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Time heterogeneity of the Förster radius from dipole orientational dynamics impacts
single-molecule Förster resonance energy transfer experiments
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Förster resonance energy transfer (FRET) is a quantum mechanical process governing the nonradiative
energy transfer between coupled electric dipoles. Its strong distance dependence makes it a widely used
as a “molecular ruler” in biology, chemistry, and physics. In single-molecule FRET (smFRET) experiments
employing time-resolved confocal microscopy, deviations from the theoretical Förster relationship between
FRET efficiency and donor fluorescence lifetime—termed dynamic shifts—provide insight into underlying
molecular conformational dynamics. A key challenge in interpreting these shifts is disentangling contributions
from the intrinsic motion of the fluorescent dyes from those of the biomolecular system under study. We present
a novel theoretical framework based on Langevin dynamics to model the stochastic translational and rotational
motion of dye linkers, incorporating first-principles physics and chemical constraints consistent with molecular
dynamics simulations. Our results demonstrate that the dominant factor influencing dynamic shifts in smFRET
is the relative orientational fluctuations of the dyes’ electric dipole moments, rather than their accessible spatial
volumes. These findings refine the theoretical foundations of FRET and provide the most precise estimates of
FRET efficiency to date, enhancing its utility as a molecular-scale probe of dynamic processes.
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I. INTRODUCTION

Förster resonance energy transfer (FRET) is a widely used
spectroscopic technique in biophysics and structural biology
for probing molecular distances and conformational states
at the nanometer scale [1–7]. FRET occurs through non-
radiative energy transfer between a donor and an acceptor
fluorophore, facilitated by electric dipole coupling. The effi-
ciency of this transfer depends strongly on the donor-acceptor
distance, scaling with the inverse sixth power of separation,
as well as on dipole orientation and other time-independent
factors [1,5,8–10]. This distance dependence enables FRET
to function as a “molecular ruler” [3,11]. However, direct in-
terpretation of FRET-derived distances in terms of molecular
structure is nontrivial due to various complicating factors,
including fluorophore mobility, dynamic heterogeneity, and
dye-specific effects [8,12–15]. While single-molecule FRET
(smFRET) has become a key tool for resolving biomolecular
conformational dynamics [11,16–34], precise understand-
ing of FRET measurements is critical for applications such
as biosensor development, signal transduction studies, and
fluorescence-based drug discovery [35,36].
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FRET can be analyzed via steady-state photon count-
ing or time-resolved fluorescence measurements [37]. We
and others have previously shown that the joint distribu-
tion of FRET efficiency and donor fluorescence lifetime
provides deeper insight into molecular dynamics beyond
what either quantity alone can reveal [31,38,39]. In partic-
ular, deviations from the ideal Förster relationship—termed
“dynamic shifts” [38]—can encode structural fluctuations
of biomolecules, with multiple studies illustrating how
dynamic shifts refine our understanding of biomolecular
conformational landscapes [21,30–32,40,41]. However, an in-
herent challenge in smFRET experiments is that the donor
and acceptor fluorophores are not rigidly fixed; rather,
they undergo thermally driven stochastic motion. These
fluctuations modulate the joint FRET-lifetime distribution
[39,42], making it essential to quantitatively account for
their effects [23,43–46]. Without a comprehensive model
for these fluctuations, FRET-derived molecular distances
and conformational dynamics remain subject to uncertainty
[47,48].

Existing theoretical models of dye motion introduce
substantial uncertainties in FRET-based distance measure-
ments [39,42]. Current approaches range from oversimplified
isotropic models [49] to computationally expensive all-atom
molecular dynamics (MD) simulations [20,48,50,51]. While
MD simulations are often used to estimate the accessible
volume of dyes and provide uncertainty quantification for
FRET-lifetime distributions [32,48,52,53], they suffer from
practical limitations: typical simulations do not capture the
full temporal sampling relevant to smFRET experiments [48],
and equilibrium-based approaches neglect time-dependent
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heterogeneity in dye motion. Consequently, the full range of
dye dynamics remains unresolved.

In this work, we develop a semianalytical model of fluo-
rescent dye motion to address three key questions. (1) Can an
isotropic Gaussian process adequately describe dye motion?
(2) How does linker length influence FRET measurements?
(3) What is the role of dipole orientational dynamics in
FRET efficiency fluctuations? Using simulated smFRET ex-
periments, we show that the conventional assumption that
dynamic shifts arise solely from dye translational motion
[31,38] is incomplete. Instead, we demonstrate that dynamic
shifts depend on the full-state dynamics of the dyes, encom-
passing both translational and rotational degrees of freedom.
This finding has critical implications for reducing uncer-
tainties in FRET-based molecular distance estimates and
resolving biomolecular conformational dynamics. By lever-
aging dynamic shift signatures, our framework enables the
decoupling of dye-specific motion from the intrinsic dynamics
of the biomolecular system under study, advancing the preci-
sion and interpretability of smFRET experiments.

