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Qubit fidelity distribution under stochastic Schrodinger equations driven by classical noise
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Environmental noise affecting controlled quantum systems is typically described by a dissipative Lindblad
equation, which captures the system’s average state through the density matrix p. One approach to deriving this
equation involves a stochastic operator evolving under white noise in the Schrodinger equation; however, white
noise fails to accurately depict real-world noise profiles, where lower frequencies often dominate. This study
proposes a method to determine the analytic distribution of qubit fidelities in significant stochastic Schrodinger
equation scenarios, with qubits evolving under more realistic noise profiles such as Ornstein-Uhlenbeck noise.
This method enables the prediction of the mean, variance, and higher-order moments of qubit fidelities, offering
insights crucial for assessing permissible noise levels in prospective quantum computing systems and guiding
decisions about control systems procurement. Additionally, these methodologies are essential for optimizing
qubit state control affected by classical control system noise.
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I. INTRODUCTION

To realize their potential in tackling highly complex sim-
ulation and optimization tasks, quantum computers must
reliably execute numerous successive operations, effectively
manipulating qubits with high fidelity. However, in the cur-
rent era of noisy intermediate-scale quantum computing [1],
quantum systems contend with noise originating from various
sources. These include uncontrollable factors such as radiative
decay as well as noise introduced by control systems, such as
fluctuations in laser frequency and intensity [2—4].

Although one approach to mitigating control noise involves
improving system quality, this often involves substantial mon-
etary and technological complexities. Alternatively, designing
control operations resistant to such noise. sources offers a
pragmatic strategy to minimize their impact [5,6]. Thus, it
is crucial to have a complete understanding of the effects
that various realistic control noise profiles may have on the
evolution of the qubit, which is the main issue addressed
in this work. We believe that this understanding can inform
the development of effective control strategies necessary to
improve quantum computing capabilities and to tackle the
challenges caused by noise, ultimately leading to more reli-
able and advanced systems.

Noisy quantum systems are commonly treated as open
systems whose density matrices p evolve under the Lindblad
master equation [7]. These equations describe the effective
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Markovian behavior of an open quantum system and can
be derived by various approaches [8] (cf. Sec. I A for an
example). However, the assumption of strict Markovianity is
often deemed unrealistic, particularly in scenarios that involve
colored control noise. In such cases, lower frequencies tend
to dominate the power spectral density [9], rendering the
Markovian assumption inadequate for accurately describing
the dynamics of the system. Moreover, while a density matrix
captures essential aspects of a system’s state, it does not fully
characterize it, as different ensembles of states {v;}; may
share a common density matrix p = ]E[l//jt//;] [10]. This en-
semble of (stochastic) states {1/;}; is often called a unraveling
of the density matrix and is useful in Monte Carlo simulations
of open quantum systems [11]. Moreover, the complete en-
semble contains more information than the density matrix p
alone [12], offering valuable insights on correlations between
state distributions and noise effects, see Fig. 1. Such infor-
mation has the potential to be used to devise error mitigation
strategies [13,14]. For example, a Markovian ensemble of
states {v;}; may be described by the stochastic Schrédinger
equation (SSE) [15], where classical stochasticity is intro-
duced through white noise processes.

Efforts are being made to find generalizations of the SSE
in the non-Markovian regime while possessing a reasonable
physical interpretation. One method for achieving this in-
volves generalizing the Markovian Lindblad approaches in
Ref. [16] to non-Markovian master equations [17] and finding
physically meaningful unravelings, as demonstrated for jump
processes in Ref. [18]. In contrast, we leverage the approach
in Ref. [19] and start from a generalized SSE. In this setting,
the foundation for non-Markovian behavior is introduced via
a random Hamiltonian method with control functions display-
ing colored noise. This framework naturally leads to an unrav-
eling that maintains a coherent measurement interpretation.
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FIG. 1. Tllustration of control system laser noise, denoted by X
and X2, impacting the qubit Rabi frequency Q and detuning A and
leading to a loss of fidelity F. The SSE can be used to find a distri-
bution of fidelities subjected to colored noise, including white noise.
Conversely, the Lindblad equation is only valid for white noise and
results in an average fidelity rather than the full fidelity distribution.

Subsequently, the non-Markovian master equation may be
inferred, as outlined in Ref. [20].

In a noisy quantum system, both classical control noise
and thermal noise from the environment [21] affect the qubit
fidelity on different levels, depending on the qubit archi-
tecture [22]. Fixing one type of noise gives a stochastic
unravelling of the Lindblad equation. In the case of control
noise, it is possible to get experimental data on the individual
realizations of the noise. However, measuring the thermal
noise is more complicated, as the destruction of the qubit state
after measurements ensures one can only directly measure
the average effect of thermal noise as given by the Lindblad
equation, making it impossible to verify whether the corre-
sponding individual realizations match with the theoretical
unravelling. In this work, we limit our analysis to classical
noise affecting the qubit control functions, such as laser inten-
sity and frequency noise, based on the semiclassical treatment
of light-atom interactions [23,24]. The non-Markovian SSE
(hereafter referred to as SSE) captures the full state distribu-
tion with respect to a broad spectrum of control noise profiles,
offering multifaceted advantages, when compared to Marko-
vian density matrix methods. First, leveraging SSE enables
accurate predictions of qubit fidelities, essential for ensuring
system compliance with specified tolerance thresholds before
procurement. Second, SSE facilitates precise responses to
qubit system control noise [25-27] as it accounts for noise
influence during each shot-to-shot state preparation, instead of
an average response. Last, understanding how noise impacts
fidelity distributions proves vital for error correction strate-
gies, which can exploit noise-fidelity correlations to correct
for minor perturbations [13]. To summarize, the relationships
between noise and fidelity established in this work enable
straightforward identification and exclusion of individual state
preparations that fall short of predefined fidelity benchmarks.

Using our approach, we highlight several significant
scenarios of classical control noise that impact qubits, and
we derive the corresponding closed stochastic differential
equations (SDEs), which can be solved either analytically

or numerically to find the fidelity distribution based on
various types of noise spectra. This includes PI controller-like
processes that are useful for error mitigation (as detailed in
Sec. IIB 6). We further validate these SDE systems against
Monte Carlo simulations. Notably, our numerical simulations
based on the SDE systems offer a simpler and more efficient
alternative to the Monte Carlo methods previously reported in
Ref. [28].

A. Relation to previous work

This work aligns with other studies that have examined
the influence of noise on qubit fidelity [29-31]. These studies
primarily operate within the framework of the Lindblad equa-
tion and mainly focus on the small noise regime. However, the
Lindblad equation’s utility is limited to analyzing the mean
fidelity, as it does not provide a comprehensive view of the
entire fidelity distribution of qubits.

