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Recently, tight-binding models on hyperbolic lattices (discretized anti—de Sitter space) have gained significant
attention, leading to hyperbolic band theory and non-Abelian Bloch states. In this paper, we investigate these
quantum systems from the perspective of quantum information, focusing particularly on the scaling of entan-
glement entropy (EE) that has been regarded as a powerful quantum-information probe into exotic phases of
matter. It is known that on a d-dimensional translation-invariant Euclidean lattice, the EE of band insulators
scales as an area law (~L“"!, where L is the linear size of the boundary between two subsystems). Meanwhile,
the EE of metals [with a finite density of state (DOS)] scales as the renowned Gioev-Klich-Widom scaling
law (~L9~'InL). The appearance of logarithmic divergence, as well as the analytic form of the coefficient
¢, i1s mathematically controlled by the Widom conjecture of asymptotic behavior of Toeplitz matrices and
can be physically understood via the Swingle’s argument. However, the hyperbolic lattice, which generalizes
translational symmetry, results in the inapplicability of these analytic approaches and the potential nontrivial
behavior of the EE. Here we make an initial attempt through numerical simulation. Remarkably, we find that both
cases adhere to the area law, indicating the effect of background hyperbolic geometry that influences quantum
entanglement. To achieve the results, we first apply the vertex-inflation method to generate a hyperbolic lattice
on the Poincaré disk, and then apply the Haydock recursion method to compute the DOS. Finally, we study
the scaling of the EE for different bipartitions via exact diagonalization and perform finite-size scaling. We also
investigate how the coefficient of the area law is correlated to the bulk gap in the gapped case and to the DOS in

the gapless case, respectively. Future directions are discussed.
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I. INTRODUCTION

Quantum-information theory provides a novel approach to
study nonlocal correlations of quantum many-body systems
[1-3]. To quantify these nonlocal correlations, the celebrated
entanglement entropy (EE), or von Neumann entropy, plays an
important role and exhibits universal features. For instance,
the scaling behavior of the EE reveals the underlying nature
of the systems [1-8]. In systems with an energy gap, the
leading term of the EE for ground states satisfies the area law
Sa ~ LZ_I [2,3,6], where d is the spatial dimension and Ly4 is
the linear size of the boundary between two complementary
subsystems denoted as A and B. For gapless systems, confor-
mal field theory (CFT) provides an insight into the scaling of
the EE in one-dimensional (1D) gapless systems [9,10]. Fur-
thermore, for higher-dimensional free-fermion systems with a
codimension-1 Fermi surface, the application of the Widom
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conjecture [11] gives the scaling of the leading term of the
EE, which leads to the Gioev-Klich-Widom scaling (also
dubbed “super-area law”) Sy ~ Lz" InL, [12,13]. Mean-
while, Swingle proposed a simple reconstruction method to
physically understand the origin of the logarithmic divergence
term and the analytic form of the coefficient ¢ [14]. The loga-
rithmic divergence, to some extent, indicates that the presence
of an infinite number of gapless fermion modes significantly
enhances entanglement.

It is worth noting that these scaling behaviors are es-
tablished on the translation-invariant lattices with Euclidean
geometry, where the Widom conjecture of asymptotic behav-
ior of Toeplitz matrices is applicable. Therefore, we raise
the question of whether the behaviors of the EE could be
significantly changed by the background geometry, as we find
that entanglement on a fractal lattice can exhibit a fractal-like
distribution and generalized area law reflecting the boundary
Hausdorff dimension [15]. In fact, non-Euclidean geometry is
prevalent in natural and artificial systems [16]. Anti—de Sit-
ter (AdS) space, characterized by negative spatial curvature,
is widely studied in various fields of physics [17-25]. The
hyperbolic lattice, which can be viewed as a discretization
of AdS space, is of interest in high-energy physics [26-29].
Recently, hyperbolic lattices have been experimentally sim-
ulated on many platforms [30-35] and have drawn more
and more attentions in various fields of condensed matter
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TABLE 1. Scaling behavior of the EE of ground states of
free-fermionic systems on a d-dimensional Euclidean lattice with
translation invariance, fractal lattice with self-similarity, and two-
dimensional hyperbolic lattice. In the fractal case, d,s denotes the
Hausdorff dimension of the boundary of subsystem A, while the EE
of gapless systems exhibits a fractal-like distribution [15].

Lattice Phase Sa
Euclidean lattice [2,3] Gapped, DOS = 0 ~L4!
Gapless, DOS > 0 ~L ' nL,
Fractal lattice [15] Gapped, DOS =0 ~ Lt
Gapless, DOS > 0 ~L4 ' InL,
Hyperbolic lattice Gapped, DOS =0 ~L4
Gapless, DOS > 0 ~L,

physics [36-53]. The hyperbolic lattice is very different from
its Euclidean counterpart due to its non-Abelian translation
symmetry [54-57]. Remarkably, these geometric properties
lead to the hyperbolic band theory (HBT) for tight-binding
models on hyperbolic lattices [55-59].

The absence of Euclidean translation invariance on a hy-
perbolic lattice results in the inapplicability of the Widom
conjecture of Toeplitz matrices, implying that the EE may
exhibit nontrivial behaviors. Motivated by the rapid progress
on hyperbolic lattices as well as the application of quantum in-
formation in many-body physics, in this paper we explore the
potential role of hyperbolic geometry in affecting quantum en-
tanglement. However, the analytic difficulties are significantly
challenging as the Widom conjecture of Toeplitz matrices is
no longer applicable. Therefore, our goal is to provide numer-
ical evidence of the exotic interplay of quantum entanglement
and hyperbolic geometry by investigating the scaling of the
EE of free-fermion systems on hyperbolic lattices. We observe
that for gapped systems, the EE still scales as the area law,
consistent with our expectations on a Euclidean lattice. How-
ever, for gapless system with finite DOS, we discover that the
super-area law breaks down and the EE adheres to the area
law instead. This area-law scaling reflects the nontrivial effect
of hyperbolic geometry for entanglement, which may relate
to a holographic understanding that could be experimentally
studied [19,34]. Moreover, similar to our previous work in
fractal geometry as summarized in Table I, our results sug-
gest a perspective to study the geometry of quantum systems
through entanglement.

To achieve our research objectives, our methodology be-
gins with the application of the vertex-inflation method
[48,60,61]. This method is instrumental in creating a hyper-
bolic lattice configuration on the Poincaré disk, which serves
as the foundational structure for our computational study. Fol-
lowing the lattice creation, we employ the Haydock recursion
method [62-65] to compute the DOS within this hyperbolic
framework. This computational technique is well suited for
handling the complex geometries inherent in hyperbolic lat-
tices, providing a detailed characterization of electronic states
and their distribution [62]. Subsequently, we proceed to ob-
tain the eigenspectrum of nonsparse reduced density matrices
via exact diagonalization and various kinds of bipartitions

between the two subsystems. To obtain the scaling behaviors,
we perform finite-size scaling analyses, which enables us to
extrapolate our findings across different subsystem sizes, re-
vealing how entanglement quantities scale with the boundary
of the subsystem. Furthermore, a central aspect of our investi-
gation involves exploring correlations between the coefficient
of the area law, bulk gap, and DOS. As hyperbolic lattices
can be experimentally realized through various techniques, it
will be interesting to experimentally measure entanglement
on hyperbolic lattices via, e.g., a phononic platform [66].
Interestingly, the area law of both gapless and gapped systems
implies that the matrix product states (MPS) and projected
entangled-pair states (PEPS) [25,67,68] may be potentially
efficient in simulating quantum spin liquids with gapless
spinons with finite DOS on a hyperbolic lattice.