A. Time-resolved confocal smFRET

Time-resolved confocal smFRET experiments provide a
powerful tool for probing molecular structure and dynamics
at the nanometer scale. By attaching fluorescent donor and
acceptor dyes to a molecule of interest, exciting the donor,
and measuring the resulting fluorescence emission, one can
estimate the FRET efficiency and, in turn, infer molecular
distances.

FRET efficiency estimation is typically performed using
two complementary approaches: intensity-based FRET and
lifetime-based FRET [5,54]. Both methods are applicable
in time-resolved confocal smFRET experiments, and under-
standing their interrelationship is a central focus of this work.

In a typical experiment, the sample is diluted such that, on
average, fewer than one molecule of interest resides within the
confocal volume of the microscope at any given time [5,54].
As molecules freely diffuse through the confocal volume,
donor fluorophores undergo repeated excitation cycles, and
the emitted fluorescence is recorded. The transient residence
of a molecule within the confocal volume results in a burst —a
rapid sequence of detected photons, referred to as the burst
time. By analyzing the histogram of the time delay between
laser excitation and photon detection, one obtains a lifetime
measurement, which reflects how long the donor remains in
the excited state before returning to the ground state via fluo-
rescence, FRET, or other relaxation pathways [54].

Each burst contributes a statistical sample of photon arrival
times and fluorescence lifetimes, enabling the construction of
the joint FRET-lifetime distribution. During a burst, the donor
molecule undergoes repeated excitation cycles, where each
cycle—termed an excitation event—results in either direct flu-
orescence emission, energy transfer via FRET, or nonradiative
relaxation. Importantly, a single burst yields multiple photons,
each contributing to the overall FRET-lifetime distribution,
whereas an individual excitation event provides information
about the spectral window of detection and decay time of the
detected photon.

By systematically analyzing these bursts and their as-
sociated excitation events, one can disentangle molecular
conformational dynamics from the stochastic fluctuations
inherent in smFRET measurements. This study aims to eluci-
date the interplay between intensity-based and lifetime-based
FRET, refining the theoretical framework for interpreting
time-resolved smFRET experiments.

B. FRET model

Consider two completely static dyes with normalized
dipole moments μ̂A ∈ S2 and μ̂D ∈ S2 for the acceptor and
donor, respectively. Further, let the interdye displacement vec-
tor be r ∈ R3 and magnitude r = ‖r‖. The energy transfer rate
is defined in Eq. (1),

kET(r) = kD

(
R0

r

)6

, (1)

where kD is the radiative decay rate for the donor dye, and
R0 is the distance at which the energy transfer efficiency is
0.5 [2,5,17,46]. Note that the energy transfer rate increases
steeply as the distance decreases and inversely as the distance
increases. However, no matter the distance, no energy transfer
can happen if μ̂D, μ̂A, and r̂ are mutually orthogonal [55,56].
The Förster radius can be written as R6

0(t ) = Cκ2(t ) where C
is a constant depending on the environment surrounding the
dye. The parameter κ2(t ) is the dipole orientational factor

κ2(t ) = [μ̂D(t ) · μ̂A(t )) − 3(r̂ · μ̂D(t ))(r̂ · μ̂A(t )]2 (2)

with r̂ = r
‖r‖ [57]. Since the dipole moments are known to

reorient on timescales faster than the energy exchange rate
[56,58], kappa square (κ2(t )) is treated as time-dependent.
This is in contrast to previous models wherein the dipole
moment is chosen from the equilibrium distribution of the
rotational diffusion [46,59,60]. In this model, the initial dis-
tribution of the dipoles is chosen according to the equilibrium
distribution, but rotational processes evolve during the energy
transfer. This is vital because the FRET efficiency cannot be
evaluated in terms of an evaluation of the energy transfer rate
at a specific time but rather as dependent on the history of
the κ2 process using the fact that the transfer times at a time
T > 0 of a nonhomogeneous CTMC are exponential with rate∫ T

0 k(s)ds [61–64] therefore the FRET efficiency at time T is
given by

E (T ) =
∫ T

0 kET(s)ds∫ T
0 kET(s)ds + kDT

. (3)

In this way, the FRET efficiency process, E (t ), is non-
Markovian. It is important to note that each excitation event’s
fluorescence process will still be Markovian. As noted in
[59], the interarrival time for the photon count process need
not be exponentially distributed [65]. Therefore the photon
arrival process cannot be seen as a time-homogeneous Pois-
son process in contrast to previous common assumptions
[4,23,66–68]. Depending on the rate at which the dyes reori-
ent, each vector may be treated as uniformly distributed on the
unit sphere or a cone [59]. In this case, the average value of κ2

is given by 2
3 [1]. This is referred to as the dynamic averaging

regime [56,57,59].
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FIG. 1. Representation of FRET by CTMC. Comparison of the
CTMC states with the Jablonski diagram for the FRET process.

Using the fact that exponential random variables can well
model fluorescence times [37] and accounting for the time
dependence of the Förster radius on κ2 the energy trans-
fer process in FRET is modeled as a time-inhomogeneous
continuous-time Markov chain (CTMC) [62,63], illustrated in
Fig. 1, with the rate matrix defined in (4):

Q(t ) =

⎛
⎜⎜⎝

−(kD + kET(t )) kET(t ) kD 0
0 −kA 0 kA

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, (4)

where kD is the donor fluorescence rate, kA is the acceptor
fluorescence rate, kET is the FRET energy transfer rate. The
state space is defined as S = {D, A, FD, FA}, where D is the
donor position, A is the acceptor position, FD is the donor
fluorescence, and FA is the acceptor fluorescence.

