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Firing propagation in empirical cognitive networks of human brain
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Understanding the physical mechanisms of brain functions has always been a challenging problem in the fields
of nonlinear dynamics and network science. A promising approach to address this problem is by studying signal
propagation on brain cognitive networks. So far, in the context of signal propagation, some progress has been
achieved on complex networks, especially on the Caenorhabditis elegans network, but little attention has been
paid to the empirical cognitive networks of the human brain, which are the networks responsible for cognitive
tasks. Here we study how neural firings are propagated in the empirical cognitive networks of human brain. We
find that the firing propagation can be seriously influenced by both the global topology of the network and the
local topology of the source node. There is an optimal range of coupling strength related to synchronization for
each source node, and multiple source nodes favor firing propagation. Further, we show that peripheral nodes of a
network may have stronger ability of firing propagation than hub nodes. Interestingly, a remote firing propagation
is observed, where firings are not propagated in a sequential rule, but propagated to farther distant nodes without
the firings of intermediate nodes. A detailed theoretical analysis is provided to explain both the firing propagation

and remote firing propagation.
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I. INTRODUCTION

The physical mechanisms of brain function have always
been a hot topic of interest. So far, many dynamical models
of brain activity in human brain networks and biophysically
motivated large-scale brain models have been proposed; see
reviews for details [1-6]. These studies have established that
synchronization is closely related to brain functions. For ex-
ample, neural correlates of visual awareness may be related
to synchronous neural firing at gamma frequencies [7]. And
epileptic seizures correspond to an abnormal synchroniza-
tion spreading on the whole brain network [8]. Therefore,
to understand the physical mechanisms of brain functions,
much attention has been paid to various synchronizations,
such as complete synchronization, phase synchronization,
delay synchronization, generalized synchronization, and ex-
plosive synchronization [9-11]. Recently, chimera state and
remote synchronization have become central topics in nonlin-
ear dynamics and network science [12—15], as the former can
be used to explain the mechanism of the unihemispheric sleep
in aquatic animals and migrated birds [16—18], while the latter
can help us understand how brain functional networks emerge
from brain structural networks.

In principle, all kinds of synchronization are induced by
different coupling modes. In a specific synchronization pro-
cess, oscillators will influence each other by exchanging
information. However, the detailed process of exchanging
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information is often challenging to study. As an alternative, re-
searchers have investigated signal propagation [19-24]. This
approach provides insights into how information propagates
from one node to another. For weak signals, two notable
effects have been revealed. The first is topological resonance,
in which the heterogeneity of scale-free networks facilitates
the detection of weak signals [19]. The second is coupling res-
onance, where mixed positive and negative couplings enhance
the detection of signals [23]. Recently, a new perturbation
method has been developed to track information propagation,
effectively capturing the network’s role in propagating local
information [25-27].

An application of signal propagation is in the brain net-
work where every individual brain function is performed by a
specific cognitive network and its functioning is activated by
a specific external signal [28], such as one of the signals of
light, sound, taste, and smell. Since the brain neural network
contains approximately 10'! neurons and 10'* links, it is too
complicated to study in its entirety. For simplicity, some pri-
mary works have been done on the network of Caenorhabditis
elegans [29], which contains information on 277 out of those
302 neurons [30,31]. Surprisingly, in addition to the normal
firing propagation in a sequential rule, an abnormal firing
propagation was revealed. It is named remote firing propa-
gation (RFP) [32,33], being an abnormal firing propagation
between two distant and indirectly connected nodes with the
intermediate nodes inactivated. Its mechanism can be also
investigated by a model of bistable oscillators [34]. Recently,
this kind of remote response mode has been discussed on the
paced excitable C. elegans network [35].

A feature of the C. elegans network is its directional links.
This network has 2105 directional links, where only 187 links
are bidirectional and all the other 1731 links are unidirectional
[29]. Thus, unidirectional links are a majority. It was revealed
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that the existence of the unidirectional links is the key element
to generating the local firing propagation. Also, the configu-
ration of the unidirectional links will seriously influence the
range of firing propagation [33]. Moreover, it was found that
the unidirectional links favor RFP [32]. In fact, this kind of
directional link is also the feature of human neural networks
where the interaction between two neurons is from the axon
of one neuron to the dendrite of another neuron. However,
due to the large size and complicated topology, the human
neural network is usually simplified into a brain network. In
the simplified version, a node represents a region of interest
(ROI), and a connection between two ROIs is derived from
the number of fibers found by the tractography algorithm. In
this sense, the brain network is undirected because current
imaging methods are unable to resolve directions. Then an
interesting question is how firings are propagated in bidi-
rectional cognitive networks of human brain [36,37]. On the
other hand, among all these previous studies of RFP, Ref. [34]
is the only one that used real data of brain network. However, a
deficiency of Ref. [34] is that it is on the whole brain network
instead of each specific cognitive network where a specific
external signal is detected. Individual cognitive networks are
different from each other, with some of their differences more
significant. Thus, it is also of interest to study how the topolo-
gies of these cognitive networks influence firing propagation
and even RFP if it applies.

To figure out the answers, we take a closer look at realistic
brain cognitive networks, i.e., the eight empirical cognitive
networks of human brain, which are responsible for cognitive
tasks. We study how firings are propagated on them. In par-
ticular, we represent the dynamics of each node with a neural
model so that the threshold effect of neurons can be reflected,
unlike the previous studies with no threshold effect of neurons
[19-23,34]. We find that the firing propagation can be seri-
ously influenced by both the global topology of network and
local topology of source node. We also show that there is an
optimal range of coupling strength for each source node and
multiple source nodes favor firing propagation. Interestingly,
we observe a RFP where firings are propagated to distant
nodes, without the firings of intermediate nodes. Further, a
detailed theoretical analysis is provided to explain both firing
propagation and RFP.