This paper is arranged as follows: In Sec. II, we specify the
construction of hyperbolic lattices and provide a brief sum-
mary of studying free-fermion entanglement entropy. Next,
in Sec. III, we study the EE of gapless free-fermion systems
with finite DOS and the dependence of the scaling coefficient
on DOS, while in Sec. IV, we study the EE of gapped free
fermions on hyperbolic lattices. Finally, we summarize our
findings in Sec. V and discuss their potential applications.
Additionally, we detail the hyperbolic lattice setup and discuss
the volume law in Appendix A, provide supplemental data of
the EE in Appendix B, and review the approach to compute
the DOS in Appendix C. We provide the finite-size scaling
analysis in Appendix D and the analysis of super-area law
in Appendix E. We discuss the asymptotic behavior of the
coefficient of the area law in Appendix F.

II. PRELIMINARIES

A. Tessellations of plane

In the beginning, we introduce the tessellations (or tilings)
of the Euclidean and hyperbolic plane. A two-dimensional
plane can be tessellated by regular polygons, denoted by
the Schlifli symbol {p, g} [54], where the integers p and
g represent that the plane is tessellated by regular p-edge
polygons, with each lattice site having coordination number
q. For instance, as demonstrated in Fig. 1(a), each square has
edges p =4 and each lattice site has coordination number
q = 4 for square lattice {4, 4}. For the two-dimensional plane
with Euclidean geometry, p, ¢ should satisfy the constraint
(p —2)(g — 2) = 4, which means that there are only three
possible tessellations, including the triangular lattice {3, 6},
the square lattice {4, 4}, and the hexagonal lattice {6, 3}. In
addition, when p and ¢ satisfy (p — 2)(q — 2) > 4, these tes-
sellations can be adopted to discretize the hyperbolic plane
and Fig. 1(b) demonstrates a {4, 6} lattice.

Before constructing hyperbolic lattices, we need to specify
the coordinates under which we are handling our studies. To
assign a complex coordinate to each lattice site, we employ
a conformal disk model of hyperbolic space, i.e., Poincaré
disk, as shown in the right-hand side of Fig. 1(c). By using
this conformal map, the lattice is embedded in a unit disk
D = {z € C, |z] < 1} with metric

|dz|?

2 _ 2
ds® = (2k) —(1 PR (1)
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(a) f (b)

FIG. 1. Tessellations of a two-dimensional plane and projection
of hyperbolic lattice. (a) Euclidean {4, 4} lattice. (b) Hyperbolic
{4, 6} lattice. The gray labeled dashed line denotes the order n of the
ring. (c) Projection of a {4, 6} lattice onto a Poincaré disk. A site on
the hyperboloid 2> — 22 — $ = 1 is projected onto a unit disk on the
Z = 0 plane by intersecting it with a line drawn through (0, 0, —1).

where « is the constant radius curvature and its corresponding
constant curvature is K = —« 2. From Eq. (1), the geodesic
distance o between two sites z and 7z’ on the Poincaré disk is
given by

2|z — 2 )
)
(1 — [z = |Z]?) @

where z denotes a site on the disk with complex coordinate
z=x+iy = re?.

o(z,7) =« arcosh(l +

B. Hyperbolic lattice construction and the exponential wall

Next, we consider using the regular tilings to generate
hyperbolic lattices. By adopting the vertex-inflation method
(or vertex-inflation tiling procedure) [48,60,61], we can effec-
tively generate Euclidean and hyperbolic lattices of various
rings where the sites are located. To obtain a finite {p, ¢}
lattice, we initially generate a regular p-edge polygon at the
center of the Poincaré disk, labeled as the first ring, and
then attach new rings to it iteratively. In Fig. 2, we show the
generating procedure of a {4, 5} lattice, where the bold sites
denote the outermost ring that was generated in each iterative
step. By repeating this process, we can successively enlarge
the size of the lattice based on the outermost ring, allowing us
to obtain an arbitrarily large lattice with any number of rings.
More detailed information on this procedure can be found in
Appendix A.

In the following, we use {p, g, n} rather than {p, ¢} to label
a concrete finite hyperbolic lattice, i.e., flake, for numerical
computations, where the integer n represents the number of
rings included in the lattice, as shown in Figs. 1(a) and 1(b)
by the dashed line. An important feature of a hyperbolic
lattice is that the total number of lattice sites, /N, increases

1 ring

2 ring

FIG. 2. Generating procedure of a {4, 5} lattice with 1, 2, 3, and 4
rings using the vertex-inflation method. The bold sites of each lattice
highlight the iteratively attached outermost ring, i.e., the boundary of
that lattice.

exponentially with the number of ring, n, as N ~ A", where
A is a parameter depending on specific {p, ¢}. In contrast, for
Euclidean lattices, N ~ n2. Additionally, the number of sites,
Nooun, On the outermost ring of the hyperbolic lattice, which
corresponds to the boundary, also increases exponentially
with n for large n, whereas in Euclidean lattices, it increases
linearly as Npoun ~ 1. A brief proof of these properties can
be found in Appendix A, highlighting the fundamental differ-
ences between the two geometries. These properties all bring
difficulties for numerical computations.

C. Partition of subsystems on the hyperbolic lattice

Since the choice of subsystem affects the EE, we now turn
to specify our partition methods. When partitioning subsys-
tems to study the EE, we need to choose the largest possible
subsystems while keeping them as far from the boundary
as possible to minimize the finite-size effect. However, as
explained in Sec. II B, N and Nyoun grow exponentially with
n, making it difficult to have a relatively large bulk. We define
R; as the shortest discrete graph path from a bulk site i to the
boundary. Sites with R larger than a certain threshold Ry, can
be chosen to form a single-connected region as A, thereby
positioning the subsystem on the inner rings of the lattice.
Regarding the symmetry of the subsystems, on Euclidean lat-
tices, subsystems are typically chosen as a series of polygons
similar to the overall system. However, the symmetry of a
hyperbolic lattice, described by the triangle group and the
Fuchsian group, is non-Abelian [55-57]. Consequently, the
subsystems cannot maintain the same symmetries as on the
Euclidean lattice.
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FIG. 3. Partition of subsystems on a {4, 5, 6} lattice. (a) Subsys-
tems generated through partition I that is adopted in the main text.
(b) Subsystems generated through partition II. Here we generate ran-
dom subsystems of specific size: (b1) 4, (b2) 6, and (b3) 8, within the
region denoted by the black line. The number of bonds connecting
sites inside the subsystem to sites outside, which are cut by the red
line, are defined as the boundary L, of the subsystem.