Note that if r = 0, the CTMC is reduced to a two-state
system transitioning between states A and FA with rate kA.

Assuming the dynamic averaging regime, one may eas-
ily derive the common time-homogeneous FRET efficiency.
Observation of an acceptor photon only occurs when energy
transfer occurs, i.e., if we have a transition from D → A. Let
τD and τET be the transfer times of D → FD and D → A,
respectively. Then using Eq. (3) one obtains

E (t ) = P (min(τD, τET) = τET)

=
∫ t

0 kET(t )∫ t
0 kET(t ) + kDt

= kD
(R0

r

)
t

kD
(R0

r

)
t + kDt

= 1(
r

R0

)6 + 1
.

Therefore the theoretical time-homogeneous FRET effi-
ciency is given by

E = 1(
r

R0

)6 + 1
. (5)

One may approximate this value using two methods: intensity-
based FRET and lifetime-based FRET [46,54]. For intensity-
based FRET, the measurements are counts of observed
photons from each dye. Effectively, the experiment measures
the probability of success of a binomial random variable with

a probability of success p given by the FRET efficiency, E .
The best estimator in the absence of experimental corrections
is given by the number of successes observed divided by the
total number of trials, denoted in Eq. (6) [32,46,69–71];

EI = IA

IA + ID
. (6)

For lifetime-based FRET, consider

E + P(min(τD, τET) = τD) = 1.

Noting that since P(τD > t | min(τD, τET) = τD) ∼ exp(kD +
kET) [63], the FRET efficiency can be calculated in terms of
the lifetimes,

E = 1 − τ ′
D

τD
, (7)

where τ ′
D = (kD + kET)−1 is the lifetime of the donor in the

presence of the acceptor, and τD = k−1
D is the lifetime in the

absence of the acceptor. Hence, the measurements are ob-
served lifetimes and an estimate for the mean lifetime of the
donor, τD. The FRET efficiency is estimated by approximating
the mean, and hence the rate, of this exponential random
variable [54].

C. Dynamic shift

Consider a sample drawn from a population with a distri-
bution of fluorescence rates K (x) such that the probability of
an individual having a specific rate is given by the distribution
π (x). Then the average lifetime is

τ = E[τ ] =
∫
R
E[τ |K (x)]dπ (x) =

∫
R

1

K (x)
dπ (x). (8)

However, the lifetime resulting from the average rate is given
by

τ = 1

E[K (x)]
= 1∫

R K (x)dπ (x)
. (9)

Therefore, by Jensen’s inequality [72], using the fact that
φ(x) = 1

x is convex for x ∈ [0,∞), it must be that

τ = 1

E[K (x)]
� E

[
1

K (x)

]
= τ . (10)

Consequently, the average lifetime for a mixture of states
will be greater than that of the associated average state. This
phenomenon is known as the dynamic shift.

We introduce a new quantitative definition of the dynamic
shift � for a point (E ′, τ ′) in the plane, given by the signed
distance from the point to the static line, S = {(E, τ ) : E =
1 − τ } as shown in Fig. 2.

One can find an expression for the dynamic shift using
standard analytic geometry. The formula in the normalized
lifetime case, τD(A)

τD(0)
= τ , is given by

�(E, τ ) = E + τ − 1√
E2 + τ 2

. (11)

The definition of the dynamic shift becomes the signed length
of the orthogonal projection of the point onto the static line—
how much it deviates from the static line. Under the constraint
that the FRET—lifetime pair resides within the unit square,
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FIG. 2. Visualization of the definition of the dynamic shift us-
ing normalized values: S = {(E, τ ) ∈ (0, 1)2 : E + τ − 1 = 0} in the
bottom. The top figure is a visualization of the moment difference
dynamic shift. For the moment difference we used Eτ = 1 − τD(A)

τD(0)
.

this implies that the dynamic shift has extreme values at
± 1√

2
at (1,1) and (0,0). This definition provides a means by

which each data point from a smFRET experiment may be
assigned a dynamic shift value, and the resulting distribution
may be examined. The average dynamic shift can be seen
as an average deviation from the static line. With two state
transitions, this definition agrees with the definition present in
Ref. [38]. Furthermore, when the average dynamic shift is 0,
one may use the dynamic shift distribution to quantify shot
noise inherent in the measurements.