Likewise, previous studies on the SSE for quantum com-
puting [32-34] have primarily produced lower bounds or
approximations for achievable qubit state preparation fideli-
ties, typically addressing white noise and mean fidelities.
These analyses could have been carried out using the Lindblad
equation. However, the correlations provided by the fidelity
distribution are particularly relevant in error-correcting sce-
narios, where it is critical to ensure that every state preparation
closely aligns with the intended state for effective error
correction.

Additionally, our SSE method is inherently normalized
and requires normalization primarily to account for numeri-
cal errors. This differentiates it from approaches that rely on
the standard Schrodinger equation with a stochastic Hamilto-
nian [2,27,35-37], which provide accurate results only under
certain conditions (refer to Appendix A).

Noise mitigation has also been addressed in related work
through specific recovery operations, particularly in the
context of low-frequency noise [14,23]. Our methods can
facilitate real-time noise mitigation, offering a potential com-
plement to postprocessing recovery operations. Furthermore,
this study establishes a basis for extending to general opera-
tors and noise profiles. In summary, our developed methods
offer several advantages over the state-of-the-art techniques:

(i) Exact expressions for fidelity distributions as func-
tions of individual noise realizations, allowing verification and
characterization of control systems;

(ii) Fidelity-noise correlations that are crucial for error
mitigation;

(iii)) Normalized methods for handling colored noise, un-
like approaches based on the Lindblad equation or stochastic
Hamiltonians;

(iv) Significant speed-ups in fidelity calculations.

The paper is structured as follows. Section IT A provides
an overview of the SSE, highlighting its connection to noise
arising from control mechanisms and comparing it to the
Lindblad equation under white noise. Section II B details our
SDE-based methodology along with the numerical scheme
used for solving the SSE equations. Section II C presents the
initial findings of our model applied to single- and multiple-
qubit systems, incorporating analyses of white noise, colored
noise, and feedback processes.
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II. RESULTS

A. Stochastic Schrodinger equation

The standard Schrodinger equation describing the evolu-
tion of a pure state ¢ is given by [38]

d¢ = —iH (t)p dt, (1)

where H(t) is a time-dependent Hamiltonian. Generic non-
Markovian SSEs start by considering a linear equation for a
non-normalized distribution of states i [19,28]

dy = Cy dt + Ry dX,,

Here X = (X;);>0 is a real-valued noise source described by
an It6 process with finite quadratic variation [39,40]

t
X1, = f y2ds,
0

where y is a predictable process that is integrable with respect
to the white noise source [41,42]. As |y|> should represent
a probability density, we require E[|/]|?] =1 at all times,
imposing restrictions on C and R of the form (see Appendix A
for derivation)

dy = —iHy dr — 18TSy d[XT, —iSy dX,, 2)

where S is the noise operator. To simplify the presenta-
tion of our results, we focus on a single noise process
and operator. However, the results can be extended straight-
forwardly to multiple independent noise processes and
commuting noise operators. This class of stochastic evolu-
tion equations was introduced as a dissipative model without
observation [19,28,43,44]. For p = E[wa], a master equa-
tion with non-Markovian effects can be obtained. However,
this will generally not be of closed form due to correlations
between X; and v, [28]. Closed-form approximations can be
obtained using the Nakajima-Zwanzig approach [45] but are
out of the scope of this work.

In this work, the primary concern here is control noise in a
laser system, as in a Rydberg system [46]. However, the meth-
ods can be applied to all classical driving systems for different
qubit architectures, e.g., electrical currents in superconducting
chips [47,48]. Most single qubit systems are controlled using
a coupling operator,

Heowp = €¥10)(1] + ¢~ [1)(0),
and a detuning operator,
Hger = (I —02)/2 = [1)(1],
which in combination give the control Hamiltonian [25]
H(t) = Q(t)Heoup + 3 A(t)Hyer,

where 2 is the Rabi frequency, ¢ is the phase, and A is
the detuning. Because we limit ourselves to control noise,
the noise operator S must inherently stem from the control
Hamiltonian, resulting in the hermitian condition § = S°.
Possible noise sources are in the laser intensity, relating
to 2, frequency, relating to A, and phase ¢. The pulses (in-
cluding the classical noise sources) are then given by d2 =
Qdr + dX%,dp = @dr + dX¢, and dA = Adr + dX 2, where
X" = (X,")t>0, n € {Q, ¢, A}. Because of the semiclassical

atom-light interactions and high photon number, we treat the
control noises X classically, as in Refs. [23,24].

It is important to note that the term %S TSd[X]; in Eq. 2)is
absent in stochastic Hamiltonian methods [35,36,49], where
stochasticity is introduced by directly incorporating noise re-
alizations into the Hamiltonian and subsequently solving the
resultant Schrodinger equation. Although numerical normal-
ization for stochastic Hamiltonian methods averts issues when
STS = I, discrepancies arise when S'S = I, thus necessitating
the inclusion of the term S'S to ensure physically accurate
results.

In this work, we distinguish between three classes of noise
operators S,

Pauli noise: [H,S]1=0, S'S=1
(e.g., S = oy, oy, 02),
Projection noise: [H, S] =0, s’s=s

(e.g.,S=U—-02)/2).
Noncommuting: H = oy,

[H, S] = 2ixos,

S =0y,

Hence, Pauli noise would model noise in the control in-
tensity (or phase via a formal expansion of the exponential
function), whereas projection noise captures variations in
control frequency. In scenarios involving noncommuting op-
erators, any cyclic permutation within the set {ox, oy, 07} can
be used to model noise instances where the noise strengths in
detuning and Rabi frequency exhibit comparable magnitudes.

For our simulation results, we consider the following three
examples of noise processes.

1. White noise WN process
Here X takes the form

t
thy/dWS, 3/20,
0

where W = (W;);>0 is a standard Brownian motion with
quadratic variation [X ], = y dr. The corresponding SSE reads

dyr = —iHy dt — LyS"Sy dr — iy Sy dW,. 3)

Using (3) to deduce the evolution of the state y v/ and taking
the expectation results in the Lindblad equation for the density
matrix p = E[¥ 7] [7,50] (see Appendix A)

dp = —ilH, p] + SpS" — 15, p},

thus providing a valid unraveling of this master equation.

2. Ornstein-Uhlenbeck OU process

For a fixed constant k > 0, the OU process is given by
dX; = —kX; dr + y dW,,

subjected to either the calibrated initial data, X, = 0, or dis-
tributed according to the stationary distribution of the OU
process, i.e., Xy ~ yN/~/2k, where N is the standard normal
distribution. The OU process can be seen as a damped WN
process, in line with the fluctuation-dissipation relation. In
contrast, WN is a limiting case of OU with k | O (taking the
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limit of k — 0 with k > 0) [51]. OU processes resemble 1/ f
noise in the high-frequency domain due to their power spectral
density [52,53] and have been found to describe noise in an
exceptionally broad range of physical processes [48,54]. The
SSE with OU noise reads

dyr = —iHy dt — 1y25"Sy dr — iSy dX,. 4)
Note that it has the same quadratic variation as WN.