II. THE MODEL OF FIRING PROPAGATION
IN COGNITIVE NETWORKS OF HUMAN BRAIN

It is well known that each specific brain function is in
fact performed by only one or a few cognitive networks but
not the whole brain network [38—41]. Thus, we focus on the
firing propagation in cognitive networks of human brain in
this work. To study this problem, we have to first obtain the
connection matrices of these cognitive networks. For this pur-
pose, we here consider an empirical brain network from the
data of Refs. [36,37], which is a weighted network with 998
nodes, i.e., region of interest (ROI), and 17 865 bidirectional
connections among them [42]. Each connection between two
ROIs was measured noninvasively by using diffusion spec-
trum imaging (DSI), and its weight was derived from the
number of fibers found with the tractography algorithm. Due
to resolution limitation of DSI, there are nine isolated nodes
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FIG. 1. The connection matrices of the eight cognitive networks
extracted from the whole brain network where the color bar repre-
sents the weights W;;. Panels (a)—(h) represent the weight matrices
of the eight cognitive networks of Attention (Att), Auditory (Aud),
Cingulo-opercular (CP), Frontoparietal (FP), Medial default mode
(mDm), Motor and somatosensory (MS), Ventral temporal associa-
tion (VT), and Visual (V) networks, respectively.

without detected fibers. To keep the connectivity of all the
nodes, these nine isolated nodes were removed, leaving 989
nodes [42]. On the other hand, Ref. [43] shows an alternative
approach to divide the cerebral cortex into 76 brain regions
and then further divide them into nine cognitive networks.
This framework of classification is mainly based on how the
stimulation of different brain regions drives brain function and
how brain function is constrained by variability in structural
connectivity, i.e., each cognitive network represents the coac-
tivated regions in support of a generalized class of cognitive
functions. That is, these nine cognitive networks have clear
functional roles and thus are named Attention (Att), Auditory
(Aud), Cingulo-opercular (CP), Frontoparietal (FP), Medial
default mode (mDm), Motor and somatosensory (MS), Ven-
tral temporal association (VT), Visual (V), and Subcortical
networks, respectively. For example, Aud, V, MS, and VT are
sensory motor-related systems, Att and mDm are involved in
functional roles that are generic across cognitive performance,
CP and FP are associated with cognitive control, and the
subcortical network consists of the regions responsible for
autonomic and primal functions. In this study, we follow the
framework of Ref. [43] to classify the brain network of 989
nodes. We find that each of the first eight cognitive networks
is well connected, resulting in a total 968 nodes, while the
remaining 21 nodes for the Subcortical network is not well
connected. Thus, in this work, we consider only the first eight
cognitive networks and exclude the Subcortical network. In
each cognitive network, only the connections within the cog-
nitive network are retained, while all connections between the
eight cognitive networks are removed. Figures 1(a)—1(h) show
the weighted connection matrices W;; of the eight cognitive
subnetworks, respectively. The weights of different cognitive
networks have different distributions, but all of them can be
approximated as Gaussian distributions around W = 0.5 [44].

A notable feature of Fig. 1 is that the connections in
each of the eight cognitive networks are unevenly distributed,
forming a topology of communities, in contrast to the ran-
dom homogeneous networks and scale-free networks. We aim
to understand how this feature influences their firing prop-
agation. Additionally, the sizes N of these eight cognitive
networks are different, ranging from 64 to 172, which may
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FIG. 2. Node degrees of cognitive networks where (a)-(h) rep-
resent the cases of the eight cognitive networks in Figs. 1(a)-1(h),
respectively.

result in differing node degrees. Figures 2(a)-2(h) show the
node degrees of the eight cognitive networks in Figs. 1(a)—
1(h), respectively. Two features can be summarized from
Fig. 2: (i) There is no positive correlation between their av-
erage degrees (k) and sizes N and (ii) the degree distributions
are very dispersed in Figs. 2(e) and 2(h) but not so much in
others. We also wonder how these two features influence their
firing propagations.

To figure out the answers to these problems, the key is the
choice of nodes dynamics of cognitive networks. Each node
of brain network represents a ROI of cerebral cortex. The
node dynamics are generally considered as a mean field of
neurons in the ROI and can be represented by neuron mass
models, such as the Wilson-Cowan model [45] and its vari-
ations [46—49]. These models describe network dynamics at
the macroscopic level but cannot reflect the firings of neurons
at the microscopic level. This creates a challenging situation
where we lack both firing models of the macroscopic level
and network topology of the vast number of neurons at the
microscopic level. To solve this problem, we here assume
that the macroscopic topology of brain network partially re-
serves the characteristic feature of the connectome of neurons,
as the former can be considered as a renormalization of the
latter [50]. In this sense, we here assume that the dynamics
of each node can be described by the Hindmarsh-Rose (HR)
model, which may have both bursting and spiking behaviors
of neurons [51]. The HR model consists of three variables
x(t), y(t), and z(¢), where x is the membrane potential, y is
associated with the fast current Na™ or K, and z corresponds
to the slow current, for example, Ca®*. The nodes dynamics
can be represented by the following dynamical equations:

dx,-

oot bx? — ax; — i + I + A0 Wii(xj — x),
dy;

d_); =c—dx} -y,

dz;

T rle(xi — xo) — zl, (1)

where i represents node i with i € [1, N], W;; is one of the
weighted matrices of Figs. 1(a)-1(h), Iy is the external cur-
rent input, A is the coupling strength, and the parameters are
taken as a =1.0,b=3.0,c =1.0,d =5.0,r =0.006, ¢ =
4.0, and xp = —1.60 [52].