Therefore, we employ two different partition methods in
this work. We first generate a lattice of fixed size, within which
we choose the sites of the innermost ring as the initial subsys-
tem A, and then successively increase its size by adding sites
of the adjacent ring to it in a clockwise or anticlockwise di-
rection. This iterative procedure, which generates a sequential
series of subsystems, is visualized in Fig. 3(a), and is referred
to as partition I. Additionally, we also conduct a random
partition of the subsystem. We determine a minimum R, for
a considered lattice {p, g, n} and generate a subsystem within
this region. We first randomly choose a p-edge polygon, then
enlarge it by successively adhering p-edge polygons around
sites on the boundary of the subsystem to it, and repeat this
procedure until it reaches a specific size. This partition method
is referred to as partition II and can be visualized in Fig. 3(b).
Since the partitions do not consistently preserve the symme-
tries of the subsystems, we find that through partition II, the
symmetries do not significantly affect the numerical results

of the EE in practical computations. In the remaining part of
the main text, we consistently exhibit the results of the EE
computed through partition I on some lattices and provide
the supplemental data in Appendix B for more details of both
partition I and partition II.

D. Entanglement entropy and Widom conjecture

Next, we concisely review some basic algebras for com-
puting the entanglement of free-fermion systems. A useful
relevant material can be found in the supplemental note of
Ref. [66]. For a many-body system with ground state |GS),
its density matrix is p = |GS)(GS|. We partition the system
into two parts as subsystem A of the overall system and its
complementary B in real space, and obtain reduced density
matrix p4 of subsystem A by tracing over B,

1
pa = Trp|GS)(GS| = ZGXP(—HE), 3

where Z is a normalization constant and H” is the entan-
glement Hamiltonian, from which we can obtain the EE
[69-71]. If we consider free-fermion systems, H® has the
quadratic form [72-74] HF =", jea c;rhg.c ;, where ¢/ and
c; represent the fermionic creation and annihilation operators
at site i, respectively. Additionally, we can rewrite the EE as
a trace of the matrix function. Consider the correlation matrix
C{‘j = (GS|cch iIGS) of subsystem A which can be obtained
by projection operators C* = RPR, where R = Y ica li)(il and
P =3 k) {k|. The EE can be calculated by [71,73-78]

Sy = Tra f(C*) = Tra f(RPR), 4)

where f(1) = —tInt — (1 —t)In(1 — ¢). Hence we obtain the
EE of subsystem A.

Meanwhile, for gapless systems with codimension-1 Fermi
surface, the Widom conjecture provides an analytical result of
the EE [12,13],

=~ ny - npy|dS,dS,,
AT 12 ) forsae Y

where oI and 92 denote the boundaries of the Fermi sea
and the subsystem we consider, and n, and n, denote the
exterior unit normals of these boundaries. Since the presence
of a codimension-1 Fermi surface implies a finite DOS of the
system, Eq. (5) also relates the DOS to the scaling coefficient.
If the codimension of the Fermi surface is higher than one,
the leading term of the EE exhibits area-law scaling behavior,
as seen in the Dirac point of the tight-binding model on the
honeycomb lattice [7,79,80]. However, the validity of Eq. (5)
requires a Euclidean metric with Abelian translation sym-
metry and thus is not naturally applicable in the hyperbolic
geometry, so we aim to provide numerical evidence in this

paper.
III. ENTANGLEMENT ENTROPY SCALING OF GAPLESS
FREE-FERMION SYSTEMS WITH FINITE DOS
A. Numerical study of DOS

In this section, we numerically study the scaling behavior
of the EE of gapless free-fermion systems with finite DOS

023098-4
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on hyperbolic lattices. To begin with, we consider the gapless
systems with a one-orbital tight-binding model,

H, = —tZ(CjCj +H.c.) —Mzcjci, (6)
(ij) i

where (ij) denotes the nearest-neighboring sites, ¢ is the hop-
ping amplitude, and p is the chemical potential. First, we
should verify that the Hamiltonian H; is indeed gapless. We
notice that the DOS obtained through exact diagonalization
for 10* sites still exhibits a finite-size effect, and thus it is
insufficient to verify whether or not the system is gapless
through it. Consequently, we analyze the DOS in the ther-
modynamical limit through the Haydock recursion method
[62-65].

One can calculate the local DOS p;(E) at a site i through
the Green’s function,

1
pi(E) = — lirg —Im(i|G(E + ie)li), (7

e—>0+ T
where |i) is the state that we consider and the Green’s function
is G(E) = 1/(E — H). The diagonal element of G can be

expanded in continued fraction,

Gi(E) =

) (3)
E—al—Lz

b
E—az—%

where the rational coefficients a, and b, can be numerically
computed by the underlying Hamiltonian matrix H through
a specific recursive relation. After introducing a proper frac-
tion termination, we obtain p;(E), which is also the DOS for
regular tilings up to a normalization factor [62]. By using this
method, we confirm that the Hamiltonian H, is indeed gapless
on lattices that we study here, as shown in Figs. 4(b1)—4(b4).
One can refer to Appendix C for more details of this method
and numerical results.

B. Numerical evidence of area-law scaling behavior of EE

To proceed further, we use our approaches detailed in
Sec. II to compute the EE on various lattices, including both
Euclidean and hyperbolic. In Figs. 4(c2)-4(c4), we show the
results computed on {3, 7}, {4, 5}, and {6, 4} lattices. Addi-
tionally, in Fig. 4(c1), we also include the EE computed on
a Euclidean {4, 4} lattice for comparison. More numerical
results through different partition methods on different lattices
are detailed in Appendix B. The finite-size scaling analysis
can be found in Appendix D. The numerical analysis of the
super-area law is presented in Appendix E.

First, in the Euclidean case, the EE of gapless systems
with finite DOS exhibits super-area law, corresponding to our
results computed on a {4, 4} lattice in Fig. 4(cl), where we
anticipate the scaling function S/ In L4 = cL{ + d. When we
turn to the hyperbolic case, our most surprising finding is that
the EE of gapless systems with finite DOS is proportional to
the length of the boundary of subsystem A. We anticipate that
the scaling of the EE should have Sy = aLf{ + b. By using
the coefficient of determination, RZ, we find that & ~ 1 is the
optimal fit closest to 1, as shown in Figs. 4(c2)—4(c4). The
blue lines in Fig. 4(c) show the fitting functions with o = 1.
This result indicates that the EE of gapless systems with finite

DOS on hyperbolic lattices satisfies the area law by definition,
Sp=als+ -, 9)

where L, represents the total number of bonds connecting
a site inside the subsystem to a site outside the subsystem
which are cut by the boundary of the subsystem A, which is
consistent with the Euclidean case and visualized in Fig. 3. As
the number of sites on the boundary can grow linearly with
the number of sites in the subsystem in the thermodynamical
limit, we discuss the volume law of EE in Appendix A.