3. Feedback (FB) process

If X; is a semimartingale, then so are all processes of the
form

4y, dX; fort < 7, 5)
e dX, — updX,_; — X, dr fort >,
where 7 > 0 is a delay time and u;, up € R. Here the
quadratic variation of Y = (¥;),>0 satisfies

diYl, = (1+ ppl¢ > ) diX]..

The FB process can be seen as a delayed proportional-integral
(PI) controller applied to the noise [55], making it a viable
noise mitigation technique that can be effectively analyzed
using the SSE. In practice, this can be implemented by reading
and processing control noise in real-time during state prepa-
ration, leading to the delay time t [56]. Note that this list of
noise processes is not exhaustive for the allowed colored noise
processes in SSE. For instance, Brownian noise as integrated
white noise or noise generated from arbitrary power spectral
densities would pose interesting examples.

B. Analytical methods

Here we detail the methods used to derive the fidelity distri-
bution for qubit systems evolving according to the SSE. Since
the numerical integration of the SSE for ¢ can be computa-
tionally expensive and unstable due to the non-Euclidean state
space of the qubit and the possible nonlinearity introduced by
the noise process, we derive full distribution solutions. These
solutions yield explicit formulas for both the expectation and
variance of the fidelity, offering precise results for individual
noise manifestations instead of mean behavior approxima-
tions or bounds.

1. System of SDEs

The quantity of interest in quantum computing is the fi-
delity F := |¢Tv/|2, where ¢ is the desired state without noise,
i.e., ¢ satisfies the Schrodinger equation (1) and i evolves
according to Eq. (2) [33].

To derive an explicit formula for F, we recursively derive
a system of real-valued SDEs for a vector V € R™, m € N,
taking the form

dV =AVdr + BVdX, + adr + bdX,, ©6)

where the first component of V is the fidelity F = |¢|>. The
size of the system varies depending on the properties of the
noise operator S. In the case of Pauli and projection noise
on single qubits, m = 3, while in the noncommuting case,
m = 10.

For WN, solving these equations involves considering
Y =E[V] and solving the deterministic equation dY =
AY dt 4+ adt, which aligns with the Lindbladian approach

(see Appendix A). However, for general noise, this approach
is no longer applicable because E[V dX,] # E[V]E[dX,].
Specifically for OU, terms such as E[X?V] arise. A common
way to obtain a solution, as demonstrated in Ref. [57], is
to extend the vector V with new entries of the form X?'V
and to derive an elaborate system that will then include
E[X?+1V]. Eventually, an approximation has to be made to
maintain a finite system. In Appendix B, we elaborate on the
approximation E[X?"V] = E[X?*]E[V]. The truncation point
n, referred to as the approximation order, is the point at which
an analytical solution for E[V] can be found. As shown in
Sec. ITC 1, solutions improve with increasing approximation
order but eventually become nonphysical as fidelities exceed
the interval [0,1].

Instead, we advocate the less intuitive approach of deriving
the full distribution of V, from which the expectation and
higher-order moments can be inferred. In all cases explored
in this work—except for the noncommuting case—we obtain
a diagonalizable system (12), giving

dZ = (—3y*ATAdr + AdX)(Z - ©),

where {A, P} is the eigensystem for both A and B, Z := P~'V,
and c is a vector of constants depending only on a and b. Using
Ito’s formula [39], the solution of this SDE is given by

Z =exp(AX; — X0))(Zy — ¢) +c,
thus yielding,
V = P(exp(AX; — X0))(Zo — ©) +0),
from which an expression for the fidelity F can be derived.

2. Pauli noise

For Pauli noise, the SDE system (6) for the vector

F
V= [ANAS eR’,
i(@'SYy'd —d'SYyie)
is givenbya =b =0,
-1 1 0 0o 0 -1
A=y*l1 -1 o0, B=|0 0 1
0 0 -2 2 =2

Notice that A = y2B?/2. After applying the diagonalization
method, we deduce the following expression for the fidelity:

F=3(14S5) + 3(1 — S5) cos2(X; — X))
= COSZ(X, —Xo) + Sg sinz(Xt —Xp), (7)

where S = ¢SS¢0. For the WN and OU noise process, we
deduce explicit formulas for the expectation and variance for
the fidelity (cf. Appendix C).

a. OU process. For calibrated initial data (i.e., Xp = 0), we
find the explicit formulas

E[FOV] = L(1 4+ S2) + L (1 — S2)e2"n),
Var(FPU) = §(1 = S5)7[1 — e O, ®)
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with 7(¢) := e~ sinh(kt)/k, while for stationary initial data
(i.e., Xo ~ yN'/+/2k), we obtain

2
E[FV] = L(1+82) + 4(1-8)e 20,

Var(FPY) = £(1 - 83)2[1 - e—““—f’“)%z]z.

b. WN process. Passing k | 0 in (8) and using the fact that
limy o 7 (t) = t, we recover the expectation and variance for
the WN case:

E[F™] = 5(1+85) + 5(1 - 8§)e ™,
Var(FYN) = 1(1 = 82)°[1 — e ¥ 2,

Notice the difference between the large-time asymptotic
fidelity values for the WN and OU processes:

2

lim E[FOV] = 1(1+S2) + 1(1 - SY)e T

t— 00
> 1(148}) = Jim B[FY™],
and

lim VaI[F?U] < tlirgo Var[FlWN],

1—>00

indicating a better large-time asymptotic fidelity for the OU
process, which is logical given that OU noise is inherently
damped.

3. Projection noise

Next, we consider projection noise. For the vector

F
V=| ¢'SyyTo+¢Tyyise | eR’,
i(@'SYyTo — o'SYyTe)
we find the SDE system (6) with

o 1 o0 0 0 1
A=-Y10 1 o], B=|o 0o 1]
210 0 1 0 1
1 0
a=y>S3| 1|, b=S%| 0

0 -2

The diagonalization method then gives the fidelity
F=1-2(1-8)S; — cos(X; — Xo)). )

As in the previous case, explicit formulas for the expectation
and variance for fidelity can be deduced under WN and OU
noise processes (cf. Appendix C).