Following Refs. [32,33], we set the external current Iy to
a value slightly smaller than the critical point of a single HR
neuron, /5, ~ 1.309, so that the cognitive network is inacti-
vated when there are no initial activated nodes; that is, we fix
lexe = 1.3 < I, in this work. Then we will study how firings
are propagated in different cognitive networks by choosing
one or multiple nodes as the source nodes. For a chosen source
node s, we give it a stimulus / so that the source node s will
be activated when A = 0. Therefore, for the source node s, the
second and third equations of Eq. (1) will remain unchanged,
but the first equation of Eq. (1) will be replaced by

dxg
Tt bx} — ax; — zy + I + I, + AZY W (xj — x),
(2)

where the external stimulus I; is fixed as I, = 1.7 as in
Refs. [32,33].

Equations (1) and (2) constitute our model of firing prop-
agation on cognitive networks, which takes account of both
the threshold effect of neurons and community topology of
empirical cognitive brain networks.

III. NUMERICAL SIMULATIONS

In numerical simulations, we let the source nodes be rep-
resented by Eq. (2) and all the other nodes be represented
by Eq. (1). In the following, we will discuss how firings are
propagated in cognitive networks.

A. Firing propagation in cognitive networks
of human brain with one source node

We first discuss the case of only one source node. As the
HR model is a neural model, it will have two states, i.e.,
activated (firing) and inactivated. To check the status of nodes,
we assume that there is a firing threshold as x, = 0 [32,33].
A node i will be considered as activated or firing once its x;
variable reaches x; > x., and inactivated, otherwise. In this
way, we can check whether the firing of the source node is
propagated to other nodes or not. We take the visual network
as an example. Figure 3 shows two typical pathways of firing
propagation from a source node for A = 0.1, where the “red”
and “gray” circles represent the firing nodes and inactivated
nodes, respectively, and the source node is the node 80 with
degree kgy = 15 in Fig. 3(a) and the node 11 with degree k;; =
12 in Fig. 3(b). The results show that the firing of the source
node successfully propagates to other nodes in Fig. 3(a) but
not in Fig. 3(b), suggesting that the firing propagation depends
on the specific source nodes.

To measure the effect of firing propagation, we let ny(7) be
the number of activated nodes in the whole cognitive network
by the source node i. Then we measure how n,(i) depends on
the source node i and the coupling strength A. We first consider
the case of visual network with N = 111. Figures 4(a) and
4(b) show the dependence of ny (i) on the chosen source node
i and the coupling A, respectively, with A = 0.1 in Fig. 4(a)
and the source node 80 in Fig. 4(b). We see from Fig. 4(a) that
ny can be either greater than zero for some nodes or zero for
other nodes, corresponding to the two cases of Figs. 3(a) and
3(b), respectively. In particular, for the case of ny = 0, most

013116-3



CHEN, GAO, YANG, HUO, AND LIU

PHYSICAL REVIEW RESEARCH 7, 013116 (2025)

FIG. 3. Two typical pathways of firing propagation from a source
node of the visual network, where the “red” and “gray” circles rep-
resent the firing nodes and inactivated nodes, respectively, with the
coupling strength being fixed as A = 0.1. Panels (a) and (b) represent
the cases of successfully and unsuccessfully propagated firings from
the source nodes to their nearest neighbors and so on, respectively,
with the source node being node 80 in (a) and node 11 in (b).

of the source nodes are not even activated, as indicated by the
“black” points along the x axis in Fig. 4(a). We will explain it
in Sec. IV. Figure 4(b) shows that n is greater than zero when
0.02 < A < 0.2 and zero otherwise, implying that firing can
be propagated only within an optimal coupling range; that is,
too large or too small coupling will prevent firing propagation.
Additionally, Fig. 4(c) shows the phase diagram of n on the
phase plane of the source node i and the coupling strength A.
We see that ny is greater than zero only in two regions. There-
fore, a successful firing propagation depends on both the local
topology of the source node i and the coupling strength A.
Second, we consider the case of ventral network with N =
129. We observe similar results to those seen in the case of the
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FIG. 4. Dependence of firing propagation on the source node i
and the coupling strength . Panels (a)—(c) represent the case of a
visual network, where (a) represents the dependence of the number
of activated nodes n; on the source node i, and the “black” points
on the x axis denote the inactivated source nodes, with the coupling
strength A = 0.1; (b) shows the dependence of ny on A for the source
node 80; and (c) represents the phase diagram of n, on both the
source node i and the coupling strength A, with the color bar being
the number 7. Panels (d)—(f) represent the case of a ventral network,
where (d) represents the dependence of n; on the source node i, with
the coupling strength A = 0.1; (e) shows the dependence of n; on A
for the source node 24; and (f) represents the phase diagram of n; on
both the source node i and the coupling strength A, with the color bar
being the number 7;.
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FIG. 5. Firing propagation on the eight cognitive networks where
(ny) represents the average of ny on every source node of network.
Panels (a)—(h) represent the dependence of (ny) on A for the cases of
Att, Aud, CP, FP, mDm, MS, VT, and V systems, respectively.