Another way to view the dynamic shift introduced in
Ref. [38] is the moment difference approach. In this method,
one investigates the behavior of the difference between the
first and second moments of the FRET distribution, E[E (1 −
E )] = E[τ (1 − τ )]. In this way, the effects of multiple states
are linearized, while the static line is nonlinear. In this case,
the dynamic shift can be seen as a consequence of Jensen’s
inequality but for concave functions. When dynamic mixing
is present in the sample, the moment difference should fall
below the static line of Eτ (1 − E ). Note that when this differ-
ence is negative, it implies that the covariance between Eτ and
E is larger than the average of E . This can occur from shot
noise or when the lifetime distribution has a large variance
but maintains the same mean. Conditions for this to occur
are discussed in Sec. III B. To define the dynamic shift from
the static moment difference line, one again takes the distance
from the point to the static line. The vector between the point
and the static line with a length equal to the moment difference

FIG. 3. Cartoon showing the coordinate references for the pro-
cesses. The translational process is expressed in both Cartesian and
polar coordinates with φt the azimuthal coordinate, θt the polar
coordinate, rt the radial coordinate, (xt , yt , zt ) standard Cartesian
coordinates, and μt the dipole orientational process.

dynamic shift will be orthogonal to the tangent line of the
static line at the point closest to the point.

The dynamic shift introduced in Ref. [38] considers an
underlying distribution dependent on two separate states.
Consider two FRET efficiency states denoted by Ei, i = 1, 2
with equal transition rate between the states λ for simplicity.
Such a two-state system provides valuable insight into the
nature of the dynamic shift. When two states are separated
on long time scales, λ 	 1, the dynamic shift is slight due
to the small amount of mixing during a burst or sample.
As the two states mix, corresponding to an increase in λ,
an arc forms between the static FRET-lifetime coordinates,
following (1 − E1 − E2)E − E1E2. As λ → ∞, this process
culminates in a point mass FRET-lifetime distribution with
a dynamic shift at the maximum of this arc. Therefore the
dynamic shift can be seen as a metric of the amount of
mixing between states. Two-state transition systems can be
used to understand the transition rates between stable states
in biomolecules conformational dynamics. For the current
purpose, it provides a convenient method for interpreting the
dynamic shift induced by the dyes. The dynamic shift will
most readily be present when there exists mixing of states
from a continuous state space. It will be shown in Sec. III that
the dynamic shift induced by dye dynamics can be viewed as
a consequence of the fluctuations in the energy transfer rate
during the FRET process. Under common circumstances, the
energy transfer rate can be approximated by a two-state sys-
tem corresponding to the modes of the distribution, essentially
leading to a quickly transitioning two-state system.

II. STOCHASTIC MODELS OF
FLUORESCENCE DYNAMICS

This section presents several models of stochastic fluores-
cence dynamics related to the smFRET dynamic shift and
associated molecular probes. In this way, estimation of the
mixture of states, π (x) as seen in Sec. I C, is accomplished.
Figure 3 shows the basic coordinate expression for the dye
motion.
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FIG. 4. Dye model trajectories and resulting FRET efficiency vs normalized mean fluorescence lifetime and moments difference for
[(a) and (b)] isotropic spring, [(c) and (d)] anisotropic spring, and [(e) and (f)] elastic pendulum, as described in Sec. II. [(g) and (h)] Sample
trajectory of a spherical Brownian motion on the unit sphere S2. Such processes are used to model the diffusion of the electric dipole moment.
Each of (b), (d), (f), and (h) shows the FRET efficiency vs normalized mean fluorescence lifetime, and the moments difference when the dipole
orientation for donor and acceptor is included in the FRET process. Each color in (a), (c), (e), and (g) is an individual burst trajectory. Each
case simulates 25 000 trajectories over 7 hours. The values in (b), (d), (f), and (h) correspond to each simulated state.

Throughout, the dynamics are assumed to evolve on dif-
ferent timescales. Letting TP, TD, TO represent the timescales
of biomolecules dynamics, dye translational dynamics, and
dipole orientational dynamics. The order of timescale separa-
tion assumed in this work is given by TP 
 TD 
 TO. Further,
as in Refs. [13,17,59,73,74], it is assumed that the orientation
process and the translational process are independent pro-
cesses. Note that this is an extremely common assumption
since the independence of κ2 and r dynamics is implicitly
assumed whenever the average κ2 value is used and whenever
static κ2 distributions are employed [75]. Moreover, to provide
a clear and succinct picture of the influence of dye dynamics
on FRET measurements, the timescale TP is not considered in
the current discussion. However, an extension of this analysis
to include this timescale is in development.

A. Spring models

The simplest possible model to describe a stationary mean-
reverting process is an Ornstein-Uhlenbeck (OU) process
[76]. This physically represents an overdamped harmonic
oscillator subject to noise [77]. The OU process is a Gauss-
Markov process and, therefore, provides a simple model for
thermal fluctuations of the fluorescent dyes. The equation of
motion for the state vector X t ∈ R3 is given by the stochastic
differential equation,

dX t = K (X t − X eq )dt + σI ◦ dBt , (12)

where K = ki, j for i, j = 1, 2, 3 is a matrix of spring constants
and I is the identity matrix. The notation ◦dBt denotes the use
of Stratonovich integration [78], where Bt is Brownian mo-
tion. σ > 0 is the volatility of the random fluctuations that are
modeled as Brownian motions. We refer to systems such that
the spring matrices can be written in the form K = kI3×3, as
isotropic springs. Otherwise, the system is called anisotropic.