With more numerical computations, as illustrated in
Appendix B, and through the numerical analysis that excludes
of the possibility of super-area-law scaling presented in Ap-
pendix E, we further confirm the existence of area law of the
EE for gapless ground states with finite DOS on a hyperbolic
lattice. Reference [34] recently experimentally simulated a
weakly coupled scalar field to study the AdS/CFT correspon-
dence on hyperbolic lattices. In this work, the EE behavior
for entanglement-wedge subsystems of the bulk scalar field
satisfies the Ryu-Takayanagi (RT) formula [19] for the con-
nection between the EE of boundary CFT and geometry of the
hyperbolic lattice, a result that also has physical understanding
[17-19]. Furthermore, we want to ask why this exotic area law
given by Eq. (9) of gapless free-fermion systems with finite
DOS appears in the hyperbolic case. The analytical formula
of the EE is based on the Widom conjecture of the asymptotic
behaviors of Toeplitz matrices on the Euclidean lattice. Due to
the absence of Euclidean translation invariance on hyperbolic
lattice, the future analytical understanding of EE could be as-
sociated with studying the conjecture of correlation matrices
with the symmetry of a hyperbolic lattice.

Moreover, following Swingle’s mode-counting argument
[14], for free-fermion systems with codimension-1 Fermi sur-
face, the EE can be obtained by counting the contributions
of 1D fermionic gapless modes near the Fermi surface per-
pendicular to the boundary of the subsystem in real space,
where each fermionic gapless mode contributes In L4 to the
EE by adopting the calculation of CFT. Then, we obtain
that EE satisfies S4 ~ LZ’I InL, in the Euclidean case. On
a hyperbolic lattice, the Swingle’s mode-counting picture is
invalid due to the absence of a “Fermi surface” of the usual
definition. If we can stack and count the contribution of the
infinite fermionic gapless modes near the generalized Fermi
surface for the EE, we can obtain the scaling behavior of
the EE for hyperbolic systems. However, there is a lack of a
realizable stacking and counting way on a hyperbolic lattice.
According to Eq. (4), the EE depends on the projectors P and
R. HBT provides an insight for us into the parametrization of
the generalized hyperbolic momentum space and non-Abelian
Bloch states [55-57]. Therefore, our numerical simulation
raises questions and challenges for HBT to obtain a general-
ized Widom conjecture and Swingle’s mode-counting picture
for hyperbolic lattices, as well as the expressions of P and R
from the parameterized momentum space.

The scaling behavior of the EE is related to the nonlocal
properties of the systems. Due to the absence of the loga-
rithmic correction of the EE in Eq. (9), we realize that the
gapless fermions on hyperbolic lattices should have exotic be-
havior owing to its nontrivial underlying hyperbolic geometry,
and the study of this area law may provide perspective on

023098-5
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FIG. 4. Linear fit of the EE and dependence of scaling coefficients on DOS for Euclidean {4, 4} and hyperbolic {3, 7}, {4, 5}, {6, 4} lattices
(rows 1 to 4, respectively) of gapless systems with Hamiltonian H;. Column (a) shows the lattices. Column (b) shows the DOS computed by
the Haydock recursion method, which gives the DOS in the thermodynamical limit of Hamiltonian H,, with details in Appendix C. Column
(c) shows the linear fit of the EE and boundary (partition I is taken and results of partition II are exhibited in Appendix B). The insets show
the coefficient of determination, R?, as a function of . In columns (b) and (c), we set = 1 and u = 0. Column (d) shows the dependence
of coefficients a and ¢ on the DOS. Columns (c) and (d) are numerically computed on {4, 4, 40} (6400 sites), {3, 7, 9} (17 328 sites), {4, 5, 6}

(5400 sites), and {6, 4, 5} (10 086 sites) lattices, respectively.

the entanglement for HBT as discussed above. Additionally,
as hyperbolic geometry suppresses entanglement, it is worth
investigating the asymptotic behavior of the EE with respect
to g and we discuss this in Appendix F. In the forthcoming
Sec. I C, we will continue to discuss our numerical findings,
especially focusing on the scaling coefficient.

C. Numerical study of scaling coefficient and possibility
of a generalized Widom conjecture

In the Euclidean case, we know from Eq. (5) that the
scaling coefficient of the super-area law is analytically

determined by the flux factor |n, - np| reflecting geometry
of the codimension-1 Fermi surface and thus the scaling
coefficient changes according to the DOS, as visualized in
Fig. 4(d1). Because a hyperbolic lattice allows for generalized
momentum space, we question whether the DOS can influence
the coefficient a in the area law given by Eq. (9) following the
Euclidean scenario.

We compute the EE for Hamiltonian H; with r =1
and different chemical potential i on different hyperbolic
lattices. Figures 4(d2)-4(d4) show the dependence of the
scaling coefficient a on u. Compared to the DOS computed
in Figs. 4(b2)-4(b4), we can directly see that the scaling
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FIG. 5. Dependence of coefficient a on the DOS of a {4, 5, 6}
lattice, computed for Hamiltonian H; with# = 1 and u € [0, 4]. The
p-value approaching 0 and p approaching 1 of the Spearman’s cor-
relation verifies the approximately positive correlation between the
scaling coefficient and DOS, suggesting that a generalized Widom
conjecture may exist.

coefficient a is correlated to the DOS. In Fig. 5, we present
the result of @ computed on the {4, 5, 6} lattice as an example,
where the Spearman’s correlation indicates the approximately
positive correlation between a and the DOS. Notably, from
Fig. 4, we can see that a and the DOS do not completely
coincide. This discrepancy might also be due to the finite-size
effect, as the EE computed here is obtained from a finite
lattice, while the DOS is obtained in the thermodynamical
limit.

Remarkably, the scaling coefficient a is nonuniversal and
influenced by many factors such as partition and lattice con-
figuration, but the approximately positive correlation between
a and the DOS implies that a generalized momentum space
and Fermi surface might play a role in determining a, similar
to its Euclidean counterpart. In the Euclidean system, the va-
lidity of the Widom conjecture and Swingle’s mode-counting
picture need a Euclidean metric and the momentum space with
dimension equal to the real-space dimension due to the flux
factor |n, - np| in Eq. (5) counting the number of fermionic
modes perpendicular to the real-space boundary of the sub-
system. In fact, the translation group of the hyperbolic lattice
is typically non-Abelian, resulting in the existence of higher-
dimensional (d > 2) irreducible representations of translation
group and non-Abelian Bloch states. Meanwhile, even for the
1D irreducible representations, the dimension of the general-
ized momentum space can be d > 2 [55-57], which is larger
than the spatial dimension of the lattice, and thus Swingle’s
argument breaks down directly. To exactly obtain a descrip-
tion of reciprocal space of a hyperbolic lattice, one needs
to know about the higher-dimensional representations. It is
an open question as to whether we can obtain a generalized
Widom conjecture and Swingle’s mode-counting picture for a
hyperbolic lattice.

IV. ENTANGLEMENT ENTROPY SCALING
OF GAPPED FREE-FERMION SYSTEMS

In this section, we study EE in gapped systems. We
consider the gapped systems by studying a two-orbital

tight-binding model,

H, = — Ztl (chp,,- +H.c.) — ZtZ(C:,ics,j — c;,icp,j),
i (ij)
(10)

where cj( ij) represents the fermionic creation operator at
the s(p) orbital of site i(j). #; and t, are hopping amplitudes.
We can still use the Haydock recursion method to compute
the DOS and verify that H, is gapped, as we did in Sec. III.
For instance, in Fig. 7(a), we show the DOS of Hamiltonian
H, witht; = 1 and t, = 1 on a {4, 5} lattice, which lead to a
gapped region [—1, 1].