visual network. Figures 4(d) and 4(e) show the dependence
of ny on the chosen source node i and the coupling A for
the ventral network, respectively, with A = 0.1 in (d) and the
source node 24 in (e). By comparing Fig. 4(d) with Fig. 4(a),
we observe that there is more successfully firing propagation
in (d) than in (a), suggesting that firing propagation also
depends on the topologies of cognitive networks. Comparing
Fig. 4(e) with Fig. 4(b), we see that the coupling range of fir-
ing propagation in Fig. 4(e) is much less than that in Fig. 4(b),
confirming the dependence of firing propagation on the net-
work topologies. Similarly, Fig. 4(f) shows the phase diagram
of ny on the phase plane of the source node i and the coupling
strength A for the ventral network. Comparing Fig. 4(f) with
Fig. 4(c), we see that the successfully propagated region in
Fig. 4(f) is much larger than that in Fig. 4(c), confirming again
the influence of network topologies.

To illustrate how the topologies of cognitive networks in-
fluence firing propagation, we let each node i of network be
the source node for one time and measure its ny(i). Then
we let (ny) be the average of n,(i) on every source node of

network, i.e., (ny) = % vazl ns(i). Thus, (ny) measures the
average firing propagation of a cognitive network and will
reflect the influence of network topology. Figures 5(a)-5(h)
show the results for all the eight cognitive networks of Fig. 1,
respectively. We see that they are significantly different from
each other, i.e., (ny) is relatively large in Figs. 5(a)-5(d) and
5(g), small in Figs. 5(f) and 5(h), but even zero in Fig. 5(e).
We will figure out their mechanisms in Sec. I'V.

B. Remote firing propagation in cognitive networks
of human brain with one source node

All the above results belong to the case of normal firing
propagation in cognitive networks. It will be of special interest
if we can go beyond, such as studying the possibility of RFP.
This problem is important as it can help us to understand
how brain functions emerge from brain structural networks.
Fortunately, in numerical simulations, we do observe the phe-
nomenon of RFP in cognitive networks of human brain with
one source node. Take the ventral network as an example.
Figure 6 shows two typical pathways of RFP in the ventral
network with a single source node, where the “red” and “gray”
circles represent the firing nodes and inactivated nodes, re-
spectively, and Fig. 6(a) represents the case with the source
node 63 and coupling strength A = 0.38 and Fig. 6(b) the
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(a)

FIG. 6. Two typical pathways of RFP in a ventral network by
one source node, where the “red” and “gray” circles represent the
firing nodes and inactivated nodes, respectively. Panel (a) represents
the case of a single driven relay node, with the source node 63 and
coupling strength A = 0.38. Panel (b) represents the case of multiple
driven relay nodes, with the source node 5 and coupling strength
A =0.13.

case with the source node 5 and coupling strength A = 0.13.
We see from Fig. 6(a) that the remote firing node ins 65
is connected only to the inactivated intermediate node 61,
implying that the inactivated node 61 is a single driven relay
node. In Fig. 6(b) there are three remote firing nodes, the
nodes 2, 4, and 1, and five inactivated intermediate nodes, the
nodes 3, 7,9, 13, and 22, indicating that the inactivated nodes
3,7,9, 13, and 22 are multiple driven relay nodes.

Figure 6 shows only the dynamics of the ventral network
along the pathways of RFP but does not account for the
dynamics of all the other nodes. To show the dynamics of
all nodes, an alternative way is to make a topological trans-
formation of the network as follows. We let the source node
i be the center, its nearest neighbors be the first circle, the
nearest neighbors’ neighbors be the second circle, and so on.
In this way we can clearly show the dynamics of all nodes.
Figure 7(a) shows the results of Fig. 6(b) where the “red” and

@ , eeeen, . | (b)
: 10.0 : 0.2 0.4

FIG. 7. RFP with only one source node. (a) Dynamics of all the
nodes of ventral network for the case of Fig. 6(b), i.e. with the source
node 5 and coupling strength A = 0.13, where the “red” and “gray”
points represent the firing and inactivated states, respectively. The
center represents the source node and the first circle represents its
nearest-neighboring nodes and so on. (b) Dependence of RFP on the
source node i and the coupling strength A where the “red” points
represent the regions of RFP in the phase diagram.

“gray” points represent the firing nodes and inactivated nodes,
respectively. It is observed that there are no firing nodes on
the first circle, but three firing nodes appear on the second
circle. This indicates that these three firing nodes are the only
activated nodes of RFP by the source node 5 at a coupling
strength A = 0.13,i.e,, ny = 3.

Based on Fig. 7(a), we can conveniently recognize the
nodes of RFP from the source node i at a given coupling
strength A. In this way, Fig. 7(b) shows the phase diagram of
RFP in the phase plane of the source node i and the coupling
strength A where the “red” points represent the regions of RFP.
We see that the regions of RFP are sparsely distributed in the
phase plane, indicating that there are some strict conditions
for RFP to appear. We will discuss it in Sec. IV.

C. Firing propagation in cognitive networks
of human brain with multiple source nodes

Now we move to the case of multiple source nodes.
We take the case of two source nodes as an example, but
the obtained results can be extended to more source nodes.
Specifically, we randomly choose a pair of source nodes i and
j and let them be the source nodes; that is, only the pair of
source nodes i and j satisfy Eq. (2) while all the other nodes
will be represented by Eq. (1). Then we count the number
of activated nodes ny(i, j) in the whole network. We find
that similar to Fig. 4, the value of n(i, j) depends on both
the source nodes i and j and the coupling strength A. On
the other hand, to reflect the influence of network topology,
we make 800 different realizations by randomly choosing
different pairs of source nodes i and j and then calculate their
average (ny). Figure 8 shows the results where Figs. 8(a)-8(h)
represent the dependence of (ny) on A for the cases of Att,
Aud, CP, FP, mDm, MS, VT, and V networks, respectively.
Comparing Fig. 8(a)-8(h) with Figs. 5(a)-5(h), i.e., the case
of only one source node, we see that for each corresponding
panel between them, the value of (ns) in Fig. 8 is larger than
that in Fig. 5, indicating that the case of multiple source nodes
favors firing propagation.

