1.65 [see Fig. 2(b)], while for the other interaction
values, the transition threshold is a slightly lower values of
the flux. However, it is still interesting to analyze the time de-
pendence of PH , Fig. 24, and the behavior of the ground-state
vortex density, Fig. 25, for these parameters to gain additional
insight. We observe in Fig. 24(a) that increasing the interac-
tion strength from U/J = 2 to U/J = 6 results in a drastic
increase in the time scale for reaching the stationary value.
For even stronger interactions, U/J � 10, the steady plateau
is reached earlier, with the minimal value of 〈〈PH 〉〉 reached
for U/J = 10. The dynamics in this regime resembles that
shown in Fig. 21(a) for χ = 0.9π , but with an opposite sign.
By analyzing the behavior of the vortex density, we obtain that
U/J = 10 is also the value for which multiple peaks in the
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Fourier transform of the rung currents appear, Fig. 25(a). For
weak interactions [U/J = 1 in Fig. 25(b)], the vortex density
is dominated by the incommensurate response, ρv = χ/π ,
with small deviations for smaller values of the flux close to the
transition point to the Meissner phase. However, starting from
U/J = 10, two additional peaks are present in the Fourier
transform, corresponding to the vortex densities ρv = 1 − ρ

and ρv = ρ, which seem to lead to a strong Hall response. We
note that we did not check for multiple parameter sets that
the commensurate vortex density of ρv = ρ within the vortex
superfluid leads to a large negative value of 〈〈PH 〉〉, as for the
parameters considered in this paper, the vortex phase did not
extend to low enough values of the flux. This is in contrast
with our analysis for the large positive 〈〈PH 〉〉 being correlated
to the presence of ρv = 1 − ρ appearing at larger values of χ ,
which we observed for many parameter sets.

VII. DISCUSSIONS AND CONCLUSIONS

To summarize, we have investigated the behavior of the
Hall polarization for a triangular Bose-Hubbard ladder in a
magnetic field, focusing on the effects of the on-site inter-
actions from the weakly interacting regime to the hard-core
limit. We compute the time evolution of the system fol-
lowing the quench of a linear potential, which induces a
current through the system, analyzing both the short-time
nonequilibrium dynamics of the Hall polarization and its
long-time saturation value. We show that the Hall polariza-
tion can be employed to fingerprint and probe many of the
features of the underlying ground-state phase diagram, being
particularly sensitive to the phase boundaries and the interplay
of commensurate-incommensurate effects occurring at strong

interactions. In the noninteracting limit, the equilibrium Hall
polarization diverges as we approach the phase transition from
the M-SF to the V-SF or BC-SF. Interestingly, this single
particle effect can still determine a very strong negative Hall
response in the regimes of strong interactions. Our results
show the possibility of changing the sign of the Hall polariza-
tion, for some parameter sets, e.g., large fillings ρ > 0.5 and
strong interactions. This can be explained by the change in
the character of the carriers from particles to holes, while for
other regimes, e.g., ρ = 0.25 in the V-SF and BC-SF, we do
not have a similar argument. Sign changes in the Hall response
have previously been linked to the presence of a topological
phase transition [58,59]. We can correlate the strong positive
values of the Hall polarization present for strong interactions
to the presence of a commensurate vortex density in the oth-
erwise incommensurate vortex superfluid.

We expect that our paper will be experimentally relevant
in the near future, as the Hall response has been measured for
ultracold fermionic atoms confined to square ladders [19]. Tri-
angular flux ladders have been realized in momentum space
in Ref. [60], or could be achieved in real space by employ-
ing optical lattices at the antimagic wavelength [45]. Further
motivation is given by the ongoing experimental interest in ex-
ploring frustration-driven quantum phenomena with ultracold
atoms in triangular geometries [61–67].

ACKNOWLEDGMENTS

We thank J.-S. Bernier, M. Filippone for fruitful discus-
sions. This work was supported by the Swiss National Science
Foundation under Division II Grant No. 200020-219400.

[1] A. Kitaev, Fault-tolerant quantum computation by anyons, Ann.
Phys. (NY) 303, 2 (2003).

[2] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Non-Abelian anyons and topological quantum compu-
tation, Rev. Mod. Phys. 80, 1083 (2008).

[3] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-dimensional
magnetotransport in the extreme quantum limit, Phys. Rev. Lett.
48, 1559 (1982).

[4] R. B. Laughlin, Anomalous quantum Hall effect: An incom-
pressible quantum fluid with fractionally charged excitations,
Phys. Rev. Lett. 50, 1395 (1983).

[5] H. L. Stormer, D. C. Tsui, and A. C. Gossard, The fractional
quantum Hall effect, Rev. Mod. Phys. 71, S298 (1999).

[6] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg,
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