4. Noncommuting

For the noncommuting scenario, a closed SDE system of
size m = 10 can be derived due to the group structure of the
Pauli matrices. Here we find a system where the matrix A
decomposes as A = aA. + y2B?/2, such that

2
dV = «AV dr + %BZV dt + BV dX,,

10)

-

FIG. 2. Ilustration of state trajectories on the Bloch sphere with
H = X + Z without noise (pink), and with Pauli OU noise with § =
X, k=0.1,y =0.2 (cyan).

where A. represent the commutator terms and B> denotes the
noise terms (see Appendix G for full matrices). In the absence
of A., the system can be solved using the diagonalization
method outlined in Sec. II B 1. However, the noncommutativ-
ity between A, and B presents a hurdle for the full system. In
such cases, presuming the dominance of the driving Hamilto-
nian over noise intensity, i.e., y?/a < 1 (high signal-to-noise
ratio), an approximation for the fidelity can be obtained using
the stochastic Magnus expansion [58] (see Appendix G).

a. WN process. For the white noise case, an approximation
is given by

E[F] ~ 1 + 1Cle~2r
+ %e"’zt (sinh(u)((C3 — C3) cos(2at)
— 2C,Csssin(2ar)) + (C3 + C3) cosh(w)), ~ (10)

where C; = ¢joipy with C3+C3+Ci=1 and u=
y?sin(2at)/2a. This expression reveals the oscillatory
behavior induced by the Hamiltonian. This can be explained
by considering H = X,S =Y and ¥y =|0) (see Fig. 2).
Initially, the state is affected by the S = Y noise. As evolution
under H progresses, the state transitions to (]0) + |1))/«/§,
which, as an eigenstate of S, is immune to this noise.
Subsequently, it transitions to |1), once again becoming
susceptible. This cyclic process results in the observed
oscillations, with the frequency contingent upon the strength
of the Hamiltonian «.

b. OU process. Unfortunately, we were unable to derive
a satisfactory approximation of the fidelity expectation with
the OU noise process. Nevertheless, we offer a rudimentary
approximation for a certain parameter range in Appendix G.
Moreover, our approach allows for a rapid and stable numeri-
cal solution of the SDE system to be obtained.
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5. Multiqubit

In work by Kobayashi and Yamamoto [33], noise acting on
multiple qubits is analyzed for multiqubit operators satisfy-
ing STS = I. These are important cases, as noise on the S =
Z ® Z operator could model noise during an entanglement
procedure, while S =X ® I or S =1 ® X represents noise
acting on one of the qubits in the system. However, Ref. [33]
emphasizes that operators of the form I ® QO + Q ® I, with
Q? = I, cannot be treated with their methods. These types of
operators are also important cases, as they model noise on a
global control that addresses all qubits simultaneously, which
is prevalent in many quantum computing systems [59].

With our methods, we can solve these systems by defining
R := QO ® Q, such that

STS=1®Q*+0*®1+2R.
For Pauli noise (Q* = I), we obtain
F=1(SI+ Ry — 1) +2(1 — R2) cos2(X, — Xp))

+ (1 = Sy + Ro)(1 + Sp + Ro) cos*(2(X, — Xp))),
(11)

with So = ¢¢S¢o and Ry = ¢} Reby.
For projection noise (9> = Q), we find

F=1-2(cos(X; —Xp)— 1)
x (S5 4+ So(2Ro(cos(X; —Xp) — 1) — 1)
— 2R0[R0(COS(X, — Xo) — 1) + COS(X, — X())])

If we assume that the two-qubit system starts in a product state
b = ¢(()0) ® ¢(§1), then the values Sy and Ry can be expressed
as Sy = S 4 S{" and Ry = S{”’S\", where the superscript
(i) refers to the ith qubit. For both Pauli and projection noise,
the fidelity distribution then factors as

F=FOFW. (12)

This result aligns with physical intuition: Although the two
qubits evolve independently, they are subjected to the same
noise process. Hence, their fidelities depend solely on the
noise, leading to a factorization at the distribution level. Yet,
this does not imply independence of the expectations E[F®]
and E[F™1]. The full expectation E[F] can still be determined
using the methods of Appendix C. Furthermore, the two-qubit
method can accommodate entangled ground states for which
the distributions deviate from the factorized form depicted
in (12). In Appendix D, we extend this analysis to N-qubit
systems.

6. Feedback process

Combining (5) and (7) for Pauli noise [or similarly (9) for
projection noise], we obtain the fidelity for an FB process
with OU as the base noise (see Appendix C). The resulting
expression is given by

1 1
E[F] = 5(1 +55) + E(l — 53)E[cos(2(Y, — Yp))]

2 2 2
= €xp < - %(1 — e 2 — a%e*’”(l — e k=T

2
_ azy—(l _ -y a,84—y(1 )
k k
4
_ ﬁ%e—kr(l _ e—k(l—r)) _ ﬂ22(1 _ 7(,))7 (13)

where « = —(upk — puy)/k and B = (upk — )y /k — pp.

Differentiating this expression allows us to find the optimal
values of the PI controller constants as wp = exp(—kt) and
wy; = 0. This demonstrates the applicability of our method in
analyzing the impact of various feedback and error mitigation
processes on qubit fidelity.

C. Simulation results

In this section, we validate our fidelity calculations by com-
paring them with Monte Carlo simulations. Throughout, we
employ the explicit second-order scheme due to Platen [60,61]
as our Monte Carlo stochastic integration method, outlined in
Appendix E. We also set the driving Hamiltonian H = 0 with-
out loss of generality as [H, S] = 0, unless explicitly stated
otherwise. In the context of current-era quantum computers, a
signal-to-noise ratio )/2 /o ~ 0.01 is realistic Refs. [2,62,63].
Consequently, we choose the values of y, k, and « accordingly
in all cases. We also refer the reader to the time-rescaling
argument discussed in Appendix G.

1. Pauli noise and truncation

We start by showing that the approximation order, as de-
tailed in Sec. II B 1, becomes better with increasing order but
eventually leads to nonphysical behavior. For the Pauli noise
system, we get an evolution for the vector x = E[V] given by

-y y? ik 1
x=|y> -y’ —ik |x, x(0)=|8Z]|,
2ip  —2ip —k—2y? 0

with p = (kIE[Xf] — yz) and Sy = |¢gS¢0|. Here we made
the assumption E[X,ZV] = IE[X?]E[V] to close the system.

The second-order system is detailed in Appendix F. Using
the fact that E[X?2] = (1 — e~ ")y 2 /2k (see Appendix C), we
can solve these systems numerically [64].

From Fig. 3, we see that the truncation approach performs
well for high fidelities. Notably, the second-order solution
follows the exact solution longer than the first-order does. This
shows that the Itd isometry [65] approximation of Appendix B
works relatively well for short durations. However, both or-
ders eventually lead to nonphysical behavior, as fidelities are
predicted beyond the interval [0,1] and thus fail to correctly
predict long-time behavior. This issue becomes particularly
critical when considering optimal control methods for the
SSE, where the stability of the fidelity must be maintained
over extended periods. This underscores the significance of
our full-distribution method, which accurately predicts the
long-time fidelity behavior. In Fig. 4, we see the convergence
of the sample mean towards the analytic mean when increas-
ing the number of trials. As in Fig. 3, we use a low number
of trials to maintain a visible difference between the sample
mean and the analytic mean for the other experiments.