In particular, we observe a substantial difference between
Fig. 8(e) and Fig. 5(e) where the former has a small but
nonzero (ny) while the latter has a zero (ny). Similarly, the
relatively smaller values of (n,) in Figs. 5(f) and 5(h) have
been largely increased in Figs. 8(f) and 8(h) and reach the
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S 40

0
. 80 e). (f), 9) h)
§40 0.1 0.2
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0.0 02 0.40.0
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FIG. 8. Firing propagation of the eight cognitive networks for

two source nodes where (ns) represents the average of ny(7, j) on

randomly chosen 800 pairs of source nodes i and j. Panels (a)—(h)

represent the dependence of (1) on A for the cases of Att, Aud, CP,
FP, mDm, MS, VT, and V systems, respectively.
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FIG. 9. Phase diagrams of RFP for two source nodes in ventral
network, with the first source node being fixed as node j and the
second source node going through all the other nodes. Panels (a) and
(b) represent two typical cases for taking the first source node from
the regions of RFP in Fig. 7(b), with j = 5 in (a) and j = 21 in (b).
Panels (c) and (d) represent two typical cases for taking the first
source node from outside of the regions of RFP in Fig. 7(b), with
j=11(c)and j =35 (d).

same level of Fig. 8(g), confirming again that the case of
multiple source nodes favors firing propagation.

D. Remote firing propagation in cognitive networks
of human brain with multiple source nodes

Based on the results of Fig. 8, we wonder whether mul-
tiple source nodes can also enhance RFP. To figure out the
answer, we take the case of two source nodes as an example.
For simplicity, we will fix one source node and then let the
second source node go through all the other nodes. During
this process, we will focus only on those nodes of RFP but
ignore the nodes with normal firing propagation, i.e., the same
way as in Fig. 7(b). In numerical simulations, we take the
ventral network as an example. Figure 9 shows four typical
cases where Figs. 9(a) and 9(b) represent the case that the first
source node is chosen from the regions of RFP in Fig. 7(b),
and Figs. 9(c) and 9(d) represent the case that the first source
node is chosen from outside of the regions of RFP in Fig. 7(b).
We see that all the four panels of Fig. 9 have regions of RFP,
but the density in Fig. 9(a) and 9(b) is larger than that in
Figs. 9(c) and 9(d).

Furthermore, it is important to compare Fig. 9 with two
source nodes with Fig. 7(b) with one source node. This com-
parison reveals a striking difference: the densities in Fig. 9(a)
and 9(b) are higher than those in Fig. 7(b), whereas the densi-
ties in Fig. 9(c) and 9(d) are lower, indicating two contrasting
outcomes. We will figure out its mechanism in Sec. I'V.

IV. THEORETICAL ANALYSIS ON BOTH THE FIRING
PROPAGATION AND RFP

In this section we aim to give a brief theoretical explanation
of the above observed firing propagation and RFP.

A. Case of normal firing propagation

We begin by discussing the case of firing propagation. In
this case, we have observed the following results: (i) For a
specific source node i, the number of activated nodes ny(7)
depends on both the source node i and the coupling strength A,
i.e., ny(i) will be greater than zero only when the local topol-
ogy of the source node i allows its activation to be propagated
out and the coupling strength X is located in the optimal range;
see Fig. 4. (ii) For a cognitive network, its firing propagation
(ny) depends on the network topology; see Fig. 5. Finally, (iii)
multiple source nodes favor firing propagation; see Fig. 8.

To understand the first aspect (i), we revisit Figs. 3(a)
and 3(b), with firing propagation in Fig. 3(a) and no firing
propagation in Fig. 3(b). A common point between them is
that their numbers of the nearest neighbors of source nodes
are approximately the same, i.e., the number of nodes on
the first circle of the source node is kgo = 15 in Fig. 3(a)
and k;; = 12 in Fig. 3(b). A key difference in their local
topologies lies in the second circle: the number of nodes in
the second circle is significantly smaller in Fig. 3(a) compared
to Fig. 3(b). This suggests that the neighboring nodes of the
first circle in Fig. 3(a) are fewer than those in Fig. 3(b). Thus,
the ability of firing to propagate from the source node i to
its first circle depends not only on the source node i and its
nearest-neighboring nodes but also on the nodes of the second
circle, i.e., the nearest neighbors’ neighboring nodes of the
source node i. This generates a deeper question: Why the
higher degrees of the nodes on the first circle do not favor
firing propagation. To figure out the answer, we go back to
Eq. (1) and let