Both isotropic and anisotropic spring systems with a diag-
onal spring matrix are considered. The spring coefficients are
calculated using the linker chemistry. Utilizing the vibrational
frequency of a C–C bond, we find that the spring constant for a
single C–C bond is k = 1010 N/nm [79]. Therefore a system
of N � 1, C–C links is treated as a system of springs in series.
Therefore

1

keff
=

N∑
i=1

1

k
→ keff = k

N
.

Finally, to find the length of the linker, we investigate the equi-
librium bond length, L, in a C − C − C link. Using the law of
cosines, we find that 2L = √

2l2 − 2l2 cos θ with l being the
length of a C − C bond. Therefore the effective length in the
linker for each link can be calculated using l = 1.54 Å and
θ = 109.5◦.

In the isotropic case, illustrated in Fig. 4(a), the spring
matrix is given by keffI3×3. This provides a symmetric three-
dimensional Gaussian as the stationary distribution for the
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isotropic spring [76]. It can be seen in Refs. [77,80] that the
variance of this distribution will be given by 
 = σ

keff
I3×3.

In the anisotropic case, illustrated in Fig. 4(c), we use a di-
agonal spring matrix with two entries being pkeff and the third
being keff with p ∈ [0, 1]. Therefore the stationary distribution
is an ellipsoid with major axes determined by the entries of the
spring matrix. In this section, rotational dynamics have not yet
been considered; it will be covered in Sec. II C.

The two-dimensional dynamics in the anisotropic case can
be used to investigate the influence of the orientation of the
stationary distribution on the resulting dynamic shift. Such a
scenario is exemplified in the case when the planes formed
by the major axes of each stationary ellipse are mutually
orthogonal. Since the stationary distribution for the isotropic
case is a sphere and is perfectly symmetric, this can only arise
in the anisotropic case.

Furthermore, these models have the added benefit of hav-
ing an analytical expression for the interdye displacement,
especially in the isotropic case. Since the coordinates will
be Gaussian distributed the distance between them is simply
Rayleigh distributed [69]. This distribution is unimodal, and
therefore the only mixing present is due to the variance of
the stationary distributions. This mixing is therefore strongly
dependent on the flexibility of the dyes.

B. Elastic pendulum model

The next model for the dye linker dynamics takes a
stochastic geometric mechanics approach. Consider the mo-
tion of a rigid body attached to a spring that is free to move
in space. This system forms an elastic pendulum [81]. The
following system of Langevin equations per component de-
scribes the motion of a point mass elastic pendulum system
subject to white noise;

drt = −kr (rt − req ) + 1

rt
dt + σr ◦ dBr

t

dθt = −kθ sin (θt ) + σ 2
θ

r2
t tan θt

◦ dBθ
t

dφt = σφ

rt sin (θt )
◦ dBφ

t . (13)

Similar to Eq. (12), Bt is Brownian motion, σ > 0 is
the volatility of the random fluctuations that are mod-
eled as Brownian motions, and kr and kθ are the spring
constant for the different components. Note that each
superscript/subscript is indexed by each of the three compo-
nents (r, θ, φ) explained in the next sentences. Importantly,
the system is considered in spherical coordinates. The radial
dynamics, rt evolve according to the spring dynamics ex-
plained in Sec. II A, with slight alterations due to the change
of coordinates. The angular parts of the motion are given by
the standard nonlinear pendulum force in the polar direction
θt and free diffusion in the azimuthal direction φt . Figure 4(e)
shows a sample dye trajectory.

The flexibility in the angular components is reminiscent of
the wobble in a cone model used in previous investigations
[49], and angular flexibility can be explained via the angu-
lar flexibility of C–C bonds themselves. However, unlike the
classical wobble in a cone model, thermal noise and dye linker

FIG. 5. Histogram of interdye distances for the elastic pendulum
model during an excitation event.

chemistry drive the dynamics and present a purely stochastic
system. Moreover, by varying the parameters used, the system
shows various behaviors.

Moreover, this model presents a possible explanation for
the dynamic shift induced by dye motion due to the non-
Gaussian interdye distributions, as shown in Fig. 5.

This bimodality presents a mixing of two distinct states that
are frequently needed to present a dynamic shift. Further, this
provides a much larger change in interdye displacement than
the spring models, which, as mentioned in Sec. II A, do not
possess any strong range of translational motion.

C. Orientational dynamics

The final consideration involves the orientational dynamics
of the electric dipole moments of the dyes. As discussed in
Sec. I, the Förster radius is dependent on κ2, which is depen-
dent on the mutual orientations of the electric dipole moments
μ̂A and μ̂D and the interdye displacement unit vector R. Typ-
ically, κ2 is taken as the mean value of 2/3 when the unit
vectors are considered uniformly distributed on the sphere S2

[55,56,75]. This assumption ignores the temporal aspect of the
fluorescent process. Since dyes reorient on timescales faster
than fluorescent lifetimes, the energy exchange rate changes
during the FRET process. This changes the original CTMC
model to a time-inhomogeneous CTMC, and thus, the transfer
rates are dependent on the time integral of the infinitesimal
transfer rates [61–64].