In Fig. 5, we present the full fidelity distributions over
time. The histograms depict fidelities derived from 2 x 103
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1.00 1
0.954
- 0.901
>
s 0.851
[
0.8071 ... 1storder el
== = 2nd Order e,
0.757 — Sample Mean ."~..
0704 =~ Analytic Mean tea,
0 5 10 15 20 25 30
t[s]

FIG. 3. Pauli noise: Fidelity expectations for a 1 qubit system
with § = X,y = 0.2, k = 0.1 and calibrated initial data. First and
second order of approximation together with sample mean and an-
alytic mean as in Eq. (8). Computed with 2 x 10> Monte-Carlo
simulations.

Monte Carlo SSE samples (requiring approximately 30 min
on an eight-core laptop). In contrast, we determine the kernel
density estimate [66] of 1 x 10® OU noise realizations (tak-
ing mere seconds on the same setup), resulting in the solid
distribution lines. This comparison highlights the accuracy of
our distribution method while significantly reducing computa-
tional overhead. Moreover, Fig. 5 shows that the distributions
maintain their shape over time, with their peaks swiftly shift-
ing towards zero fidelity.

2. Projection noise

For the projection noise, we take S = [1)(1| and analyze
the fidelity for both the OU and the WN noise. As depicted
in Fig. 6, initially, OU noise and WN noise exhibit similar
fidelity behaviors but quickly diverge, leading to differing
large-time asymptotic values. This discrepancy is expected
due to the distinct characteristics of the noise processes: While
the second moment of WN grows as E[X?] = y?%¢, for OU
noise, lim,_, o E[th] = y2/2k. Hence, the WN process drifts

trials=5
trials=20
trials=50
trials=250
— trials=5000
== === Analytic Mean WN

0 5 10 15 20 25
t[s]

FIG. 4. Projection noise: Convergence plot for different number
of trials compared to analytic mean. 1 qubit system with § = |1)(1],
y = 0.1, k = 0.1 and stationary initial data, with analytic mean.

FIG. 5. Pauli noise: Fidelity distributions at various times ¢ for a
one-qubit system with § = X, y = 0.2, k = 0.1 and calibrated initial
data as in (7). Solid lines are kernel density estimates of distributions
as in (7) and histograms are from Monte Carlo samples of (4). Here
to = 0.06 is a fixed reference timescale. Fidelity expectations are
depicted in dashed black line; 2 x 10° Monte Carlo simulations for
each curve and histogram.

away over time while the OU noise continues to fluctuate
around zero, constantly self-correcting. This behavior is also
evident in Fig. 6, where the variance of the fidelity under
WN noise grows significantly faster than under OU noise, as
indicated by the shaded area.

1.00

= Sample Mean OU

0.95{ = Sample Mean WN ~
' == == Analytic Mean OU \\
== == Analytic Mean WN ~
0.94 ; . . . :
0 5 10 15 20 25

t[s]

FIG. 6. Projection noise: Fidelity expectations and standard devi-
ations (shaded areas) for a 1-qubit system with § = [1)(1], y = 0.1,
k = 0.1 (and k = 0 for WN) and stationary initial data, with sample
mean, analytic mean, and analytic variances. The transition from
WN to OU is indicated by gray dashed lines signifying equiva-
lent cases with k = 0.02, 0.04, 0.06, 0.08. Computed with 5 x 10?
Monte Carlo samples.
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1.0 100 — =1
—_— Cy=1
0.951 Rk — =1

0.91 —— Sample
0 0.90 1 \ ———- Anal.

7.5 10.0 12.5 15.0 17.5 20.0
t [s]

00 25 5.0

FIG. 7. Noncommuting: Fidelity expectations for a 1-qubit sys-
tem with S = Z, H = X, y = 0.4, and calibrated initial data. Sample
mean and analytic mean as in (10) with varying conditions for
C? + C} + C% = 1. Computed with 1 x 10°* Monte Carlo samples.

3. Noncommuting

We analyze the noncommuting case outlined in Sec. II B 4.
From Fig. 7, we see that the sample mean fidelities align
closely with the predictions derived in (10). These fidelities
indeed exhibit the expected oscillating behavior induced by
the noncommuting Hamiltonian, cycling through areas where
the state is susceptible to noise. The agreement with Monte
Carlo simulations for long-time behavior can be attributed to
the stochastic Magnus expansion-type approximation.

Furthermore, when C; = 1, signifying the initial state as
an eigenstate of the Hamiltonian, the fidelity decreases expo-
nentially with a rate —2y 2 since it does not cycle in and out of
the noise susceptibility region. On the other hand, for C; = 1
or C; = 1, the state oscillates between susceptibility and im-
munity to noise, leading to a slower exponential decrease in
fidelity with an average rate of —y2, half of the previous sce-
nario. Also note the distinction between C, = 1 and C3 = 1
from the inset of Fig. 7: While C, = 1 corresponds to an
initial state that is immune to noise—it is an eigenstate of the
noise operator—C; = 1 renders it highly susceptible, causing
an immediate fidelity drop, following the C; = 1 curve until
the Hamiltonian’s rotational effect sets in.

4. Multiqubit

Last, we investigate a two-qubit system subjected to the
noise operator S =X ® I +1 ® X. We examine both the
product initial state ¢y = |00) (which could also be treated
as the product of the distributions of the individual qubits, cf.
Appendix D) and the maximally entangled |GHZ) state [67]
given by ¢y = |GHZ) = (|00) + 111))/4/2. As depicted in
Fig. 8, our distribution method matches the Monte Carlo simu-
lation results. Interestingly, we observe that both the coupling
and the colored noise tend to favor higher fidelities, surpassing
the value of 0.25, which would be the case for an uncoupled
system. The ability of a coupled system to reach higher fi-
delities under colored noise, previously analyzed in Ref. [68],
conforms to our observations.

(a) 1.00 1 m— Sample Mean: ¢ = |00)
— Sample Mean: ¢o = GHZ
0.95 == == Analytic Mean: ¢ =|00)
- == == Analytic Mean: ¢o = GHZ
= 0.901
<
T
0.85 1
0.80 1
0 2 4 6 8 10 12
t[s]
(b) 1.01
. = Sample Mean: ¢ =|00)
—— Sample Mean: ¢o = GHZ
0.91 == == Analytic Mean: ¢o = |00)
= 081 == == Analytic Mean: ¢o = GHZ
g 0.7 1
[
0.6 1
0.5 1
0 5 10 15 20 25 30
t[s]

FIG. 8. Two-qubit: Fidelity expectations for a two-qubit system
withS§ =X ® I +1 ® X, y = 0.2 and stationary initial data. (a) k =
0.3 and (b) k = 0.01. The sample and analytic means for |00) and
|GHZ) initial state, as calculated in (11). Computed with 500 Monte
Carlo samples.