Icoup = kzyzlwmj(xj - xm)7 (3)

where m represents the nodes on the first circle of the source
node i. Then we divide Iy into two parts, leowp = 11 + b,
with I} = AW,,;(x; — x,,) from the source node i and I, =
)\Ejy:L j #in j(x; — x,,) from the second circle of the source
node i. When the source node i is firing, we have I} > 0 as
Xj > Xp. At this moment, we will generally have x; — x,, <0
and thus I, < 0; that is, I} will provide a positive contribution
to Ieoup While I, will provide a negative contribution to leoup.
When x; is firing and x; is not firing, we will have x; > x;,
which makes the difference x; — x,, from the source node
i balance the sum of several differences x; — x,, from the
second circle of the source node i, resulting in I} > || or
Ieoup > 0. In this case, node m on the first circle of the source
node i will be activated, provided that we have Iy + Icoup >
I{,, in Eq. (1). However, with the increase of the nodes on the
second circle of the source node i, i.e., the increase of degrees
of the nodes on the first circle, the balance between I; and
L, will be broken, resulting in I} < || or I.oyp < 0. In this
case, the node m on the first circle of the source node i will
not be activated. This explains the observations in Figs. 3(a)
and 3(b): lext + leoup > 15, in Fig. 3(a) and Lox; + Leowp < IS,
in Fig. 3(b). To provide evidence to support this analysis, we
go back to Figs. 3(a) and 3(b) and show the degrees k,, of
their nodes on the first circle of the source node i and other
related information in Tables I and II, respectively, such as
the connections within the first circle I, the connections
to the second circle k", and the total weight to the second

m

013116-6



FIRING PROPAGATION IN EMPIRICAL COGNITIVE ...

PHYSICAL REVIEW RESEARCH 7, 013116 (2025)

TABLE 1. Information on the nodes of the first circle of the
source node i with i = 80 and degree kgo = 15 in Fig. 3(a) where
the neighbor m, k,, kI, k%", W and firing status represent the
node number of the nearest neighbors of the source node 80, its
corresponding degree, connections within the first circle, connections
to the second circle, total weight to the second circle, and whether the

node m is firing or not, respectively.

Source i  Neighborm k, k" k% W  Firing status
80 70 37 11 25 11.66 No
80 71 18 9 8 4.13 Yes
80 72 17 10 6 3.00 Yes
80 73 10 8 1 0.54 Yes
80 75 13 10 2 1.18 Yes
80 76 14 11 2 0.86 Yes
80 77 1210 1 0.34 Yes
80 78 18 12 5 2.61 Yes
80 79 15 13 1 0.34 Yes
80 81 17 12 4 1.89 Yes
80 82 20 11 8 3.68 Yes
80 83 12 11 0 0 Yes
80 84 8 7 0 0 Yes
80 85 11 10 0 0 Yes
80 86 6 5 0 0 Yes

circle, which are extracted from Fig. 1(h) and Fig. 2(h), with
KD 4 k0t = k,, — 1.

We see from Tables I and II that most nodes on the first
cycle for the firing status of “yes” do have smaller degree &,
and those for the firing status of “no” do have larger degree
ki, confirming the above analysis. More precisely, we see that
the nodes of firing status of “no” have more connections to
the second circle, k9, implying that k0™ plays a critical role
in k,. Going back to Eq. (3), we see that the weight W,,;
represents the effective connection and thus is a better variable

than k2™ to represent the firing status. Let Wo" = Zk'" Winj-

m j=l1

TABLE II. Information on the nodes of the first circle of the
source node i with i = 11 and degree k;; = 12 in Fig. 3(b) where
the neighbor m, k,, ki, k%, W and firing status represent the
node number of the nearest neighbors of the source node 11, its
corresponding degree, connections within the first circle, connections
to the second circle, total weight to the second circle, and whether the

node m is firing or not, respectively.

Source i  Neighborm  k, i gout Wou  Firing status
11 8 33 8 24 11.92 No
11 10 36 9 26 14.04 No
11 14 13 2 10 5.06 No
11 17 17 2 14 7.70 No
11 20 21 8 12 6.25 No
11 30 12 6 5 2.35 No
11 34 14 4 9 4.33 No
11 47 21 8 12 6.23 No
11 48 35 8 26 13.66 No
11 56 39 9 29 14.70 No
11 109 48 5 42 22.74 No
11 110 51 5 45 23.96 No

From Tables I and II, we see that Wn‘;“‘ is indeed relatively
large for the firing status of “no,” indicating that it is the best
quantity to represent firing propagation.

Based on the above analysis, we may come to an interesting
conclusion that the peripheral nodes of a network favor firing
propagation while the hub nodes do not, as the former usually
have smaller degrees while the latter have larger degrees.
After understanding these points, we can now easily explain
the observation of Fig. 4(a), i.e. a key factor for ny > 0 is its
smaller Wo". Moreover, comparing Fig. 4(a) with Fig. 2(h),
we see that the two peaks with ny > 0 in Fig. 4(a) correspond
to the two valleys with smaller degrees k; in Fig. 2(h), con-
firming the above analysis again.

Furthermore, we can also apply Eq. (3) to explain the
inactivated source nodes in Fig. 4(a). For the source nodes,
we have I; = 0and I, < 0, thus Ieoup = I < 0. Recall that the
source node has an external stimulus /; see Eq. (2). Thus, the
condition for the source node to fire is lex; + Iy + Leoup > IS
Because of the existence of I, it is relatively easy for a
source node to fire. However, when |I| is large enough or
there are enough nodes on the first circle of the source node,
we will have Ly + Iy + Leoup < I5,. Once this happens, even
the source node will not be activated. This is the reason for the
“black” points on the x axis of Fig. 4(a).