Next, we turn to study EE in the gapped case. On a
Euclidean lattice, the EE of gapped systems scales as area
law S4 = aLf + ---. As an analogy, we also use the fitting
function S4 = aL{ + b for the case on hyperbolic lattices. In
Fig. 6, we show results of the EE computed on both Euclidean
and hyperbolic lattices. The chosen hyperbolic lattices {3, 7},
{4, 5}, and {6, 4} have one more adjacent site per lattice site
compared to their Euclidean counterparts {3, 6}, {4, 4}, and
{6, 3}, respectively. The numerical results consistently show
that when the the system is gapped, the optimal fit is obtained
with a ~ 1 where R? is closest to 1. The blue lines in Fig. 6
show the fitting functions with ¢ = 1. This means that the EE
scales linearly with the subsystem’s boundary Ly,

Sqa=aly+---. (11)

Therefore, the EE still scales according to the area law in
gapped systems on a hyperbolic lattice.

Additionally, on Euclidean lattices, the coefficient a de-
creases as the energy gap increases. This leads us to question
whether the energy gap is related to the behavior of the EE. In
Fig. 7(b), we study the relation between the EE and energy
gap on a {4, 5, 6} lattice. We modulate #; and thus change
the energy gap of H, from 1 to 12 and compute the EE. We
find that a is negatively correlated with the system’s energy
gap. Analytical work on the one-dimensional gapped system
has provided a rigorous relationship between the coefficient
a and the energy gap [2,81]. However, the exact relationship
between the scaling coefficient a and the energy gap is still a
difficult question in dimension d > 2. In our results, we do not
find a functional relationship that can physically explain the
relationship between the coefficient @ and the energy gap in
the hyperbolic case, but the observed negative monotonic re-
lationship between them suggests a similarity to the Euclidean
case.

Overall, our numerical data computed in gapped systems
demonstrate that the EE scales according to the area law as in
Eq. (11). This aligns with our expectations from the Euclidean
case, suggesting that the gapped scenario in the hyperbolic
case is not particularly unique.

V. DISCUSSIONS

In this paper, we have numerically studied the scaling
behavior of entanglement entropy of gapped free fermions as
well as gapless free fermions with finite DOS on hyperbolic
lattices. We find that for both gapped and gapless sys-
tems, the EE scales according to a rigorous area-law scaling
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FIG. 6. Linear fit of the EE in the gapped case with Hamiltonian H, on (a) {3, 6, 40} (4800 sites), (b) {4, 4, 36} (5184 sites), (c) {6, 3, 30}
(5400 sites), (d) {3, 7, 8} (6615 sites), (e) {4, 5, 6} (5400 sites), and (f) {6, 4, 5} (10 086 sites) lattices which have two orbitals at a site. The
fittings show the area law of the EE. The insets show R? as a function of . Such a linear dependence of S, on L, is consistent with the

Euclidean case. The hopping amplitude of H, is setto#; = 1 and, = 1.

Sa = aly + - - - . Although the gapped case fulfills our expec-
tation in Euclidean geometry, the super-area law in gapless
systems breaks down in contrast. Additionally, the scaling
coefficient of the area law in gapless systems is positively cor-
related to the DOS. This scaling behavior of the EE is unique

in hyperbolic geometry. On a Euclidean lattice, the super-area
law of gapless free fermions with finite DOS demonstrates
that the entanglement is enhanced by the fermionic statistics
and the quantum correlation of the infinite fermion modes
near the Fermi surface [12,14]. These observations show that
the underlying geometry can significantly influence the entan-
glement behavior of ground states of free-fermion systems,

(&) 096 {b) 0.4 16 similar to our previous findings in fractal geometry [15], as
15 summarized in Table I. Compared to the Euclidean case, the
0.72 03 n area law reveals the presence of exotic properties of fermions
. S 02 I = on a hyperbolic lattice. The further study of this area law
/A ’ might raise the question for a generalized conjecture of cor-
024 01 I relation .rn.aFrices with symmetry of a hyperbolic lattice, while
1 the possibility of generalization of Swingle’s argument for the
0 ] 0 0 EE to the hyperbolic case through HBT also merits future
4 2 0 2 4 0 2 4 6 8 10 12
= research [55-57].

gap

FIG. 7. DOS and EE computed on a {4, 5} lattice for Hamil-
tonian H,. (a) DOS computed by the Haydock recursion method.
The hopping amplitude #; = 1 and #, = 1 leads to a gapped region
[—1, 1]. (b) Scaling coefficient a of the area law varies with different
energy gaps, computed on a {4, 5, 6} lattice. The gray line shows the
energy gap modulated by 7,.

Notably, many studies suggest the relationship between the
entanglement and the geometry of AdS space, particularly in
the context of hyperbolic lattices [34,36-38]. Reference [34]
experimentally studies AdS/CFT correspondence, confirming
that the EE for the entanglement wedge as a subsystem of
a bulk weakly coupled scalar field is consistent with the
RT formula [19]. Inspired by the experimental progress, the
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experimental simulation of Gaussian fermionic field theory to
study EE is worthy of further study. Additionally, numerical
studies of spin models also point out the nontrivial behaviors
of correlation functions and entanglement of spin models on
hyperbolic lattices [36-38]. Based on our numerical results
and these works, along with the theoretical research on the
relationship between EE and AdS space geometry, the investi-
gation within the framework of field theory and holography to
understand the area-law EE of ground states for free-fermion
systems on a hyperbolic lattice is an interesting topic for
future work [17-23].

As it is feasible to simulate entanglement experimentally
[66] while the experimental simulation of hyperbolic lat-
tices has been achieved [30-35], this may provide us with a
novel approach to study the geometry of the quantum system
through entanglement. Furthermore, the area law of EE in
both gapped and gapless systems suggests that it is efficient to
study correlated systems on hyperbolic lattices with gapless
emergent fermions by tensor-network-type numerical tech-
niques [25,67,68]. We hope that our work can provide some
inspiration to related fields in the future. Another interesting
future direction is to study the entanglement of non-Hermitian
systems [77,78,82—-100] on hyperbolic lattices, which is much
more practical in, e.g., phononic systems where gain and loss
are natural.
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APPENDIX A: HYPERBOLIC LATTICE

In this Appendix, we give details of constructing hyper-
bolic lattices discussed in Sec. II. Additionally, we discuss the
geometrical properties of a hyperbolic lattice as well as the
volume law of EE.

1. Vertex-inflation method of generating hyperbolic lattice

The vertex-inflation method or vertex-inflation tiling pro-
cedure for generating a hyperbolic lattice was first purposed
in the field of hyperbolic tensor-network theory [60,61] and
then optimized for study in lattice many-body models [48].
Here, we introduce our lattice setup based on this method.

To start with, we generate a regular p-edge polygon at the
center of the Poincaré disk and denote it as the first ring of the
lattice. We then attach new sites to the first ring to form a new
ring, and iteratively repeat this procedure. These finite-size
lattices, named as flakes, can be divided into rings in order
and every regular p-edge polygon is denoted as a tile. For
every vertex of a tile, the vertex is affiliated to this tile. If
a vertex does not have ¢ affiliated tile, it is an open vertex.
A vertex with ¢ neighboring vertices does not equal to “not
open” since it may have less-than-g affiliated tiles. If an open
vertex has a nearest-neighboring vertex which is also open, the

edge linking them is an open edge. The lattice setup procedure
is summarized as follows:

(1) For a {p, g, n} lattice, we find all open vertices and their
corresponding open edge on its outermost nth ring. A vertex
on the nth ring can either have zero or two open edges of
which it is an endpoint.