To incorporate the influence of orientational dynamics on
the lifetime distribution and FRET efficiency, consider the
dipoles to be fixed to a reference frame of some rigid body
with tensor of inertia I. The rigid body of the dye will be sub-
jected to random torques and, therefore will reorient according
to the Euler equations [81,82]

Idωt + ωt × Iωt = −νωt + dW t

ωt = d�t , (14)

where ωt is angular velocity, ν is the dynamic viscosity of
the surrounding fluid, dW t is a spherical Brownian motion
and �t is the angular position vector. Assuming the dye is
overdamped and hence dωt = 0, one obtains the simplified
equations

ωt × Iωt = −νωt + dW t

ωt = d�t . (15)
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Making the assumption that the dye is spherical and therefore
the inertia tensor may be replaced with a scalar value [81] and
using the fact that v × v = 0 for any vector v we obtain the
simple formula

νd�t = dW t (16)
and hence, the dipole diffuses according to a spherical Brow-
nian motion. Spherical Brownian motion components can be
expressed in terms of the Langevin equations below [83,84]

dθt = σ 2
θ

tan (θt )
dt + σθ ◦ dBt

d�t = σφ

sin θt
◦ dBt . (17)

The rotational diffusion coefficients depend on the hydro-
dynamic radius of the dye Rh by the classical relation D =
kT/(8πνR3

h), where kT denotes the product of the Boltzmann
constant and the temperature. A sample trajectory is shown in
Fig. 4(g).

Note that the stationary distribution for such a system is
the uniform distribution, providing an ideal starting stochastic
process to test the time-dependent behavior of orientational
dynamics [78,82]. The key idea is that the excitation of the
fluorophores provides a single initial κ2 value. The relaxation
effects are the object of interest, especially with regard to
lifetime duration. The notion that κ2 may be close to 0 during
the entire FRET process for one excitation but higher for an-
other in the same sampling time provides an additional source
of variance in the lifetime distribution. Every FRET process
can lead to a different equilibrium, which should depend on
the rotational diffusion of the dipole moment, with faster
reorientation causing an averaging out effect as mentioned in
Ref. [56].

III. SOURCES OF OBSERVED DYNAMIC SHIFT

A. Dye configuration

This section compares the dye models described in Sec. II.
By examining the joint FRET-lifetime distributions through
the contour plots and marginal histograms in Fig. 4, the
influence of the different models becomes evident. These
FRET-lifetime distributions were generated by simulating the
aforementioned models within a time-resolved confocal sm-
FRET environment. As shown, the spring models exhibit
characteristics similar to the anisotropic model, although the
latter displays slightly more dynamic shifting. Additionally,
the elastic pendulum model produces a noticeable dynamic
shift, with the bulk of the distribution deviating from the
static line. Despite the dynamic mixing inherent in the purely
translational elastic pendulum model, the resulting dynamic
shift does not fully capture the behavior previously observed
in experimental data [7]. It is only with the incorporation of
orientational motion and time-inhomogeneous energy transfer
rates that the distribution exhibits the hallmark dynamic shift,
both in terms of moment differences and within the direct
FRET-lifetime distribution.

The better visualize these observations, we calculated the
dynamic shift distributions of each dye configuration using the
definition of the dynamic shift shown in Eq. (11). It has been
known from experimental data that the average dynamic shift
of dye motion is μ(�) ≈ 0.2 [38]. Using this quantity, the

FIG. 6. Linear dynamic shift, d , histogram comparison of dye
models.

average dynamic shift for the associated models is examined
to determine the model that captures the appropriate mean dy-
namic shift. The comparison of the dynamic shift distributions
is shown in Fig. 6.

In addition, these simulations have no burst noise from
background radiation, as this could potentially cloud the im-
pact of the dye motion [68]. The noise is solely from the
experimental photon loss considerations and the dye motion
as dictated by the models and simulation methods. Therefore
the only source of dynamic shifting must be from the dye
models.

Curiously the dynamic shift densities shown in Fig. 6
exhibit similar variances but differing mean dynamic shift
values, as seen in Table I.

While the elastic pendulum model does not fully capture
the mean dynamic shift, the incorporation of a dynamic κ2

parameter results in the emergence of the expected dynamic
shift. This finding contrasts sharply with previous hypotheses
attributing the dynamic shift solely to the accessible volume
of the dye. Despite the elastic pendulum model exhibiting an
accessible volume comparable to that observed in all-atom
molecular dynamics (MD) simulations and demonstrating dy-
namic mixing between conformational states, the resulting
dynamic shift remains smaller than anticipated. This discrep-
ancy suggests that time inhomogeneities in the Förster radius,
driven by orientational fluctuations, are critical for accurately
describing the dynamic shift.

It is noteworthy that spring models can, in principle, be
modified to include a dynamic κ2 parameter. However, when

TABLE I. Dynamic shift. Mean and standard deviation of the
dynamic shift for each model in Fig. 6.