Except the local topology of source node, another impor-
tant factor for firing propagation is the coupling strength A;
see Figs. 4(c) and 4(f). It is well known that the key role
of coupling is to make a synchronization among oscillators.
This feature will definitely change the membrane potential
x; and thus change the difference (x; — x,,) in Eq. (3), i.e.,
influence the balance between Iox + Ieoup and I;. When A
is too large, all the oscillators will be synchronized and thus
resultin (x; — x,,) = 0, 1.e., Ioup = 0. In this situation, we will
have Loy + Leoup = Iext < I5; and thus no firing, confirming
the observations in Figs. 4(c) and 4(f). Similarly, when A is
too small, we will have a very small /.o, from Eq. (3), also
resulting in ey + leoup < IS, and thus no firing in Fig. 4(c)
and 4(f).

However, when A is a middle value, its influence will
depend on the local topology of the source node. Take the
nodes on the first circle of the source node as an example.
They will get the same positive contribution from the source
node but different negative contribution from the connections
to the second circle. At the same time, they will also interact
each other through the connections within the first circle, i.e.,
k", These interactions from k' will most probably result in
a phase synchronization among the nodes on the first circle
of the source node. To confirm it, Fig. 10 shows the dynamics
of the nodes on the first circle of the source node for the case of
Fig. 3, where Figs. 10(a) and 10(b) correspond to the cases of
Figs. 3(a) and 3(b), respectively. We see that both Figs. 10(a)
and 10(b) show phase synchronized behaviors, no matter they
are firing or inactivated. In sum, the two aspects of the local
topology of source node and coupling strength work together
to make the firing propagation.

To understand the second aspect (ii), we go back to Fig. 2.
We observe that all the panels in Figs. 2(a)-2(d) and Figs. 2(f)
and 2(g) have a smaller average degree around 15-20, with
smaller fluctuations, while the two panels of Figs. 2(e) and
2(h) have a larger average degree around 30, accompanied
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4500

FIG. 10. Dynamics of the nodes on the first circle of the source
node for the case of Fig. 3 where (a) and (b) correspond to the cases
of Figs. 3(a) and 3(b), respectively.

by larger fluctuations. Based on this feature of topology, we
deduce that the nodes on the first circle of the source node
have relatively smaller degrees for the cognitive networks of
Figs. 2(a)-2(d) and Figs. 2(f) and 2(g) but relatively larger
degrees for the cognitive networks of Figs. 2(e) and 2(h); that
is, it is relatively easier for the former to satisfy the condition
of Ioup > 0 but difficult for the latter to satisfy the condition
of I.oup > 0. This is the reason why we have observed larger
firing propagation in the cognitive networks of Figs. 5(a)-5(d)
and Figs. 5(f) and 5(g) but smaller firing propagation in the
cognitive networks of Figs. 5(e) and 5(h).

To understand the third aspect (iii), we also go to the
analysis of I.oup. In this case we have two source nodes and
thus two first circles of the source nodes, resulting in more
firing propagation. At the same time, the influence of the
two source nodes may overlap at those subcritical nodes and
make them reach the condition of Iou, > 0, resulting in the
enhanced firing propagation in Fig. 8.

B. Case of remote firing propagation

We next discuss the case of RFP. In this context, we have
also observed three key aspects: (i) There are different path-
ways for RFP, as shown in Fig. 6(a) and 6(b). (ii) RFP depends
on both the source node i and the coupling strength A, as
demonstrated in Fig. 7(b). (iii) Multiple source nodes may
either enhance or reduce firing propagation, as seen in Fig. 9.
To understand the first aspect (i), we take the pathway of
Fig. 6(a) as an example. Figure 11(a) shows its dynamics with
A = 0.38 where the “red,” “gray,” and “blue” lines represent
the dynamics of the source node 63, the nearest-neighboring
node 61 of the source node 63, and the remote firing node
65, respectively. The source node 63 is a peripheral node of
the ventral network, with only one link, and thus receives the
minimum influence from other nodes of the ventral network.
In this sense, its total synaptic current will be approximately
Iexe + Iy = 3.0 from Eq. (2). To understand what Iy + I, rep-
resents, we plot a bifurcation diagram of a single HR neuron
in Fig. 11(c), i.e., . = 0 in Eq. (1). We see that the single HR
neuron will be located in the bursting region when I, = 3.0
in Fig. 11(c). This is the reason why we observe the bursting
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FIG. 11. Theoretical analysis on RFP. Panel (a) represents the
dynamical process of RFP in Fig. 6(a) with . = 0.38 where the “red,”
“gray,” and “blue” lines represent the dynamics of the source node
63, the nearest-neighboring node 61 of the source node 63, and the
remote firing node 65, respectively. Panel (b) represents the evolution
of coupling term /.oy, corresponding to (a), where the inset shows the
amplification of local dynamics. Panel (c) represents the bifurcation
diagram of a single neuron of Eq. (1) with A = 0.

behavior of the source node 63 in Fig. 11(a), i.e., the “red”
line.

To understand the mechanism of the remote firing node 65,
we show the behavior of I.oyp in Fig. 11(b). We aim to provide
evidence why the nearest-neighboring node 61 of the source
node 63 is not activated but the remote node 65 is activated. As
the “blue” line of the remote node 65 is too small to recognize,
we amplify it in the inset. We see from the inset of Fig. 11(b)
that the “blue” line of Iy is greater than 0.01 right before
the spike of node 65, resulting in lox; + leoup > 15, and thus
inducing the spiking of remote firing node 65 in Fig. 11(a).
More evidence is that the firing period of the remote firing
node 65 is approximately 180, which is consistent with the
period T ~ 180 for I.x; = 1.31 in Fig. 11(c). To further under-
stand why the nearest-neighboring node 61 of the source node
is not activated, we focus on the “gray” line in Fig. 11(b). We
see that it is a fast oscillatory line, and thus its accumulated
effect will cancel each other and lead to the subthreshold x; in
Fig. 11(a), i.e., no firing.