(2) For every open vertex i and one of its open edges, if
its number of affiliated tiles is less than ¢ — 1, we identify the
tile to which the open edge belongs and invert this tile. This
process creates a new tile and an new open edge of which i is
an endpoint.

(3) Otherwise, for every open vertex with g — 1 affiliated
tiles, we identify both open edges that it belongs to and gen-
erate a new tile based on them.

(4) Go back to step (1) and repeat the whole process until
all vertices on the nth ring are no longer open. So far, we have
constructed a new ring and {p, ¢, n + 1} lattice.

By using the above method, we can construct the entire
lattice, ring by ring. The procedure can be visualized by Fig. 2.
The finite lattice generated by this method does not have
dangling sites on the inner rings and it is natural to define the
outermost ring as the boundary.

2. Exponential growth of the size of the hyperbolic lattice

In this section, we give a brief proof of the exponential
growth of the size of the hyperbolic lattice. We start by con-
sidering a {p, g} lattice with p > 4 and g > 5. The proofs for
the remaining cases are similar to the following proof.

For a {p, g,n — 1} lattice, all vertices on the outermost
(n — 1)-th ring can have either two or three nearest-
neighboring vertices to which is connected by an edge. We
denote N, as the number of vertices on the nth ring. The
number of vertices having two nearest-neighboring vertices
on the outermost ring is denoted as N,_;», and the number
of vertices having three nearest-neighboring vertices on the
outermost ring is denoted as N,_; 3 by analogy. Thus, we have

Noci =Nym1p + Nt 3 (A1)

for any n > 2.

In the procedure of generating the lattice, the construction
of the nth ring is only dependent on the (n — 1)-th ring. Ev-
ery 2-neighboring vertex on the (n — 1)-th ring directly has
q — 2 neighboring vertices on the nth ring, and these g — 2
vertices form g — 3 tiles which need p — 3 new vertices each.
Similarly, every 3-neighboring vertex on the (n — 1)-th ring
directly has g — 3 neighboring vertices on the nth ring. These
new neighboring vertices form ¢ — 3 tiles which need p — 3
new vertices each.

In addition, the edges on the (n — 1)-th ring, whose number
is equal to N,,_;, form N, _; tiles, each of which requires p — 4
new vertices. Summarizing the above constraints, we have

Ny =(p—4N,—1 +(q@ —2)Ny—12+ (p—3)qg — 3)Nu—12
+(q@—=3)Num13+ (p—3)g —4)N,—1 3. (A2)

We also notice that each 3-neighboring vertex on the (n — 1)-
th ring is directly connected to a vertex on the (n — 2)-th ring.
That is,

Nu—13=(q —3)N,—23 + (¢ — 2)N,—22,
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TABLE II. Lattice construction by rings. This table shows the
total number of sites on the nth ring of different lattices.

Lattice First Second Third Fourth Fifth Sixth
{3, 7} 3 12 33 87 228 597
{4,5} 4 20 76 284 1060 3956
{6, 4} 6 42 246 1434 8358 48714
{8, 3} 8 40 152 568 2120 7912
{8, 8} 8 280 9512 323128

Lattice  First Fifth 10th 100th

{3, 6} 3 27 57 597

{4, 4} 4 36 76 796

{6, 3} 6 54 114 1194

for any n > 3. And for the 2-neighboring vertex, the case is
Np1p=(p—HNy2+ (p—3)q— 3Ny 22
+(p—3)(q—HNy—23.
Summarizing the above results, we get the recursive relation,
Ny =(pq —2p—2q+2)N,—1 — Ny2. (A3)

Solving this relation is equivalent to finding the root of the

quadratic equation
X —(pg—2p—2q+2x+1=0, (A4)

for x. As we directly have Ny = p and N, = p’q — 2pq —
2p* + 3p, by solving the above equation, we find the formula
of N, as

P P \e—as Gy
Nn_an(l t_4>(t 2 tt —4))

p | ! n
+F(—1+ lj)(l—2+\/l(t—4)), (AS)

where t = (p — 2)(g — 2) > 4. Finally, summing over all the
rings yields the exponentially growing size of the {p, g, n}
lattice,

N ~ 2\, (A6)

where A depends on specific p, g and can be analytically
calculated.

This shows an exponential growth of the lattice size which
is absolutely different from the Euclidean case since a Eu-
clidean lattice grows as N ~ n?. Some lattices are shown in
Table II, from which we can see the difference between the
hyperbolic case and Euclidean case.

3. Entanglement volume law on hyperbolic lattice

In this section, we show that L4 of a subsystem approaches
a finite fraction of the total number of lattice sites in the
subsystem N(V,) in the thermodynamical limit n — oo, and
discuss the volume law of EE on a hyperbolic lattice.

Consider a {p, ¢, n} lattice as a subsystem A in a larger
lattice. The L, defined in Sec. II B can be expressed as

Ly = (g —2)Ny2+ (g — 3)Ny3. (A7)

By solving for N,, and N, 3 similar to the approach in
Appendix A 2, we find that the leading-order terms of N, »
and N, 3 coincide with those of N,. Therefore, Ly /N becomes
a finite fraction for sufficiently large subsystems or in the
thermodynamical limit n — oo, e.g., approximately 1.732 for
the {4, 5} lattice.

The area law indicates that the EE is proportional to the
degrees of freedom dN(LY™") on the boundary of the sub-
system, where d is the local Hilbert space on a lattice site,
D is the spatial dimension, and N (Lf ~1) is the number of
boundary lattice sites of the subsystem. In Euclidean geome-
try, N(LY™") is proportional to the boundary area L™, where
L, is the linear size of the subsystem [7]. Meanwhile, N (Lf -1
is equal to the total number of lattice bonds connecting the
lattice sites in two complementary subsystems. Therefore, the
scaling Sy ~ Lf ~!is referred to as the area law. In our work
presented here, we also adopt the total number of bonds as
the linear size Ly, as clarified in Sec. III B, and numerically
find that the scaling S4 ~ L, still holds for both gapless (with
finite DOS) and gapped free-fermion systems on hyperbolic
lattices. Hence, we refer to this scaling on hyperbolic lattices
as the area law.

The volume law indicates that the EE is proportional to the
total degrees of freedoms dN (V) within the subsystem, where
N(Vy) is the total number of lattice sites in the subsystem.
In Euclidean geometry, N(V,) is proportional to the volume
Vy ~ Lj) of the subsystem. Therefore, the scaling Sy ~ Lf" is
referred to as the volume law. On hyperbolic lattices, how-
ever, the area of a region can scale as a finite fraction of
its volume in the asymptotic limit (i.e., for sufficiently large
subsystems), leading to V4 ~ L4 geometrically. Consequently,
on hyperbolic lattices, the area law can also be interpreted as
S4 ~ Lsy ~ V4, which may alternatively be referred to as the
volume law. However, to ensure that the definition of area law
is consistent on both Euclidean and hyperbolic lattices, we
still regard the scaling S4 ~ L4 on hyperbolic lattices as the
area law.