Furthermore, we observe different results for product ini-
tial state and the entangled |GHZ) state. This behavior can
be explained if we write the initial state in the eigenbasis of
the noise operator S. For k > 1, the sensitivity to noise is
predominantly determined by the eigenvalues corresponding
to the eigenvector components of the initial state. For k « 1,
the noise approaches a Haar random measure on the accessible
state space, which is determined by the number of nonzero
eigenvectors in the initial state.

5. Feedback process

We examine the FB processes based on the expression
of the fidelity in (13). Figure 9 illustrates the remarkable
agreement between analytical and Monte Carlo fidelities. We
see that for a commuting noise operator with OU noise,
employing a mitigation process involving a PI controller
with up = 1 and p; = 0 proves to be highly effective. This
efficacy is consistent with the logical reasoning that both the
drive and the noise propel the state in the same direction.
Therefore, this specific FB process tries to restore the state
to its original position, mitigating the effects of noise. A PI
controller with 1, = 0 and p; = 0.25 also mitigates the noise
up to a certain duration but eventually leads to deteriorating
fidelities.
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0.92 1
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0.90+

s Sample
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e T=0.5up=1,4=0

0.86{ = T= 1.5, up=0,4=0.25

=== No Feedback
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FIG. 9. Feedback process: Fidelity expectations for a one-qubit
system with S = X, y = 0.2, k = 0.1 and stationary initial data. The
sample and analytic means for |0) initial state with different feedback

parameters, as calculated in (13). Computed with 500 Monte Carlo
samples.

III. DISCUSSION

This work presents a novel approach to characterize the
full distribution of qubit fidelity under SSEs, offering richer
insights compared to the traditional Lindblad equation. Our
methodology not only aids in noise characterization but also
holds promise for addressing optimal control challenges. Fur-
thermore, our work predicts large-time fidelity behaviors for
qubits evolving under realistic noise sources, such as OU
noise stemming from fluctuation-dissipation processes. This
large-time behavior is especially important in controlled pro-
cesses, where one seeks to maintain a state faithfully for
long periods. In addition, the computational efficiency and
accuracy of our methods surpass conventional Monte Carlo
techniques for SSEs, offering a compelling advantage. By
accurately assessing noise levels in qubit control systems,
such as those involving laser drivers or cavity resonators, our
findings establish a robust benchmark for noise tolerance in
such systems.

In future research, our aim is to broaden the scope of our
investigations to include noises with arbitrary power spectral
densities or even of a quantum nature. This will allow for a
straightforward fidelity characterization of a quantum com-
puting system based on measured noise profiles. Analysis on
the power spectral densities might also allow for a characteri-
zation of the non-Markovianity of the noise, possibly leading
to generic noise mitigation techniques. Furthermore, experi-
mental validation of our models is imminent, with plans to
introduce controlled noise signals for fidelity measurements,
by introducing predefined exaggerated noise as a control sig-
nal to drown out existing signal noise. Fidelity distributions
can then be measured through repeated measurements under
the same noise realization. Last, we anticipate using SSEs for
optimal noise mitigation in open quantum systems, a frontier
that remains largely unexplored for master equations. Our
envisioned contributions hold promise for advancing both the-
oretical understanding and practical applications in quantum
computing and control.
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APPENDIX A: FORMAL DERIVATION
OF THE STOCHASTIC SCHRODINGER EQUATION

One way of introducing noise into the Schrodinger equa-
tion, as described in Refs. [2,37], is to formally consider

dy = —iHy dX,,

where X; is a continuous noise profile. On the other hand, one
expects the corresponding unitary propagator to take the form

U(t) = exp (—iH (X, — X0))-

They indeed coincide whenever X; is a cddldg adapted process
with locally finite variation. However, this is not the case
for general semimartingales like the Ornstein-Uhlenbeck and
white noise processes. Indeed, applying It6’s formula to the
unitary propagator yields

dU(t) = —iHU (t)dX, — $H*U (1) d[X],,

which clearly deviates from the standard Schrodinger equa-
tion, thus motivating the stochastic Schrodinger equation.

In this section, we follow the derivation of the SSE as de-
scribed in Ref. [28]. Consider an OU process X; and operators
C, D, and R on the Hilbert space. The standard Schrédinger
equation with noise is given by

dyr = (C + DX,y dt + Ry dX,.
Using dX; = —kX; + ydW,, this can be rewritten as
dy = (C+ XD — kXR)y dt 4+ y Ry dW,.

For normalization, d|y|> = (dy ")y + v (dy) + (dyh)
(dyr) = 0 is required at all times. Expanding this using Ito
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calculus (dt? = 0, dW,dr = 0, th2 = dr) [39] gives
dly|? = ¢ [CT +C + X,(D' + D — kR — kR")
+ ¥2R'RY di + yy T (RT + R)y dW, = 0.

Thus, C' +C+R'R=0,D" +D — kR — kR" = 0 and R" +
R = 0. One can choose R = iS with § = S Hermitian. Fur-
thermore, C = —iH — 3S'S = —iH — 1SS, with H = H'
and D = 0 to finally get the SSE for an OU process:

OU: dy = —iHy dt + ikX,Sy dt

)/2
- 7S"'w dt — iy Sy dW,.

Letting kK — 0 results in the SSE for the WN process as

2
WN: dy = —iHydr — %S*w dr — iy Sy dw,.

Note that Ito calculus holds for any semimartingale [39] and,
thus, for general semimartingale noise, we can write

SM: dy = —iHy dt — 1SSy d[X], — iSy dX,,

where [X]; is the quadratic variation of the process [40].
If TS =1, then the above equation exactly corresponds to
a stochastic Hamiltonian approach where the result is nor-
malized after every iteration step of the numerical scheme.
However, if STS % I, then only the SSE approach leads to
the physically correct way of normalization. By defining p =
E[y ] and noting that E[dW,] =0

dyy't = —ilH, yy'1de + Syy'st — st gy dix,
—i[S, yy1dX

= 3p = —ilH, p] +y*(Sp'S" = 3{S"S, p})
— S, E[yy" dX]1,

which for white noise reduces to the Lindblad equation since
E[y ¢ dX,] = E[y ¢ dW,] = E[¢ ¢ JE[dW;] = 0. Note that

J

for general noise, there is no independence of the state and
the noise increments (i.e., E[v ¥ dX;] # E[dX,]p), and we
do not get the standard Lindblad equation. It is, however, still
possible to find an approximate closed-form non-Markovian
master equation using the Nakajima-Zwanzig method [45].

APPENDIX B: APPROXIMATION USING ITO’S ISOMETRY

We detail the approximation method for terms of the form
]E[XfV] as described in Sec. II B 1. The integral solution of
the OU process [70] can be written as

t
X, = / y AW,
0

By positivity of V

- )
E[X*V]=E ( / yek“—”dm) v]
0
- ,
=E ( / y«/Ve’““)dWS) ]
0

If V were to be adapted to the natural filtration of the white
noise process W;, then Ito’s isometry [65] can be used to write

1
]E[XfV] — ]E[/ yzveZk(Sf)dt]
0

2
- ;—ka — e X)E[V] = E[X2]E[V].
However, V could, for instance, be the fidelity at time ¢,
which depends on the white noise process over the interval
[0, ¢]. Therefore, 1t6’s isometry does not hold. Nevertheless,
for small values of 7, the values of V are roughly equal to their
respective initial values, and Itd’s isometry can be used as an
approximation.