To understand the second aspect (ii), i.e., the influence of
both the source node i and coupling strength A, we take the
pathway of Fig. 6(b) as an example. Figure 12(a) shows its dy-
namics where the “red,” “gray,” and “blue” lines represent the
dynamics of the source node 5, the five nearest-neighboring
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FIG. 12. Mechanisms of RFP in ventral network. (a) Dynamical
process of RFP in Fig. 6(b) with A = 0.13 where the “red,” “gray,”
and “blue” lines represent the dynamics of the source node 5, the
nearest-neighboring nodes 3, 7, 9, 13, and 22 of the source node 5,
and the remote firing nodes 1, 2, and 4, respectively. (b) Evolution of
ILeoup, corresponding to (a).

nodes 3, 7, 9, 13, and 22 of the source node 5, and the three
remote firing nodes 1, 2, and 4, respectively. To understand
the mechanism of the three remote firing nodes 1, 2, and 4,
we also show their corresponding Icoup in Fig. 12(b). From the
inset of Fig. 12(b), we see I.oup > 0.01 and thus satisfy the
condition of fex; + leoup > IS, Tesulting in the remote firing
of the nodes 1,2, and 4. Comparing Fig. 12(a) with Fig. 11(a),
we see that they are distinctively different, i.e., a burst in
Fig. 11(a) but a spike in Fig. 12(a), reflecting the different
influences of their source nodes. On the other hand, we notice
that the source node 63 of Fig. 11(a) is a burst while the source
node 5 of Fig. 12(a) is a spike. To understand this difference,
we go back to Figs. 6(a) and 6(b). A distinctive difference
between them is that the degree of the source node is kg3 = 1
in Fig. 6(a) and ks = 12 > 5 in Fig. 6(b); that is, for Fig. 6(b),
the source node 5 will also get influence from other parts of
ventral network. As this influence depends on A, it reflects
the impact of coupling strength and causes lox + Is + Ieoup Of
Eq. (2) to shift from the bursting region to the spiking region.

For the third aspect (iii), i.e. the influence of multiple
source nodes, we have shown that the firing densities in
Figs. 9(a) and 9(b) are larger than those in Fig. 7(b), while
the firing densities in Figs. 9(c) and 9(d) are smaller than
those in Fig. 7(b). To understand these two contrary results,
we first need to distinguish between the nodes of RFP in
Fig. 7(b) and those of normal firing propagation. Generally,
a RFP will emerge only when the normal firing propagation is
impossible; that is, there will be no possibility for RFP when
firings can be normally propagated. In this sense, RFP can be
considered as complementary of normal firing propagation.
Then we go back to the case of two source nodes. When the
first source node can make RFP, the second source node will
help the regions of RFP to increase and thus enhance RFP.
However, when the first source node has no RFP, it usually
has a possibility of normal firing propagation. In this sense,
the second source node will help the regions of normal firing

propagation to increase and thus reduce the chance for RFP.
These are what we have observed in Fig. 9(a)-9(d).

V. DISCUSSIONS AND CONCLUSIONS

From our work, some insights on signal propagation in
cognitive networks can be summarized as follows. (i) RFP is
a specific feature of network, which cannot be generated in a
one-dimensional chain. Based on this feature, we may expect
a spontaneous firing even without the source node. For exam-
ple, when a node is in the critical point and fortunately gets a
positive contribution from its neighbors, it might be activated.
(i1) Peripheral nodes in the network favor firing propagation,
in contrast to the conventional view that hub nodes are more
crucial than peripheral nodes. This finding may induce clinical
improvements to prevent the rapid spread of epilepsy or other
disorders. Finally, (iii) the community topology of cognitive
networks prefers local firing propagation and thus supports
the diversity of brain functions.

Firing propagation and RFP reflect how information is reg-
ulated in cognitive networks and thus can be considered as a
window to understand the mechanisms of the “black box,” i.e.,
the way the brain works. In this sense, the study of firing prop-
agation and RFP can help us understand how brain functions
emerge from structural networks, providing a complementary
and alternative perspective to remote synchronization. We also
note that we selected source nodes at random to illustrate the
firing propagation for several plots in this analysis. However,
this does not influence our conclusions, as they are based
on the condition that every node of a network is chosen as
the source node for one time, indicating the robustness of
source nodes. From the obtained phase diagrams of Figs. 4,
7, and 9, we can explore applications such as strategically
choosing source nodes to achieve certain firing propagation.
For example, depending on the requirement for propagation,
we can use these phase diagrams to guide our choice of source
nodes.

Finally, we must emphasize that all the results discussed
above are based solely on negative feedback couplings. In the
real brain, there are also inhibitory connections that will un-
doubtedly affect signal propagations. We leave this for future
studies.

In conclusion, we have studied firing propagation in all
eight cognitive networks of a brain network. We find that
firing propagation can be significantly influenced by both the
global topology of the network and the local topology of
the source node. In particular, peripheral nodes of a network
usually have a stronger ability of firing propagation than hub
nodes. There is an optimal coupling strength related to syn-
chronization for each cognitive network, and multiple source
nodes favor firing propagation. Interestingly, a phenomenon
of RFP is observed, which highlights the advantage of the
network, in contrast to the case of a one-dimensional chain.
Furthermore, a detailed theoretical analysis is provided to
explain both the firing propagation and RFP.
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