APPENDIX B: SUPPLEMENTAL DATA OF NUMERICAL
COMPUTATIONS OF EE THROUGH PARTITION I
AND PARTITION II

As detailed in Sec. II, when studying EE, we use some
different partition methods to investigate how the EE varies
with the boundary L, as the size of the subsystem changes.

The supplemental data of EE computed through partition I
with ¢ = 1 and u = 0 for Hamiltonian H; on lattices different
from those in the main text can be seen in Fig. 8. Here we
anticipate the scaling function S4/InLy = cL{ +d for the
Euclidean {3, 6} lattice which exhibit super-area law that can
be seen in Fig. 8(a), while the hyperbolic cases all exhibit area
law and we anticipate the scaling of EE is Sy = aL{ + b. On
Euclidean lattices, successively increasing the subsystems’
size can result in many subsystems with different shapes and
sizes sharing the same Ly, e.g., the {3, 6} lattice in Fig. 8(a).
In the main text, the size of the subsystem on Euclidean
lattices grows discretely so that we have subsystems similar
to the overall system. However, successively enlarging the
size of the subsystem causes L4 to successively increase in
the hyperbolic case, as shown in Figs. 8(b)-8(f). This enables
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FIG. 8. Results of the EE scaling fit for Hamiltonian H; with # = 1 and u = 0. Subsystems are generated through partition I for different
lattices. On the Euclidean lattice (a) {3, 6, 60} (10 800 sites), the inset shows R as a function of « in the fitting function S, /In L, = cLi +d,
while R? as a function of Sy = aL% + b in the remaining hyperbolic cases (b) {5, 4, 6} (6750 sites), (c) {7, 3, 8} (15 435 sites), (d) {4, 6, 5}
(6724 sites), (e) {5, 5, 5} (15 125 sites), and (f) {8, 3, 6} (10 800 sites). All hyperbolic cases correspond with the area law.

us to study the growth of EE with the successively increasing
boundary with numerous data, regardless of the exponential
wall of the lattice size. Although this partitioning method may
not maintain the symmetries, it still significantly distinguishes
between area-law and super-area-law behavior of the EE.
The results of the EE computed through partition II are ex-
hibited in Fig. 9, where we use the fitting function S4 = alLj +
b. Because choosing subsystems too close to the boundary
will cause a finite-size effect, we define an internal region of
the lattice, specify the size of the subsystems, and then ran-
domly choose subsystems that can be composed of connected
tiles. The results in Fig. 9 are computed with Hamiltonian H;
and we sett = 1 and u = 0, as are those shown in Fig. 8, and
the blue lines show the fitting functions with « = 1. Even with
the same size or the same L4, subsystems partitioned through
this method can have various possible shapes and do not main-
tain the same symmetries. However, the symmetries of these
subsystems do not affect the scaling behavior of the EE. From
the results, we find that linearity still demonstrates that the
best description between the EE and boundary is the area law.

APPENDIX C: NUMERICAL STUDY OF DOS

Based on our considerations in the main text, we need to
verify that the Hamiltonian H; is indeed gapless on the lattices

that we considered. Because the geometric properties of a
hyperbolic lattice induce exotic behavior of free fermions, we
use the DOS as the verification.

Additionally, as aforementioned, the size of the system
grows exponentially with n, resulting in numerical difficulties
in the exact-diagonalization (ED) approach. Therefore, we use
the Haydock recursion method [62-65,101,102] to acquire the
DOS in the thermodynamical limit.

1. Haydock recursion approach to DOS

We can calculate the local density of states (LDOS) at a

particular site j by the Green’s function,
.1 . Doy
pj(E) = — lim —Im(j|G(E + ie€)lj). (C1)
e—>0t T
The Green’s function G;;(E) = (i|(E — H)7'[j) can be de-
composed into contributions from moments of the Hamilto-
nian G;;(E) = E7"(i|ll + Y, H"/E"|}).

The Haydock recursion method [63—-65], also known as
the continued-fraction method, gives a method to compute the
diagonal matrix element of G(E),

1
Gji(E) = {LIGE)L) = 5
E—a — 0]

b:
E—az—f

(e2))

NN
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FIG. 9. Results of the EE scaling fit for Hamiltonian H; with t = 1 and u = 0, including (a) {3, 7, 9} (17 328 sites), (b) {3, 8, 7} (15 123
sites), (c) {4, 5, 6} (5400 sites), (d) {5, 4, 6} (6750 sites), (e) {5, 5, 5} (15 125 sites), (f) {6, 4, 5} (10 086 sites), (g) {7, 3, 8} (15 435 sites), (h)
{8, 3, 6} (10 800 sites), and (i) {9, 3, 5} (7569 sites) lattices. Subsystems are generated through partition II for different hyperbolic lattices. The

insets show R? as a function of « in the fitting function Sy = aLj + b.

Here, |/;) is a unit vector that has a nonzero component at site
Jj only. The rational continued-fraction coefficients a; and b; in
Eq. (C2) can be obtained by the following recursive relation:

a; = (;|H|I;)
i) = (H —ap)ll) — bi—1|l;—1)
b; = /{niy1lnip1)

1
lis1) = —Init1), (C3)

bi

where i = 1,2,3,... and by = 0. For gapless systems, the
coefficients a; and b; converge to the asymptotic value a», and

b for sufficiently large lattices and give the band edges

Ei =ax +2b. (C4)
For gapped systems with a single band gap, which is the
case of Hamiltonian H,, the coefficients b; converge to two
asymptotic limits b and b when n — oo [101],
Ey —E_=2(b+2b), A=2(b—2b), (C5)
where A is the band gap.
To accurately compute the rational coefficients a,, and b, to

the order n, the shortest graphic path from site j to boundary
R; as defined in Sec. II should be at least #n. Then we introduce
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FIG. 10. Normalized DOS computed by the Haydock recursion method for Hamiltonian H, with t = 1 and p = 0. The lattices chosen
here share the same p = 3 with ¢ = 6, 8, 9, 10, while {3, 7} has been shown in Fig. 4(b2). Through this method, we verify that these systems

are indeed gapless.

a proper fraction termination,

E_aoo_\/(E_aoo)z_“'b%o

2b%, ’
for Hamiltonian H;, where a., and b, are chosen as the
converged a, and b, for large n. In a gapped system, the

fraction termination can be more complicated [101,102]. For
Hamiltonian H,, we use

(E—AY +A2—B+20% —X(E)
202 [(E —A) + (ase —A)]

t(E) =

(Co)

tE) = (C7)

where A = iZti, B = %Ztlz, X =[1,/E —t?, and 1,
i=1...4, are band edges which can be obtained by the
asymptotic coefficient in Eq. (C5).

After deciding the termination, the LDOS at site j is given
by Eq. (C1) and Eq. (C2). Since, for regular tilings, sites in
the bulk are all equivalent if the lattice is sufficiently large,
the LDOS is the DOS up to a normalization factor [62].