Model μ(�) σ (�)

Isotropic spring 0.10 0.01
Anisotropic spring 0.01 0.01
Elastic pendulum κ2 ≈ 2/3 0.12 0.01
Elastic pendulum dynamic κ2 0.20 0.10
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FIG. 7. Comparison of κ2 trajectories for three common cases. (a)–(c) shows the sample paths of κ2 during an excitation event, these
can be seen as four realizations of κ2 during the same burst. Each path is representative of a single energy transfer event. (d)–(f) show the
associated distribution of average κ2, the red vertical lines in (d)–(f) are the isotropic 2/3 average, where the colored lines are the mean of
the path average. (a) and (d) show a pair of dyes for which the rotational diffusion is only an order of magnitude greater than the translational
diffusion of the dye. (b) and (e) show the sample behavior when one dye has a rotational diffusion three orders of magnitude greater than
translational and one dye one order of magnitude greater. Finally, (c) and (f) show the case in which both dyes have rotational diffusions three
orders of magnitude greater than translational. Parameters used for the simulation are shown in Table II.

model parameters are constrained by the physical properties
of linker compositions, these models become impractical.
Specifically, the resulting accessible volumes are significantly
smaller than what is physically reasonable. This limitation is
evident when analyzing the variance of the stationary distribu-
tions associated with these models. As described in Sec. II A,
the variance along each axis in the isotropic case is given by
σ/keff or equivalently kBT/γ keff , where γ represents the local
friction coefficient. Under these conditions, the stationary dis-
tribution yields a 3σ radius of less than one angstrom, which
is inconsistent with previously observed dye dynamics.

B. κ2 dynamics

An important consideration highlighted in Sec. III A is the
role of κ2 dynamics in shaping FRET-lifetime correlations.
A central challenge in incorporating κ2 dynamics into FRET
uncertainty quantification lies in the common assumption that
κ2 remains stationary during the energy transfer process.
This assumption is often addressed by sampling κ2 from
its equilibrium distribution, modeling it as a discrete-state
Markov chain, or employing the conventional 〈κ2〉 = 2/3 ap-
proximation [59,85–87]. Such approaches facilitate the use of
mean and standard deviation estimates in uncertainty analysis
[55,56,75]. However, these approximations neglect the time-
inhomogeneous nature of the FRET process, as discussed
in Sec. I B. Notably, the probability of donor fluorescence
emission depends on the integrated history of energy trans-
fer rates, inherently linked to the temporal evolution of κ2

[61,62,64,88].

Although ergodic assumptions may partially address these
concerns, they rely on the equivalence of long-term time aver-
ages and spatial averages, an approximation that breaks down
over the short timescales characteristic of FRET, particularly
under conditions of slow rotational diffusion. Moreover, such
assumptions overlook the path-dependent nature of energy
transfer, where the FRET rate constant is influenced by the
specific temporal trajectory of κ2. In experimental settings,
FRET bursts typically span milliseconds, corresponding to
single-molecule events, whereas simulations often generate
bursts at one-second intervals, yielding approximately 25 000
bursts for statistical analysis.

As illustrated in Fig. 7, the stochastic nature of κ2 man-
ifests prominently in its temporal trajectories. For instance,
Figs. 7(a) and 7(b) display trajectories with similar mean
values over a 1 ns timescale. However, at intermediate times
(e.g., 0.5 ns), significant differences in the probability of en-
ergy transfer emerge, highlighting the sensitivity of FRET
to transient fluctuations in κ2. Rapid rotational diffusion, as
shown in Fig. 7(c), induces frequent oscillations in κ2, leading

TABLE II. Simulation parameters for Fig. 7.

Parameter (a) and (d) (b) and (e) (c) and (f)

Donor rotational diffusion 15 nm2/s 15 nm2/s 200 nm2/s
Acceptor rotational diffusion 15 nm2/s 150 nm2/s 200 nm2/s
Translational rotation 0 nm2/s 0 nm2/s 0 nm2/s
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to tightly clustered trajectories. Interestingly, the correspond-
ing average κ2 distribution [Fig. 7(f)] exhibits bimodality,
reflecting populations of both low and high κ2 values. This
bimodality arises from variations in the radial-dipole dot prod-
uct, a key term in the definition of κ2. Parameters used for
these simulations are shown in Table II.

Conversely, reduced rotational diffusion slows κ2 fluctu-
ations, resulting in prolonged intervals of high or low κ2

values. These extended periods influence donor lifetimes
asymmetrically: high κ2 stretches accelerate energy transfer,
shortening lifetimes, while low κ2 periods prolong them.
Consequently, slower rotational dynamics introduce stronger
temporal correlations, amplifying the influence of the station-
ary κ2 distribution on FRET behavior.

The skew observed in the mean κ2 distribution underscores
the limitations of simple averaging assumptions. Although the
ensemble-averaged 〈κ2〉 equals 2/3, the most probable values
often fall below this benchmark. This deviation is evident
in different simulation conditions [Figs. 7(a)–7(f)], with only
Fig. 7(e) showing a mode near 2/3, likely due to enhanced
temporal fluctuations in κ2.