APPENDIX C: MOMENT CALCULATION

For the expectation and variance of the fidelity distributions, the expressions for the expectations of the terms cos(x(X; — Xp))
for o > 0 must be calculated [note that for the square terms cos(x)> = (cos(2x) + 1) /2]. To do so, the cosines are expanded into
their power series representation, and both linearity and conditional expectations are used to get

oo

Efcos(@(X, — Xo))] = )

n=0

The OU process, by Ito’s formula [65], can be shown to satisfy

dX" = —nkXdt + nyX""'dW, + 1(n* — n)y’ X/ ?dt,

dw! = 1w/~ 'aw, + 1% — W,/ 2dt,

="

o™E[E[(X, — Xo)*"Xo]]. (C1)

1. Calibrated initial data X, = 0

For calibrated initial data (e.g., Xy = 0), it is easily proven by induction that

E[E[(X, — X0)*"Xo1] = E[X*"] =

X"(0)~ Xy, VneN.
w!()~w,, VleN. (C2)
T(n+3) (2y° "
Lot s) (22 sinh(kt) | . (C3)
JT k
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where T is the gamma function. Resulting from Eq. (C1) in

2
E[cos(x(X; — Xo))] —exp< o Z—ke sinh(kt)).

2. Stationary initial data X, ~ yN'/+/2k
For stationary initial data, a slightly more involved approach is necessary. Employing the binomial theorem, one obtains

2n

2
E[(X, — X0)™" X0l = ) (D(—l)“"’X&”"’E[X,"’!Xo]. (C4)

m=0

From the differential equations in Eq. (C2)
dE[X/"|Xo] = —mkE[X"|Xo]dt + 2(m* — m)y*E[X"~*|Xo]dt,

with initial conditions E[X°|Xo] = 1, E[X,!|Xo] = Xoe ™. This can be shown to have the solution

w

e Wk (f)™w Z all, wl(e* — l)w_lyz(w_l)leOZI with w = % for m even,
E[x7]x] = 0 m1 ©
e~ QUK gy~ Z b1, w](e* — 1)~y DRI with w = for m odd,
1=0
with the coefficients
q2q—1) / (1 +Q)(3+24)
l =2! , =2 .
all, w] := ql;[rl 7 w] = l—[ 1)

For verification, the expressions for E[th’”] in the case of calibrated initial data [Eq. (C3)] are retrieved when taking Xy = 0.
Using conditional expectation on Eq. (C4) gives

2n

2n
E[E[X, — X0)*' Xl = ) <m)(—1)2””’E[onn’"E[X,m|Xo]]. (C6)
m=0
Furthermore, the normal distribution of Xj gives
2)g — 1, even
g — | () @Dt (o)
0, g¢godd.

Combining Eq. (C5) and Eq. (C7), and filling into Eq. (C6) gives

2 n
E[E[(X, — X0)™Xol] = (2n — 1)!!(%""@’“ - 1)) :

which, when used in Eq. (C1), results in

2
Elcos(@(X; — Xo))] = exp <—a2;—ke_k' (e — 1)).

3. Feedback process
We assume a semimartingale feedback process Y; as

dX;, t<t*,

dy, =
dX; — wpdXi_+ — Xy _pedt, t2>1t*
and want to determine E[cos(Y; — ¥;)]. For OU noise, we can rewrite this as

dX;, t<t*,

dY[ = s
dX; —adX;  — AW, t 21"
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with o« = —(upk — uy)/k and B = (upk — py)y /k — wp. We now calculate expressions as

Elcos2(X; + aX; ¢ + W, ] =) CU S 2BEIX, + X, + AW K]l
s 2n!
2n .
EL(X, + X« + BWi—0)”"1Xol = Y E[E[(@X, - + BWi—)" VELX/ X, 11 X]].
j=0

The expectations IE[X,j |X;_.] are given by Eq. (C7). Expanding the term (o X;_, + BW,_. )2n=J it becomes obvious we will need
terms of the form Z,; := E[X"W!|X,]. Using Eq. (C2) gives

dZ) = —nkZy; + 3(0* — )y Zyzy + 3P = DZpi—z + nly Zy_y -1,
which can be solved iteratively. In total

1 n
E[(Xt + (‘YXZ—‘[ + ,B‘/Vt—t)znlx()] — (_§> (Zn _ 1)!!k7nefkn(21+f)(y2€k‘[ + a2(y263kt _ yzek(2t+‘[))

+ a(2y282kt + ﬁ(4yek(l‘+2‘[) _ 4yek(2l+‘[)) _ 2)/2621([) _ 2,32k(t _ T)ek(2l+‘[)
+ /3(4yek(l+r) _ 4'}/62kt) _ yzek(2t+f))n.

This finally results in

v 2% 2y? 2 27’ 2
E[cos(X; + aX;—. + BW,_0)|Xo] = exp ( - 7(1 —e ) — aTe_kt(l —e Ty g ?(1 — 72kt
4 4
- aﬂ—lz/ (1 — ek _ ﬂ—]z/ e (1 — K=y _ g2 — r)).

APPENDIX D: MULTIQUBIT NOISE

This section proves a result regarding the factoring of fidelity distributions of n-qubit systems, which have a product initial
state and evolve under the same noise source.

Lemma D1 (Factoring fidelity for pure states). Let the state ¥, of a n-qubit system evolve according to
n
AWy = —iHyPdt — 3S2YwdIX) — iSipwdXe.  Yiu(©0) = X) ¥jo.
j=1
where the Hamiltonian H, and the noise operator S, take the sum form

n
Hyo=Y A;, A;=I18"V@A @), A =4
j=1

n
Sy = ZQJ', Q;=1°V"YRQ0,I®" ), (= Q~jT'
j=1

Let ¢, be the noiseless target state. Then

n

|¢Zn)¢(n)|2 = 1_[ |¢]T-Wj|2,
j=1
where /; is a one-qubit state evolving according to the SSE

Ay = —ik;y;dt — 3059, dIX], — i dX,,  ¥(0) = v,

and ¢; is its corresponding noiseless target state.
Proof. Squaring S, we find

Sﬁ — Z Q? + Z Zij’ ij — 190U-D ® Qj ®I®(k*j*1) ® Qk ®I®(n*k)_

j=1 Jj=1 k#j

By induction we prove the ¥(,) = ®;= e
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This holds trivially for n = 1. Now, assume that the statement holds for n. Then for n + 1, we use 1td’s formula to obtain

n+1 n+l1 n+1 1 n+1
4@ vy = =it @)Y dr = St Q5 X, = 581 Q) vy X
j=l1 j=l1 j=1 j=l1
As we have equal initial conditions, we indeed find V¥, +1) = ®7Z} Y foralln € N.