2. Numerical results of DOS

We show some results of the DOS which are computed
on different lattices with up to 107 sites for Hamiltonian H;

(a) 60 ®eo
SOF -
40
V4=200
{8,3,4} (ESO Vj:48
- {8,3,6} 10
0
0 30 60 90 120 3 4 5 6
LA n

FIG. 11. Finite-size scaling analysis of the EE by the example
of a {8, 3} lattice. (a) The EE for the same subsystems computed
on a {8, 3, n} lattice with n =4, 5, 6. (b) The EE for two specific
subsystems (V4 = 48 and 200 sites) computed on a {8, 3, n} lattice,
where dashed lines show £5% intervals of the EE computed on a
{8, 3, 6} lattice. Results are computed for Hamiltonian H; witht = 1
and u = 0.

in Fig. 10. Here we compute DOS on p = 3 lattices and
verify that they are gapless. Since this method’s memory con-
sumption scales linearly with the lattice size, it significantly
exceeds the computational limits of ED methods. This method
can be applied to an arbitrarily large lattice (one can obtain
the result for a lattice size up to 10° sites [62]), but our results
here are sufficient to determine whether the system is gapped
or gapless in the thermodynamical limit.

‘We notice that the thermodynamical DOS obtained through
this method is different from that computed on finite lattices
through ED, indicating that the computation of the EE may
exhibit a finite-size effect.

APPENDIX D: FINITE-SIZE SCALING ANALYSIS OF EE

As we focus on the EE for subsystems in the bulk, in
this appendix, we perform the finite-size scaling analysis
to demonstrate that the boundary effect is considered in
our numerical computations. We take the {8, 3} lattice for
Hamiltonian H; with t =1 and @ =0 as an example. In
Fig. 11(a), we show the EE for the same subsystems (partition
I is taken) computed on a {8, 3, 4} (768 sites), {8, 3, 5} (2888
sites), and {8, 3, 6} (10800 sites) lattice, respectively, where
the largest subsystem studied here is identical to the {8, 3, 3}
lattice (V4 = 200 sites). The optimal fit is obtained when
a in the fitting function S4 = alL§ + b equals 0.859, 1.010,
and 0.997 for the {8, 3,4}, {8,3,5}, and {8, 3, 6} Iattice,
respectively. In Fig. 11(b), two specific subsystems, identical
to the {8, 3, 2} (V4 = 48 sites) and {8, 3, 3} (V4 = 200 sites)
lattice, respectively, are chosen to compute the EE on {8, 3, n}
lattices with n = 3, 4,5, 6. Notably, the {8, 3, 3} subsystem
is not computed on the {8, 3,3} lattice itself. The gray
dashed lines represent +5% intervals of the EE computed
on the {8, 3, 6} lattice. From these results, we observe that
by minimizing the boundary effects through enlarging the
lattice, we obtain a linear fit of the EE for subsystems in the
bulk. Through the finite-size scaling analysis, we show that
the boundary effect is considerably excluded to obtain the EE
for subsystems in the bulk of the hyperbolic lattice.

APPENDIX E: NUMERICAL ANALYSIS
OF SUPER-AREA-LAW SCALING

In this Appendix, we present the numerical analysis to
show that the EE does not scale as super-area-law scaling.
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FIG. 12. Columns (a)—(c) correspond to the EE data of {4, 4, 40}, {3, 7, 9}, and {4, 5, 6} shown in Fig. 4. In the top two rows, we present
the linear fits Sy = a1Ls + by and Sy /In Ly = a,L4 + by, along with the adjusted coefficient of determination, R?. The blue lines represent the
respective linear fit functions. In the bottom row, we plot S, /L4 In L4 as a function of L,, where the dashed lines represent £5% intervals of

the data point corresponding to the biggest L,.

Specifically, we take the EE data for the gapless free fermions
with finite DOS presented in Fig. 4, Sec. III B, as an exam-
ple. We anticipate the scaling functions S4 = a;L4 + b; and
Sa/InLy = ayLy + b, and fit the EE data. As logarithms can
be hard to detect, we select several dimensionless evaluation
metrics to compare these two fits, including the adjusted co-
efficient of determination, R?, mean absolute percentage error
(MAPE) given by l(;\,ﬂ va |’y;y |, and relative absolute error
N 5.
(RAE) given by % Here, N is the total number of data
points, y; denotes the true values, y denotes the mean of y,
and §; denotes the predicted values. A higher R? approaching
1 and lower error estimations approaching 0 indicate a better
fitting. The results of these evaluations are listed in Table III,

where one can find that area-law fitting is better in the hy-
perbolic case. We also visualize the fittings in the top two
rows of Fig. 12. In the bottom row, we plot S4/LsIn Ly
as a function of L4 which only converge in the Euclidean
case. Therefore, we conclude that the EE does not scale as a
super-area law.

APPENDIX F: ASYMPTOTIC BEHAVIOR OF SCALING
COEFFICIENT OF AREA LAW

In this Appendix, we study how the EE varies with ¢ when
p is fixed. The number of nearest-neighboring sites of a given
site on a hyperbolic lattice, labeled as g as aforementioned,
can successively increase. From our findings in the main text,

023098-14



ENTANGLEMENT SCALING BEHAVIORS OF FREE ...

PHYSICAL REVIEW RESEARCH 7, 023098 (2025)

TABLE III. Results of the adjusted coefficient of determination,
R?, and dimensionless error estimations, including the mean absolute
percentage error (MAPE) and relative absolute error (RAE) for the
EE data shown in Fig. 4. In the Euclidean case, the super-area law
Sa/InLy = a,Ls + b is better fit, while in the hyperbolic case, the
area law S4 = a;Ls + by is better.

Lattice Fit function R MAPE (%) RAE
{4,4,40} area 0.998466  3.66006 3.69134x 1072
super-area  0.999929  0.338284  7.64020x107*
{3,7,9} area 0.999962  0.495449  5.79884x 1073
super-area  0.998026  3.12212 4.06104x 1072
{4,5,6} area 0.999918  0.832573  8.48647x 1073
super-area  0.998041  2.55588 4.20934x 1072

the EE is proportional to the boundary of subsystem L4, which
is a function of ¢, and thus the area-law scaling coefficient a
should also be related to g. We study the EE for Hamiltonian
H, on p =3,4,5, and 6 hyperbolic lattices with successively
increased g and the results are shown in Fig. 13. The results
all indicate that as the number of adjacent sites per site g
increases, the coefficient a decreases.

Due to computational difficulties on hyperbolic lattices,
such as the exponentially growing lattice size and finite-size
effect, it is hard to perform the scaling analysis for a lattice
with larger g. However, our results here indicate a monotoni-
cally decreasing relationship between ¢ and a. It makes sense

(b) g0

0 300 600 900 1200 0 120 240 360 480
Ly Ly
(c) (d)
100 80
75 60
=
“ “1 40
0 . {6,3,35}
. {6,4,5}
25 20 . {6,5,4}
0 120 240 360 480 0 80 160 240 320
LA LA

FIG. 13. Asymptotic behavior of coefficient a. The cases for p =
3,4, 5, and 6 all indicate that when ¢ increases, a decreases. Results
are computed for Hamiltonian H, witht = 1 and u = 0.

to explore the relationship of a as g increases, as this may
reveal the asymptotic behavior of the EE and provide us with
new insights into the hyperbolic geometry.
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