The dynamic shift observed in FRET experiments thus
emerges from the inherent variability of κ2 trajectories. Tem-
poral heterogeneity during energy transfer introduces critical
mixing effects that substantially modulate the average donor
lifetime. Although interdye distance fluctuations contribute
modestly to this dynamic shift (Fig. 4), rotational dynamics
exert a more pronounced influence by directly altering the
FRET rate constant. Figures 7(d)–(e) represent average κ2

values over individual bursts, revealing how bimodal distri-
butions in fast-rotating dye systems create distinct energy
transfer populations. This behavior parallels two-state models
explored in previous studies [31,38].

However, it is essential to emphasize that pathwise het-
erogeneity is central to smFRET analysis. Although average
κ2 values provide useful summaries, they do not capture
the full complexity of the time-dependent FRET efficiency
E (t ), which varies along individual stochastic trajectories.
The data presented in Fig. 7 spans only 1ns and thus does
not encompass the complete temporal dynamics of fluores-
cence decay or energy transfer. Ultimately, it is the path-
dependent fluctuations in κ2 that shape the observed lifetime
distributions.

IV. DISCUSSION

In this work, we present a physics-based model for flu-
orescence dynamics that explicitly incorporates dye linker
chemistry and fluorescent dye composition, revealing the crit-
ical role of time-inhomogeneous Förster radius fluctuations in
driving the dynamic shift observed in single-molecule FRET
(smFRET) experiments. Our findings demonstrate that tra-
ditional models employing static accessible volumes fail to
reproduce experimentally observed dynamic shifts. Instead,
these shifts arise from the time-dependent nature of the FRET
process, governed by the path-dependent dynamics of κ2 tra-
jectories. Importantly, we show that the characteristics of κ2

fluctuations are sensitive to the specific fluorescent dyes used.
For example, pairs involving an organic dye and a fluorescent
biomolecule exhibit markedly different dynamics compared to

pairs of organic dyes. While the mean κ2 remains consistent
with the isotropic approximation of 〈κ2〉 = 2/3, fluctuations
in κ2 during energy transfer events introduce temporal het-
erogeneity in FRET-lifetime distributions within individual
bursts. These fluctuations act as a source of dynamic mixing,
manifesting as the dynamic shift. Crucially, while FRET ef-
ficiency remains unchanged, the donor lifetime distribution is
significantly affected.

Although our current results focus on spherical dyes,
the rotational Langevin dynamics outlined in Sec. II C can
be generalized to dyes with arbitrary inertia tensors. While
straightforward in principle, the resulting equations become
increasingly complex, both analytically and computationally,
as the symmetry of the system decreases. Nonspherical dyes
introduce anisotropic rotational behavior, leading to distinct
κ2 trajectories that require advanced numerical approaches for
accurate simulation.

An important direction for future research involves
coupling translational and rotational dynamics. While the
decoupling of these motions is a common simplification—
frequently invoked in dynamic averaging of κ2 and in
theoretical models such as [59]—evidence suggests that
this assumption may overlook significant correlations. As
highlighted in Ref. [75], translational motion can strongly
influence κ2 dynamics. This coupling becomes even more
evident when considering the combined effects of orienta-
tional rigid-body dynamics and elastic linker fluctuations, as
discussed in Secs. II B and II C. Such systems are known
to exhibit nontrivial coupling even in classical mechanics,
and similar effects are expected in the overdamped regime
relevant to smFRET. However, accounting for these interac-
tions necessitates modeling the system’s full state space on
the noncompact, non-Abelian Lie group SE (3), as described
in [82], significantly increasing both analytical and compu-
tational complexity compared to models with independent
translational and rotational processes.

Moreover, the framework developed here provides a foun-
dation for exploring additional sources of dynamic shift.
The algorithms employed for simulating FRET dynamics
are computationally efficient and readily adaptable to sys-
tems with multiple interacting timescales. This flexibility
enables investigations into the influence of biomolecular con-
formational dynamics on FRET signals. By incorporating
reaction-coordinate Langevin models, future studies can ex-
amine how complex energy landscapes and dynamic interdye
distance fluctuations modulate the dynamic shift. The stochas-
tic nature of our simulations facilitates rapid exploration of
such scenarios, offering a practical tool for probing both dye
and biomolecular dynamics. Notably, while our simulations
are based on confocal microscopy conditions, the results are
equally applicable to total internal reflection fluorescence
(TIRF) measurements, broadening the scope of potential ex-
perimental validations.

In conclusion, this work highlights the significance of time
inhomogeneities in the FRET process and their measurable
impact on fluorescence lifetime distributions. We demonstrate
that the path dependence of FRET efficiency, coupled with
a time-varying Förster radius, is non-negligible and must
be accounted for in accurate smFRET data interpretation.
Optimal uncertainty quantification for smFRET requires a
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detailed understanding of κ2 path dynamics, beyond simple
ensemble-averaged values. Consequently, the anisotropic ro-
tational behavior of fluorescent dyes plays a pivotal role in
FRET measurements. By advancing our understanding of dye
orientational dynamics, we pave the way for more precise
uncertainty quantification in FRET studies. Furthermore, this
work highlights the need for stochastic geometric mechan-
ics approaches in the analysis of fluorescence phenomena,
with broader implications for biophysical measurements and
molecular biology.
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