Analogously, we find ¢(,) = ®;=1 ¢;. For the fidelity, we then deduce

B Yinl® = di W ¥indm = | Qo Qv || Qv R ¢ | =]]16iviI
j=1 j=1 j=1

Jj=1 j=1

Note that these results do not only hold for qubits but for any finite ensemble of finite dimensional quantum systems.

APPENDIX E: STOCHASTIC INTEGRATION

Numerical verification of the analytic results is performed using stochastic integration. To solve for the noise and state
simultaneously, we define Y := (v, X). For the OU process, this gives the differential equation

i ; _rgi —iyS | 0
dY = a(Y)dr + b(Y)dW,, a(Y):( ’H+’k§TS 758 I 0k>Y, b(Y)=< o 1>Y-
- X

These equations can be solved discretely over time steps At using a numerical integration scheme. One possible scheme is the
explicit (weak) first-order Euler-Maruyama scheme [71] as

Yn+l = Yn + a(Yn)A[ + b(Yn)NV At,
where A is a standard normal distribution. Throughout this work, convergence issues persisted using stochastic integration
schemes for OU noise at higher evolution times, likely due to the non-Lipschitz 1/X dependence [61] and possibly the non-
Euclidean space in which the states live. These convergence issues are absent for white noise and always occur below fidelities
of F = 0.95, which is not a relevant regime for pragmatic quantum computing and, therefore, is not a deliberating issue. We

have found that these issues are mitigated (but not resolved) when using a higher-order scheme such as the explicit (weak)
second-order scheme due to Platen [60,61], which is used throughout this work. This scheme is given by

Yot = Yo+ 3@(T) +a(Y,)At + 2B(Y) + b(T7) + 26(Y, DN VAL + LB(TT) — BT )HN? — DV/AL,
with supporting values T = Y,, + a(Y,)At 4+ b(Y, )N VAt and Y+ =Y, 4+ a(Y,) At £ b(Y,)V/At.

APPENDIX F: SECOND-ORDER PAULI APPROXIMATION

For the second-order results as in Fig. 3, the closed system for the vector V
V=1[¢"y 1% 1o"SYI% X ()@ Sy o — dTyy'Se), X2l v 2, X2()lg Sy 1, X3 () (@ Sy o — ¢ Ty TSe)l,

is found to be

—y? y? ik 0 0 0 M1
y? —y? —ik 0 0 0 3(2)
. —2iy? 2iy?  —(k+2y?) 2ik —2ik 0 0
V=12 0 -2y —k+1?) y? ik |V VO=1, 1
0 Y2 2iy? y? —(2k + y?) —ik 0
0 0 2y? 2I(KE[X?] —2y2) —28(kE[X?] —2y%) —QGk+2y?) | 0 |

with g = ¢(§ S¢o. This system is solved numerically to retrieve the expectation of the fidelity.
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APPENDIX G: NONCOMMUTING HAMILTONIANS

For the noncommuting system we consider H = «aoy, S = 0y, giving [H, S] = 2iaos, where {0, 02, 03} can be any cyclic
permutation of {ox, oy, 07}. The group structure of the Pauli matrices allows us to close the system of SDEs for the vector

F
lpfory|?
lpToryr|?
lpTosyr|?
i@ o yyie — ¢ yyiog)
i@ ooy y'e — o'y yiog)
i(@o3yyTo — o'y yTop)
' oyyiog +dloyyiog
¢ oo +dloyyion
| ¢ o3y Torg + ¢ oy Tasg |
We find that the matrix A splits in a commutator part A. and a noise part B, resulting in the system

dV = aAVdi + 3¥*B*V dr + BV dX,,

with
[0 0 0 0 0 0O O 0 O 0] [0 O O 0 0 -1 0 O 0 0]
0O 0o 0 0o 0o o0 0 0 O 0 0 0 0O 0 O 0O 0 O 1 0
o 00 0 00 O O 0 =2 0 0 0O 0 O 1 0 O 0 0
0O 0o 0 0o o0 0 0 O 2 0 0 0O 0 O O 0 0 -1 o0
A — 0O 0o 0 0o o0 0 0 O 0 B 0 0 0O 0 O 0O 1 -1 o0 0
c~”10 0 0O 0 0 0 -2 0 O 0| ~12 0 -2 0 O 0O 0 O 0 0
O 00 0 0 2 0 0 O 0 0 0 O 0 -1 0 0 O 0o -1
O 00 0O o0 O 0O o0 -2 0 0 0 0O 0 1 0O 0 O 0 1
O 0 0 0 0 0O 0 2 0 0 o -2 0 2 0 0O 0 O 0 0
|0 0 4 -4 0 0 0 0 O 0 | 10 0 0O 0 O O 1 -1 o0 0 |

Solving this system as in Sec. II B 1 is not possible since [A., B] # 0. However, a perturbation technique can be used when
the Hamiltonian strength is much larger than the noise, i.e., 32 := y?/a < 1, which holds for many realistic systems. Rescaling
time7 = ¢ /o, we obtain a rescaled system of equations for V =V, and X =X, 4,

dV = ANV + 128V d7 + BV dX,,
where X has the quadratic variation [)? = &1,

In the following, we assume without loss of generality that « = 1 and y? <« 1. Otherwise, we simply rescale time as above

and write V instead of V. Setting U := exp(—A.t)V to get

dU = 1y*D*(1)U dr + D(1)U dX,, @
with
D(t) = exp(—Act)B exp(Act) = cos(21)B — 5 sin(21)[Ac, B,

where the second equality can be established according to a generalized harmonic oscillator [72]. Although (G1) cannot be
solved explicitly, an approximation to its solution can be found via the stochastic Magnus expansion [58], which states that

U =exp(L) = exp Z y2norLen=n |

n,r

where L""~") are the expansion terms up to order ¥ in L. For general processes, we find

U, =exp ( / D(s)dX; + 0(y3>>,
0

which, for WN, gives
v
E[U,] = exp <7/ Dz(s)ds>.
0
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For the fidelity under white noise, we then obtain the approximation

Fi=E[U]~ !+ 1Cle " 4 Lo (sinh(u)((C3 — C3) cos(2ar) — 2C,C; sin(2ar)) + (C3 + C3) cosh(u)).

with u = y?sin(2at)/2a. For the OU process with k > 0, the exponential cannot be expressed analytically. Instead, one could
approximate it by expanding the exponential up to the second order to find

)/2 t ]/2 t K , ]/2 t s ,
E[U]~T+ = / D*(s)ds — =k / {e—kSD(s), / ks D(s’)ds’}ds+—k f {e_ZkSD(s), / o7k D(s’)ds’}ds.
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